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Generating many Majorana modes via periodic driving: A superconductor model
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Realizing Majorana modes (MMs) in condensed-matter systems is of vast experimental and theoretical interests,
and some signatures of MMs have been measured already. To facilitate future experimental observations and
to explore further applications of MMs, generating many MMs at ease in an experimentally accessible manner
has become one important issue. This task is achieved here in a one-dimensional p-wave superconductor
system with the nearest- and next-nearest-neighbor interactions. In particular, a periodic modulation of some
system parameters can induce an effective long-range interaction (as suggested by the Baker-Campbell-Hausdorff
formula) and may recover time-reversal symmetry already broken in undriven cases. By exploiting these two
independent mechanisms at once we have established a general method in generating many Floquet MMs via
periodic driving.
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I. INTRODUCTION

The Majorana fermion, a particle which is its own
antiparticle,1 is attracting tremendous attention.2–5 In addition
to its fundamental interest,6–9 its potential applications in topo-
logical quantum computation are also noteworthy.10 Along
with considerable theoretical studies,7,10–20 the experimental
search for Majorana modes (MMs) in condensed-matter sys-
tems has become a timely and important research topic. Indeed,
following the theoretical results in Refs. 19–25, the zero-bias
conductance peaks observed recently26–29 are regarded as a
signature of MMs in one-dimensional (1D) spin-orbit coupled
semiconductor nanowires. However, the observed zero-bias
peaks can be due to other reasons as well, e.g., the strong
disorder in the nanowire30,31 or smooth confinement potential
at the wire end.32 This being the case, the formation of MMs
in these systems are yet to be double-confirmed by other
approaches.

To identify MMs and facilitate their experimental obser-
vation, the signal strength should be enhanced.33–35 If many
MMs are present at the same edge and topologically protected
from hybridizing with each other, one may verify if the
signal originates from MMs by tuning the actual number
of them, with the enhanced signal also more robust against
experimental disorder24,30,36 and contaminations from thermal
excitations.21–25 It is thus constructive to find a general method
to form many MMs within one single system. In this respect,
two facts are known. First, the formation of many MMs needs
the protection of time-reversal symmetry.35,37,38 Second, a
longer-range interaction in a system is helpful to obtain more
than two pairs of MMs.37 As such, the generation of many
MMs is equivalent to the following theoretical question: How
does one synthesize a long-range interaction in a topologically
nontrivial condensed-matter system while maintaining time-
reversal symmetry?

As a conceptual advance, our answer to this question
is rather simple and general. Given that periodic driving

has become one highly controllable and versatile tool in
generating different topological states of matter,39–47 we show
that a periodic driving protocol can create many Floquet
MMs because it can generically induce effective long-range
interactions and may also restore time-reversal symmetry
(if it is broken without driving). Note that Floquet MMs
are a particular class of MMs associated with the Floquet
quasienergy bands of a periodically driven system:44 They
may be used for topological quantum computation as “normal”
MMs do.48

Specifically, we propose to generate multiple Floquet MMs
by switching (periodic quenching) a Hamiltonian from H1 for
the first half period to H2 for the second one. The Floquet
operator U is then

U (T ) = e− iH2T

2h̄ e− iH1T

2h̄ ≡ e− iHeff T

h̄ , (1)

where an effective Hamiltonian Heff for the driven system has
been defined. Using the Baker-Campbell-Hausdorff (BCH)
formula, one finds that Heff is formally given by

Heff = H1

2
+ H2

2
− iT

8h̄
[H2,H1]

− T 2

96h̄2 [(H2 − H1),[H2,H1]] + · · · . (2)

Clearly then, even if H1 or H2 are short-range Hamiltonians,
the engineered Heff may still have long-range hopping or
pairing terms via the nested-commutator terms in Eq. (2). This
constitutes a main difference from undriven systems. Thus,
the remaining job is to design such a protocol so that Heff

also possesses time-reversal symmetry. Interestingly, in the
first proposal to realize Floquet MMs,44 no more than two
pairs of MMs can be generated precisely because time-reversal
symmetry is not restored by the periodic driving therein.

In the following we present our detailed results using
a model of a 1D spinless p-wave superconductor with the
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nearest- and next-nearest-neighbor (NNN) interactions only.
Under a periodic modulation of superconducting phases, we
not only demonstrate that many Floquet MMs (e.g., 13 pairs in
one case) can be generated, but also show that the number of the
MMs may be widely tuned by scanning the modulation period.
These results also shed more light on the inherent advantages
of driven systems in exploring different topological states of
matter, which can be useful for other timely topics related to
long-range interactions (e.g., fractional Chern insulators49,50).

II. STATIC MODEL

We start from the Kitaev model Hamiltonian for a 1D
spinless p-wave superconductor

H = −μ

N∑

l=1

c
†
l cl −

2∑

a=1

N−a∑

l=1

(tac
†
l cl+a + �ac

†
l c

†
l+a + H.c.),

where μ is the chemical potential, ta and �a = |�a|eiφa with
a = 1 (a = 2) describes the nearest- (next-nearest-) neighbor
hopping amplitude and pairing potential, respectively, and φa

is the associated superconducting phases. All energy-related
parameters are scaled by |�1| and h̄ = 1 is set in our
calculations. Majorana operators here refer to (cl + c

†
l ) or

i(cl − c
†
l ). Such synthesized MMs may appear as edge modes

under an open boundary condition, if the bulk band structure
is topologically nontrivial.

The relative phase φ = φ1 − φ2 determines the topological
class of H .51 For φ = 0 and π , H has time-reversal and
particle-hole symmetries. These cases then belong to the
so-called “BDI” class characterized by a topological invariant
Z. For other values of φ, H has particle-hole symmetry
only and falls into the so-called “D” class characterized by
a topological invariant Z2. The D class can generate at most
one pair of MMs. As to the BDI class, despite its potential
in forming many MMs,38 at most two pairs of MMs can be
generated here due to the short-range nature of H .

III. DRIVEN MODEL

We now turn to periodically driven cases under a protocol
given by Eq. (1). The emergence of Floquet MMs is directly
connected to topological properties of the eigenstates of the
Floquet operator U (T ). Let |u〉 be an eigenstate of U (T ) with
an eigenvalue e−iεT , namely, U (T )|u〉 = e−iεT |u〉. Evidently,
the eigenvalue index ε is defined only up to a period 2π/T

and hence called “quasienergy.” The periodicity in ε may lead
to a different topological structure in driven systems, with
the corresponding topological classification revealed by the
homotopy groups.42 However, if the driven system belongs to
a trivial class to this topological structure, then topological
properties of the driven system is fully characterized by Heff

defined in Eq. (1).38 This will be the case for our driving
protocol proposed below.

As an explicit example, we propose to switch between
two Hamiltonians H1 and H2 by the following: In the first
half period, H1 = H (φ1,φ2) with both superconducting phase
parameters φ1 and φ2 fixed, whereas in the second half
period, we swap φ1 and φ2 so that H2 = H (φ2,φ1). Without
loss of generality, we choose φ1 = π/2 and φ2 = 0. Thus,

within each half period, the Hamiltonian is in class D that
breaks time-reversal symmetry. In addition to a possible
generation of long-range interactions for Heff , this driving
protocol is designed to recover time-reversal symmetry. In
particular, let K be a conventional time-reversal operator
and G ≡ e−i

φ1+φ2
2

∑
l c

†
l cl be a gauge transformation operator.

Considering a generalized time-reversal operator K̄ ≡ KG,
we find

K̄U (T )K̄−1 = e
iH1T

2h̄ e
iH2T

2h̄ = U †(T ). (3)

This constitutes a direct proof that our driven system now
possesses time-reversal symmetry, and as a result its topolog-
ical class is switched from class D to class BDI. To further
examine this restored time-reversal symmetry, we work in the
momentum representation and directly find an analytical Heff

from Eq. (1). We define ck = ∑
l cle

−ikl/
√

N and introduce
the Nambu representation Ck = [ck,c

†
−k]T . A standard proce-

dure then leads to Heff = ∑
k∈BZ C

†
kHeff(k)Ck , with Heff(k) =

Ek �n(k) · �σ , where �σ represents the Pauli matrices.41 The three
components of �n(k) are given by n1(k) = 0, and

n2(k) = g1,k sin(skT )

sk sin(EkT )
− 2g2,kηk sin2(skT /2)

s2
k sin(EkT )

, (4)

n3(k) = ηk sin(skT )

sk sin(EkT )
+ 2g1,kg2,k sin2(skT /2)

s2
k sin(EkT )

, (5)

where ga,k = |�a| sin(ak), sk = (η2
k + ∑

a g2
a,k)1/2,

ηk = −μ − 2
∑

a ta cos(ak), and cos(EkT ) = cos(skT ) +
2(g2

2,k/s
2
k ) sin2(skT /2). For each value of k, one obtains two

values of Ek and hence two values for the quasienergy
ε. Consistent with the K̄ symmetry, we now have
H ∗

eff(−k) = Heff(k). Noting the inherent particle-hole
symmetry of Heff , one may construct a chiral symmetry for
Heff , a fact consistent with our above result that �n(k) is in the
yz plane for all k. The above analysis makes it clear that our
driving protocol changes both the underlying symmetry and
the topological class of the system.

Without a gap closing between the two branches of Ek ,
the topological invariant Z in class BDI can be obtained by
the integer winding number W = ∫ π

−π
dθk

2π
∈ Z, where θk =

arctan[n3(k)/n2(k)]. A computational example illustrating W

is shown in Fig. 1(a). The number of pairs of MMs under an
open boundary condition is then given by |W |. As some system
parameters continuously change, gap closing and consequently
topological phase transitions occur.7 Figure 1(b) depicts a
phase diagram, obtained by explicitly evaluating W . It is
seen that |W | ranges from 0 to 3. This indicates that three
pairs of MMs can be formed in our driven system. This is
beyond the expectation for the undriven model, where the NNN
interaction can give at most two pairs of MMs. Therefore,
the finding of |W | = 3 in some parameter regime is a clear
sign that our driving protocol may synthesize some features
absent in the static model. The boundaries between different
topological phases of our driven system are also interesting on
their own right. The solid and dotted lines in Fig. 1(b) depict
the topological phase transition points at which W jumps by
one. This is found to go with the gap closing at k = 0 or ±π .
The dashed line gives the phase transition points at which W

jumps by two. This happens at k = π/2.
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Π Π

Π Π

FIG. 1. (Color online) (a) Winding of the �n(k) [see Eqs. (4)
and (5)] for k ∈ [−π,π ]. W = −3,−2,0,1 correspond to (t1,t2) =
(1,5),(1,3),(1,0),(1,−3), respectively. Indicated on each panel is the
winding number W . The solid and dotted line indicates a gap closing
(of Ek) at k = 0 or ±π , while the dashed line corresponds to a gap
closing at k = π/2. Other parameters are μ = −10, |�2| = 2.5 and
T = 0.2.

To confirm our theoretical results presented in Fig. 1 we
carry out numerical calculations of the quasienergy spectrum
ε under an open boundary condition. Because ε = π/T is
equivalent to ε = −π/T , Floquet MMs have two flavors: one
at ε = 0 and the other at ε = ±π/T . The second flavor is
certainly absent in an undriven system.44 For fixed t1 = 1
and a varying t2, Fig. 2(a) depicts the formation of both
flavors of Floquet MMs, with the second flavor emerging in
a wider parameter regime. The total number of pairs of MMs
should equal |W | (if the winding number is well defined). For
example, Fig. 2(a) shows that two degenerate pairs of MMs at
ε = ±π/T and one pair of MMs at ε = 0 are formed when
t1 = 1 and t2 = 4. This agrees with the W = −3 region shown
in Fig. 1(b). Likewise, all other details in Fig. 2(a) are fully
consistent with our analytical results shown in Fig. 1(b). We
have also studied the dynamics of the formed MMs in one full
period of driving: They are indeed well localized at two edges.
Further, as a comparison with our static model H , we plot
in Fig. 2(b) our system’s energy spectrum in the absence of
driving. It is seen that at most one pair of MMs can be formed
only in a very narrow t2 regime for the large |μ| case. The
parallel driven case is however different: One may still obtain
three pairs of MMs. Thus, even in the large |μ| case, our driving
protocol can still generate more MMs than the static case. This
is both interesting and useful because, in general, the large |μ|
is preferred for the protection of MMs against strong disorder
in actual experiments.

Ε

Π

FIG. 2. (Color online) Quasienergy spectrum for a driven case
(a) vs energy spectrum for a static case (b) obtained under an open
boundary condition. The dashed blue line and solid black line stand
for two degenerate pairs and a single pair of MMs, respectively.
t1 = 1, N = 200, and other parameters are the same as in Fig. 1(b).

FIG. 3. (Color online) The expansion coefficients of Heff for T =
0.2 (a) and 2.0 (b), and of the static H for the real (c) and imaginary
(d) parts in the operator basis (c1, . . . ,cN ,c

†
1, . . . ,c

†
N )T . l and m are

the base indices. Other parameters are the same as in Fig. 2.

In efforts to generate even more MMs, we now extend our
direct numerical studies to other parameter regimes. Remark-
ably, the BCH formula in Eq. (2) indicates that as T increases,
the nested commutators on the right hand side of Eq. (2)
will have heavier weights. An increasing T can then induce
longer-range interactions in Heff . This trend is investigated in
Fig. 3, where the expansion coefficients of Heff [numerically
obtained from Eq. (1)], with Heff expanded as a quadratic
function of the operators (c1, . . . ,cN ,c

†
1, . . . ,c

†
N )T , are shown

for two different values of T . For comparison, the expansion
coefficients for the static case are also plotted in Figs. 3(c) and
3(d). A few interesting observations can be made from Fig. 3.
First, the plotted expansion coefficients of Heff are all real,
which is different from the shown static case with both real
and imaginary coefficients. This difference reflects the restored
time-reversal symmetry for the driven case. Second, in sharp
contrast to the results shown in Figs. 3(c) and 3(d), coefficients
for quite long-range hopping and pairing interactions (e.g.,
across more than ten sites) can be appreciably nonzero for Heff

in both cases of T = 0.2 and T = 2.0. The latter case, plotted
in Fig. 3(b) with wider stripes, confirms the emergence of
longer-range terms with considerable weights as T increases.
Third, the diagonal terms in the expansion shown in Figs. 3(a)
and 3(b) (which can be understood as an effective chemical
potential) are much smaller than the diagonal elements, i.e.,
|μ|, in Fig. 3(c). This further explains why a driven system may
generate many MMs despite a large |μ| in the undriven model.

Results in Fig. 3 motivate us to explore the formation of
Floquet MMs with sufficiently large values of T . There is also
one twist as we increase T . That is, the quasienergy gap may be
generically closed at ε = 0. Consequently the winding number
W is no longer well defined. To characterize the topological
phases at ε = ±π/T , where MMs can still be topologically
protected, we resort to another topological invariant,52

ν = 1

2

∑

n3(k)=0,Ek �=0

sgn{∂k[Ekn3(k)]}sgn[Ekn2(k)], (6)
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TABLE I. Number of MMs localized at each boundary for different T . Other parameters are the same as in Fig. 2(a).

t2 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

T = 0.5 2 4 4 3 3 2 0 0 0 1 1 2 2 4 4 4 3
T = 1.0 6 6 7 7 6 3 3 2 1 1 2 5 5 6 7 7 6
T = 2.0 13 13 12 11 9 8 8 1 1 3 4 7 11 10 13 13 12

which reduces to the winding number W when the gap at
ε = 0 is also open. We present in Table I the number of pairs
of MMs we obtain, for an increasing T and for different choices
of t2. For T = 0.5, the best observation is the generation of
four pairs of MMs but no MMs for |t2| � |t1|. For T = 1.0,
it is possible to achieve seven pairs. For T = 2.0, as many
as 13 pairs of MMs can be formed. Interestingly, in cases
with large T such as T = 1.0, our driving protocol can also
form several pairs of MMs for |t2| < |t1| or even with t2 =
0. Note that as more MMs are generated by increasing T ,
the bulk quasienergy gap at ε = ±π/T decreases in general,
leading to a larger “penetration length” (into the bulk) for
the synthesized MMs. Considering the necessary protection of
MMs by a nonzero bulk gap, one may not wish to push our
driving protocol too far.

It is noted that the finite switching time in the practice
to our ideal step-driving scheme has no qualitative change
to our results. However, it may influence quantitatively the
range of the synthesized interaction as well as the numbers
of the generated MMs. To simulate the smooth switching
we have separated each of the two half periods of our
driving scheme into 15 intermediate staircaselike changes and
confirmed numerically that longer-range interactions as well
as more MMs can be generated. As a final remark, the number
of the MMs characterized by the topological invariant depends
on the topological properties of the Floquet states, which are
determined by all the physical parameters in the driven model.

IV. CONCLUSIONS

A periodic driving has the capacity to restore time-reversal
symmetry and to induce an effective long-range interaction.
With these two mechanisms working at once, the generation

of many MMs is achieved using a standard p-wave supercon-
ductor model under a certain periodic modulation.

In terms of a possible experimental confirmation of our
predictions, our model may be realized with cold atoms or
molecules in a designed optical lattice, as clean systems with
negligible perturbations. Explicitly, the nearest-neighbor and
NNN hopping (ta) can be realized by a simple zigzag chain
lattice,34 with the hopping strength adjustable by the lattice
geometry. The chemical potential (μ) is controllable through
the optical trap potential or a radio frequency detuning. The
pairing terms (�a) may be induced by a Raman induced disso-
ciation of Cooper pairs forming an atomic BCS reservoir and
the associated superconducting phases (φa) can be tuned by
complex Rabi frequencies.44 Another experimental realization
is to use the recently proposed quantum-dot-superconductor
arrays with a zigzag geometry.53 Here μ can be gate controlled.
�a can be proximity induced and φa can be tuned via applying
fluxes on the superconducting islands. The MMs formed in
our system may be probed using techniques analogous to
what is being used for undriven systems,34 but now with the
hope of some enhanced signals if a measurement exploits the
simultaneous generation of many MMs. The generation of a
tunable number of many MMs is also expected to offer another
dimension for experimental studies.

ACKNOWLEDGMENTS

This work is supported by the Fundamental Research Funds
for the Central Universities, by the NSF of China (Grants No.
11175072, No. 11174115, and No. 10934008), and by National
Research Foundation and Ministry of Education, Singapore
(Grant No. WBS: R-710-000-008-271). J.G. was funded by
Academic Research Fund Tier I, Ministry of Education,
Singapore (Grant No. R-144-000-276-112).

*anjhong@lzu.edu.cn
†phyohch@nus.edu.sg
1E. Majorana, Nuovo Cimento 5, 171 (1937).
2C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma,
Rev. Mod. Phys. 80, 1083 (2008).

3F. Wilczek, Nat. Phys. 5, 614 (2009).
4C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113
(2013).

5J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
6G. Moore and N. Read, Nucl. Phys. B 360, 362
(1991).

7N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
8D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
9J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,
Nat. Phys. 7, 412 (2011).

10A. Kitaev, Phys. Usp. 44, 131 (2001); Ann. Phys. 303, 2 (2003);
321, 2 (2006).

11L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008); Phys.
Rev. B 79, 161408(R) (2009).

12J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev.
Lett. 104, 040502 (2010).

13J. Alicea, Phys. Rev. B 81, 125318 (2010).
14C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, Phys. Rev.

Lett. 101, 160401 (2008).
15M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,

020401 (2009).
16S.-L. Zhu, L.-B. Shao, Z. D. Wang, and L.-M. Duan, Phys. Rev.

Lett. 106, 100404 (2011).
17M. Gong, G. Chen, S. Jia, and C. Zhang, Phys. Rev. Lett. 109,

105302 (2012).

201109-4

http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.101.160401
http://dx.doi.org/10.1103/PhysRevLett.101.160401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.106.100404
http://dx.doi.org/10.1103/PhysRevLett.106.100404
http://dx.doi.org/10.1103/PhysRevLett.109.105302
http://dx.doi.org/10.1103/PhysRevLett.109.105302


RAPID COMMUNICATIONS

GENERATING MANY MAJORANA MODES VIA PERIODIC . . . PHYSICAL REVIEW B 87, 201109(R) (2013)

18L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).
19R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105,

077001 (2010).
20Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002

(2010).
21K. Sengupta, I. Zutic, H.-J. Kwon, V. M. Yakovenko, and S. Das

Sarma, Phys. Rev. B 63, 144531 (2001).
22K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001

(2009).
23J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das

Sarma, Phys. Rev. B 82, 214509 (2010).
24K. Flensberg, Phys. Rev. B 82, 180516 (2010).
25M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J.

Beenakker, New J. Phys. 13, 053016 (2011).
26V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers,

and L. P. Kouwenhoven, Science 336, 1003 (2012).
27J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui,

A. S. Bleich, J. G. Analytis, I. R. Fisher, and D. Goldhaber-Gordon,
Phys. Rev. Lett. 109, 056803 (2012).

28M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q.
Xu, Nano Lett. 12, 6414 (2012).

29A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman,
Nat. Phys. 8, 887 (2012).

30J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Phys. Rev. Lett. 109,
267002 (2012).

31D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus, and C. W.
J. Beenakker, New J. Phys. 14, 125011 (2012).

32G. Kells, D. Meidan, and P. W. Brouwer, Phys. Rev. B 86, 100503(R)
(2012).

33I. C. Fulga, F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker,
Phys. Rev. B 83, 155429 (2011).

34C. V. Kraus, S. Diehl, P. Zoller, and M. A. Baranov, New J. Phys.
14, 113036 (2012).

35L. Wong and K. Law, arXiv:1110.4575.
36V. Shivamoggi, G. Refael, and J. E. Moore, Phys. Rev. B 82, 041405

(2010).

37Y. Niu, S. B. Chung, C.-H. Hsu, I. Mandal, S. Raghu, and
S. Chakravarty, Phys. Rev. B 85, 035110 (2012).

38A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.
Rev. B 78, 195125 (2008); A. Kitaev, arXiv:0901.2686.

39T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
40J.-i. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401

(2010).
41T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Phys. Rev. A

82, 033429 (2010).
42T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82,

235114 (2010).
43N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).
44L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,

G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys.
Rev. Lett. 106, 220402 (2011).

45D. Meidan, T. Micklitz, and P. W. Brouwer, Phys. Rev. B 84, 195410
(2011).

46I. C. Fulga, F. Hassler, and A. R. Akhmerov, Phys. Rev. B 85,
165409 (2012).

47A. A. Reynoso and D. Frustaglia, Phys. Rev. B 87, 115420
(2013).

48D. E. Liu, A. Levchenko, and H. U. Baranger, arXiv:1211.1404.
49Z. Liu, E. J. Bergholtz, H. Fan, and A. M. Läuchli, Phys. Rev. Lett.
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