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Quasi-topological phases of matter and topological protection
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We discuss systems which have some, but not all, of the hallmarks of topological phases. These systems’
topological character is not fully captured by a local order parameter, but they are also not fully described at low
energies by topological quantum field theories. For such systems, we formulate the concepts of quasi-topological
phases (to be contrasted with true topological phases) and symmetry-protected quasi-topological phases. We
describe examples of systems in each class and discuss the implications for topological protection of information
and operations. We explain why topological phases and quasi-topological phases have greater stability than
is sometimes appreciated. In the examples that we discuss, we focus on Ising-type (a.k.a. Majorana) systems
particularly relevant to recent theoretical advances and experimental efforts.
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I. INTRODUCTION AND SUMMARY

Topological phases of matter1 have been the subject
of intense interest because they represent new phases of
matter which may support anyons2–6 or their generalizations
and could have potential use for fault-tolerant quantum
computation.7–10 When a system that is in a topological
phase is on a manifold �, it has a set of orthonormal
“pseudo-ground” states |a〉, a = 1,2, . . . ,N� , which includes
the absolute ground state of the system. These pseudo-ground
states satisfy

δE0 ≡ max(|Ea − Ea′ |) = O(e−L/ξ ) (1)

(which is why we do not simply refer to them all as ground
states), where L is the system size and ξ is the correlation
length of the system, which is finite in the limit L → ∞.
These states are separated from the rest of the spectrum by
an energy gap � that remains nonzero in the limit that the
system size L → ∞. Thus, these pseudo-ground states form
an N�-dimensional degenerate ground-state subspace in the
thermodynamic limit. In a topological phase, N� depends only
on the topological configuration of the system, e.g., genus,
number of boundaries, and boundary conditions. Furthermore,
for any local operator φ,

〈a|φ|b〉 = Cδab + O(e−L/ξ ), (2)

where C is a constant independent of a,b. Since the
Hamiltonian is a sum of local operators, the statement that
the energy splitting between ground states is O(e−L/ξ ) is
redundant since it follows from Eq. (2). Perturbations at
frequencies much smaller than � (including, of course, static
perturbations) can be described effectively at long times as
perturbations acting entirely within the pseudo-ground-state
subspace H0 ≡ span{|1〉, . . . ,|N�〉}. If they are local, such
perturbations can not, up to exponential accuracy, cause
transitions between states, according to Eq. (2). At most,
the state of the system can acquire an overall phase. Thus,
quantum information encoded in this pseudo-ground-state
subspace is “topologically protected” at zero temperature in
the thermodynamic limit. At nonzero temperature, the error
rate � is exponentially suppressed by the gap � ∼ e−�/T .

A system that satisfies the properties listed above is
described by a topological quantum field theory (TQFT).11

In particular, the low-energy degrees of freedom at long
distances are described by an effective theory in which the
degrees of freedom are entirely topological, i.e., they depend
only on global properties of the system (with no dynamical
degrees of freedom nor geometry/metric dependence). A
TQFT encapsulates the properties of the low-energy states of
a topological phase on an arbitrary manifold in the limit that
ξ → 0 and � → ∞ or, equivalently, for 1/ξ and � finite (and
positive), but at length scales x 	 ξ and energy scales δE0 

ω 
 �. These inequalities must be satisfied for the following
reasons. The topological properties dominate short-ranged
interactions only at length scales larger than the correlation
length ξ . Moreover, all processes must be performed at
frequencies large enough that the system does not notice
the finite-sized splitting between pseudo-ground states, but
small enough that quasiparticles are not excited. Topological
phases and TQFTs can exist in any space-time dimension, but
we will usually focus on the case of two spatial dimensions
(plus one time dimension) in this paper. A TQFT also
describes the topological properties (e.g., braiding statistics)
of quasiparticles, which appear in the theory either through
Wilson lines (which represent quasiparticles’ worldlines) and
higher-dimensional analogs or, equivalently, by considering
ground states on manifolds with punctures/boundaries.

The latter point of view, i.e., that topologically nontrivial
excited states can be understood by studying pseudo-ground
states in the presence of punctures (with appropriate boundary
conditions at those punctures corresponding to the type of
quasiparticle), is very similar to Laughlin’s original construc-
tion of fractionally charged quasiparticles in the quantum Hall
effect by threading flux through the hole in an annulus.12,13

Thus, the notion of topological degeneracy of the pseudo-
ground-state subspace naturally includes the degenerate (non-
local) anyonic state space of non-Abelian anyons.4–6 In this
case, the corrections in Eq. (2) will be O(e−r/ξ ), where r

is the distance separating boundaries/quasiparticles. These
exponentially suppressed corrections are due to nonuniversal
corrections to the topological theory (i.e., physics beyond the
TQFT) that result in tunneling of topological excitations either
around nontrivial cycles or between boundaries/quasiparticles.
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These processes generically result in energy splittings that
fully resolve the degeneracies.14 Transformations of the
manifold that leave the topology unchanged are realized
by unitary transformations acting on the (finite-dimensional)
Hilbert space of pseudo-ground states. Transformations that
are continuously connected to the identity are realized trivially,
but those which are not connected to the identity are realized
by nontrivial unitary transformations. For instance, on the
plane with n punctures, these unitary transformations form
a representation of the n-strand braid group. Two-dimensional
[(2 + 1)-D] TQFTs are very tightly constrained by self-
consistency (see, for instance, Appendix E of Ref. 15).
Therefore, if a system is in a topological phase, as defined
above, then its properties can be predicted by a discrete
mathematical structure with very few “free” parameters.
Such systems have been proven to be stable against small
perturbations. In particular, “Ocneanu rigidity” establishes
that the algebraic structure of a TQFT is rigid,16,17 which
implies that the topological properties are unchanged by small
perturbations of the Hamiltonian that do not close the gap.
Moreover, it has also been established that the energy gap in a
topological phase of any quantum spin Hamiltonian does not
close for sufficiently small perturbations.18–20

Many model Hamiltonians are in topological phases and
satisfy the definition given above. However, this begs the
following question: Do actual physical systems ever satisfy the
definition of a topological phase? Real solids are never fully
gapped. At the very least, they will have gapless phonons and,
usually, gapless photons. These gapless excitations can modify
some of the predictions of TQFTs while leaving others intact.
Therefore, it is important to exercise caution in applying the
abstract concept of a topological phase and its mathematical
formulation as a TQFT to real systems.

Phonons, photons, and other gapless excitations are usually
not included in model Hamiltonians because they are viewed as
inessential to the basic physics. One might adopt the perspec-
tive that the “system” is some subset of the degrees of freedom
in a solid (only the spins, for instance) which satisfies the
definition of a topological phase while the remaining degrees
of freedom constitute the “environment” which perturbs the
system. From this perspective, we can state our basic problem
as follows: What happens when a system that is in a topological
phase is perturbed by coupling it (either at its boundary; at an
interior point; or even everywhere in its interior) to another
system that has gapless excitations? The “other system” may
be intrinsic to the solid (e.g., phonons); partly intrinsic and
partly extrinsic (e.g., photons); or even completely external
(e.g., a metallic lead or gate). This situation is not addressed
by studies of perturbations which act entirely within the Hilbert
space of the “system.”18–20 If, instead, we view the entire solid
with all of its degrees of freedom as our system, we can,
alternatively, phrase the problem as follows: Can a system
with gapless excitations retain some aspects of topological
phases that remain stable against small perturbations, and how
should we classify such systems? This formulation includes
a somewhat broader class of systems since it includes not
only those which can be divided (however unnaturally) into
a gapped topological phase and a gapless “environment,” but
also systems which necessarily have gapless excitations as
part and parcel of their topological character. As we will see,

such systems can be divided into quasi-topological phases
and symmetry-protected quasi-topological phases, which have
different degrees of stability to perturbations. In this paper, we
will discuss these classes in detail, together with examples, and
the extent to which they are robust and can protect quantum
information. True topological phases are reviewed in many
papers (see, for instance, Ref. 10 and references therein), but
we will briefly recapitulate their properties and the extent to
which they are robust before discussing the more subtle cases
of the various types of quasi-topological phases. For other
approaches to the stability of topological properties of some
widely studied many-body systems, see Refs. 21–24.

It is useful to summarize by stating the definitions here. We
have already stated the definition of a topological phase. It is
worth noting that topological phases can also be defined for
systems in the presence of disorder by appropriately modifying
the definition, which we also include.

Definition (Topological phase with disorder). A system is
in a topological phase if there is an energy � and a length
ξ , which, respectively, have a strictly positive limit and a
finite, non-negative limit as L → ∞, such that the following
properties hold. On a manifold �, there is a set of orthonormal
energy eigenstates |a〉, where a ∈ {1,2, . . . ,N�}, with energies
Ea < �, including the absolute ground state |1〉 of the system
(which, without loss of generality, we take to have energy
E1 = 0). N� depends only on the topological configuration of
the system. For any local operator φ,

〈a|φ|b〉 = Cδab + O(e−L/ξ ), (3)

where C is a constant independent of a,b ∈ {1,2, . . . ,N�}. All
other states with energies less than � are localized excitations
of states in H0 ≡ span{|1〉, . . . ,|N�〉}.

The notion of localized excitations of states will be
defined and explained in Sec. III B. We note that it follows
(nontrivially) from this definition that the pseudo-ground-state
subspace of such a system is described by a TQFT (as does
that of a nondisordered topological phase).

Definition (Quasi-topological phase). A system is in a
quasi-topological phase if there is an energy � and a length
ξ , which, respectively, have a strictly positive limit and a
finite, non-negative limit as L → ∞, such that the following
properties hold.

(i) On a manifold �, there is a set of orthonormal
energy eigenstates |a〉, where a ∈ {1,2, . . . ,N�}, including the
absolute ground state |1〉 (with energy E1 = 0), such that for
any local operator φ,

〈a| φ |b〉 = Cδab + O(e−L/ξ ) (4)

for a,b ∈ {1,2, . . . ,N�}, where C is independent of a,b. The
Hamiltonian is a particular local operator, so it follows that

δE0 ≡ max(|Ea|) = O(e−L/ξ ) (5)

for a ∈ {1,2, . . . ,N�}, where Ea is the energy of the state |a〉.
(ii) N� depends only on the topological configuration of

the system.
(iii) We define

	 ≡ min(|Eχ − Ea|) (6)

for any a ∈ {1,2, . . . ,N�} and |χ〉 /∈ H0 ≡
span{|1〉, . . . ,|N�〉}. Then, there must exist a finite z > 0 and
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an L independent κ > 0 such that

	 ∼ κL−z. (7)

(iv) There are no states with energy less than � that have
topologically nontrivial excitations.

Systems in such quasi-topological phases often possess
topological excitations with nontrivial exchange properties,
but this is not a defining property. The notion of topolog-
ically nontrivial excitations will be defined and explained
in Sec. IV.

When we consider different examples of quasi-topological
phases, we will note that some of them have the property
that, at energy scales E between the pseudo-ground states
and the gapless excitations δE0 
 E 
 	, they exhibit the
characteristic behavior of a topological phase. For any fixed
large system size L, there is no difference between such
a quasi-topological phase and a topological phase, with 	

playing the role of the gap. Furthermore, at energies less
than �, the topological and gapless degrees of freedom are
essentially decoupled. We will adopt the heuristic term “strong
quasi-topological” for such phases. We note that if z = 0,
then the system is in a topological phase (and hence is also
“strong”).

Definition (Symmetry-protected quasi-topological phase).
A system is in a symmetry-protected quasi-topological phase
associated with a symmetry group G if there is an energy �

and a length scale ξ which, respectively, have a strictly positive
limit and a finite, non-negative limit as L → ∞, such that the
following properties hold.

(i) On a manifold �, there is a set of orthonormal
energy eigenstates |a〉, where a ∈ {1,2, . . . ,N�}, including the
absolute ground state |1〉 (with energy E1 = 0), such that for
any local operator φ that is invariant under the group G

〈a| φ |b〉 = Cδab + O(e−L/ξ ) (8)

for a,b ∈ {1,2, . . . ,N�}, where C is independent of a,b. For
operators which are not invariant under G, the corrections will
be bounded below by αL−ζ for some nonzero coefficient α and
finite non-negative exponent ζ .The Hamiltonian is a particular
local operator that is invariant under the group G, so it follows
that

δE0 ≡ max(|Ea|) = O(e−L/ξ ) (9)

for a ∈ {1,2, . . . ,N�}, where Ea is the energy of the state |a〉.
(ii) N� depends only on the topological configuration of

the system.
(iii) We define

	 ≡ min(|Eχ − Ea|) (10)

for any a ∈ {1,2, . . . ,N�} and |χ〉 /∈ H0 ≡
span{|1〉, . . . ,|N�〉}. Then, there must exist a finite z > 0 and
an L independent κ > 0 such that

	 ∼ κL−z. (11)

(iv) There are no states with energy less than � that have
topologically nontrivial excitations.

The organization of the paper is as follows: In Sec. II, we
define various length scales of the system to make precise

the notion of keeping these lengths long for the purposes of
topological protection and for taking thermodynamic limits. In
Sec. III A, for the sake of concreteness, we give two examples
of topological phases of a physical system. We explain why
it is nearly impossible to realize such a system in nature.
If one could be realized, however, it would be incredibly
stable against all types of weak local perturbations and,
therefore, would topologically protect quantum information.
In Sec. III B, we consider the modification of topological
phases for systems that include disorder. We provide examples
and a precise definition for a localized excitation of a state
and the resulting definition of a topological phase with
disorder. In Sec. IV, we explain how the structure of a TQFT
arises in the low-energy spectrum of topological phases. In
Sec. V, we consider quasi-topological phases. In Sec. V A,
we consider a few examples that will prove to be strong
quasi-topological phases. These phases represent the least
impactful modification to a topological phase by the inclusion
of gapless degrees of freedom, since they essentially preserve
the full TQFT structure. We show that strong quasi-topological
phases are nearly as robust as topological phases and protect
quantum information nearly as well. The class of strong
quasi-topological phases includes all topological phases as
a subclass. In Sec. V B, we discuss and explain the general
definition of a quasi-topological phase (given above). Since
virtually all physical systems have gapless excitations of some
kind, this is the generic case of a putative topological phase.
A quasi-topological phase does not, in general, exhibit the
full TQFT structure of a topological phase (as does a strong
quasi-topological phase). Nevertheless, it protects quantum
information against a wider class of perturbations than is often
appreciated, including coupling to external gapless electrons.
The class of quasi-topological phases includes all strong quasi-
topological phases as a subclass. In Sec. V C, we consider
quantum Hall states in electronic systems and demonstrate that
they are quasi-topological phases which are not strong. We find
that some quantum Hall states preserve a “strong subsector,”
i.e., a subsector which retains its TQFT structure (as in a strong
quasi-topological phase). In Sec. VI, we define and discuss
electron-parity-protected and other symmetry-protected quasi-
topological phases, for which topological superconductors
are an example. These phases behave as quasi-topological
phases, as long as the symmetry is preserved. In particular,
for superconductors, electron parity must be preserved, which
necessitates isolation from gapless electrons. In Sec. VII, we
discuss how these various classes of quasi-topological phases
can be used to protect quantum information. We compare the
ability to topologically protect quantum information for these
various classes and contrast this to the protection given by
“conventional” qubits. Finally, in Sec. VIII, we discuss some
of the implications.

II. MACROSCOPIC LENGTH SCALES OF THE SYSTEM

In this paper, we will be concerned with the scaling of
various properties as the system size is taken to infinity. In
discussing this limit, we will make reference to three classes
of length scales characterizing the macroscopic configuration
of the system on the manifold � (which we assume to be path
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connected and compact): “system sizes,” “separations between
boundaries,” and “winding lengths.”

We define the size LM of a manifold M to be

LM = max
x,y∈M

{d(x,y)}, (12)

where d(x,y) is the length of the shortest curve in M
connecting points x and y. For the system of interest on
manifold �, we will refer to L� as the system size. We often
consider one-dimensional or two-dimensional systems that are
embedded in three-dimensional systems, in which case it may
be useful to consider other length scales, such as the size of
the three-dimensional manifold in which the manifold � is
embedded. We will define these as needed.

When the manifold � has n distinct connected boundary
components ∂1�, . . . ,∂n�, we define the separation between
boundaries rij to be

rij = min
x ∈ ∂i�
y ∈ ∂j �

{d(x,y)}. (13)

To define the winding lengths of the system, we consider
the fundamental group π1(�), each element of which is an
equivalence class of closed paths in � that can be continuously
deformed into each other. For each element p ∈ π1(�) other
than the identity e, we define �p to be the length of the
shortest path that belongs to the equivalence class that defines
p. (We exclude the identity element because it would have
length �e = 0.) There is a large amount of redundancy in
using all the winding lengths �p to characterize the system’s
winding lengths and we will typically only be interested in the
shortest few of these, which will contribute most significantly
to corrections. Moreover, some of these winding lengths are
inconsequential. In particular, the winding length around a
single boundary component does not play a role in splitting
degeneracies since the boundary conditions imposed on the
system determine a definite boundary state.

In general, there may be many �p and rij that may be treated,
along with L� , as independent parameters. In considering
how the system behaves in the infinite-size limit, it is most
natural to take all lengths L�,rij ,�p → ∞ simultaneously.
However, varying these different parameters (L� , rij , and �p)
independently will generally produce distinct effects, possibly
upon different subspaces of the low-energy states. To simplify
notation, we will refer to all these length scales (L� , rij , and �p)
of the system collectively as L, with the understanding that one
should appropriately resolve effects due to a particular length
scale based on context. For example, “L → ∞” means all
the lengths are taken to infinity, while “O(e−L/ξ ) corrections”
means varying any one of L� , rij , or �p will, respectively,
result in a O(e−L�/ξ ), O(e−�p/ξ ), or O(e−rij /ξ ) correction on
a particular subspace of the Hilbert space. The corresponding
lengths for a submanifold M ⊂ � will similarly be denoted
collectively by LM.

We will assume that the L → ∞ limit is taken with
microscopic quantities such as the particle density or lattice
spacing held fixed, so that the number of particles or lattice
sites also goes to infinity.

III. TOPOLOGICAL PHASES

A. Clean systems

1. 3D superconductor

Although we will focus primarily on two-dimensional
topological phases in this paper, we begin with a three-
dimensional one because, as we shall see, it is easier to
construct a topological phase in three dimensions. Our example
is a clean three-dimensional s-wave superconductor. The
electronic excitation spectrum has a gap �, and photons
are gapped by the Anderson-Higgs mechanism. However,
the system has gapless phonons. Therefore, in order to have
a system which is truly fully gapped, we will have to assume
that the atomic masses are infinite so that there are no phonons
at low energies. (Since superconductivity is usually due to the
electron-phonon interaction, we will have to assume that the
superconductivity is due to some other short-ranged attractive
force which does not require gapless excitations.) Such a
system is seemingly completely boring at low energies (apart
from its ability to carry current without dissipation). However,
its topological properties are nontrivial. Suppose we assume
that the entire universe is filled by this material and that
the universe (which we shall assume to have three spatial
dimensions) is a three-torus T 3. Then, the pseudo-ground
states are eightfold degenerate since fermionic excitations
can have either periodic or antiperiodic boundary conditions
around each of the three generators of T 3. A local operator can
neither measure fermionic boundary conditions nor change
them. In order to measure a boundary condition, a fermion
would have to go all the way around one of the generators of the
torus. This can happen virtually: a virtual pair can be created,
one can go around the torus, and they can annihilate. Such a
process leads to an energy splitting ∼e−L/ξ . In order to change
the boundary condition, a flux tube which winds all the way
around one of the generators of the torus (say, the x direction,
for concreteness) would have to slide in the y or z direction
until it has gone all the way around that direction. Suppose
a pair of such flux tubes is created virtually, such a sliding
process occurs, and then, finally, the flux tubes annihilate.
Then, one ground state will tunnel into another. This causes a
splitting ∼e−aL2

: each flux tube costs an energy ∝L and the
time required for a flux tube to slide all the way around the
torus is ∝L, so the action for such a process is ∝L2. Thus,
the eight pseudo-ground states (which are separated from the
rest of the spectrum by an energy gap) have an energy splitting
∼e−L/ξ , and local operators can not distinguish them. In other
words, it is a topological phase.

2. Kitaev’s honeycomb model implemented ideally

To construct a concrete example of a two-dimensional
topological phase, we begin with Kitaev’s honeycomb lattice
model.15 The Hamiltonian is

H = −Jx

∑
x links

Sx
i Sx

j − Jy

∑
y links

S
y

i S
y

j − Jz

∑
z links

Sz
i S

z
j

+ J ′

2

⎛
⎝ ∑

�rij =x̂,�rkj =ŷ

Sx
i Sz

jS
y

k + rot. symm. equivalents

⎞
⎠ ,

(14)
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where the z links are the vertical links on the honeycomb
lattice, and the x and y links are the other two types of links
on the honeycomb lattice, which are at angles ±π/3 from the
vertical at one sublattice (and ±2π/3 at the other); x̂,ŷ,ẑ are
the unit vectors in the directions of the corresponding links.

In order to ensure that no gapless degrees of freedom exist
in the system, one must be (unrealistically) careful in designing
the system. To avoid the presence of (gapless) photons, one
may embed the honeycomb lattice inside a three-dimensional
superconductor. [Note that, in Kitaev’s paper,15 the three-spin
terms in Eq. (14) were generated by a magnetic field, which we
can not have if the lattice is embedded in a three-dimensional
superconductor. However, we will assume that these terms
are simply present due to some other microscopic reason.
Alternatively, we could replace the Hamiltonian of Eq. (14)
with the Hamiltonian described in Ref. 25, where each vertex
is replaced with a triangle of vertices, which spontaneously
breaks time-reversal symmetry and removes the need for a
magnetic field to provide a gapped non-Abelian topological
phase.] One must also assume that there are no impurities
in the superconductor and that the atoms at the vertices of
the honeycomb lattice and in the superconductor have infinite
mass so that there are no vibrational excitations (phonons)
of the lattice. (We can assume that the superconductivity is
caused by a strong short-ranged attractive force rather than the
electron-phonon interaction.)

This system has two possible topological phases. The “A
phase” occurs for |Jx | + |Jy | < |Jz| (and for cyclic permu-
tations of the values of Jx,Jy,Jz) and J ′ small or zero. The
“B phase” occurs for |Jx | + |Jy | � |Jz|, |Jx | + |Jz| � |Jy |,
|Jz| + |Jy | � |Jx |, and J ′ nonzero. In both phases, the system
has a gap � (which is a function of J,J ′), below which there
are no excitations above the pseudo-ground-state space. In
particular, there are no phonons and photons are gapped by the
three-dimensional superconductor. The spin excitations on the
honeycomb lattice are gapped. We emphasize, as motivation
for the rest of the paper, the artificial and physically unrealistic
conditions required to ensure that the system is fully gapped.

The system described here is truly in a topological phase in
either the A or B phase, and it satisfies Eq. (2). The low-energy
state space of the A phase is described by a TQFT which is
known, alternatively, as the “toric code,” the quantum double
D(Z2), or Z2 gauge theory. This phase has four quasipar-
ticle types: I,e,m,ψ . These four quasiparticle types can be
understood as follows. In the limit that |Jz| 	 |Jx | + |Jy |,
the two spins connected by a link in the z direction will be
locked together. Therefore, we can combine them into a single
spin- 1

2 which we call σi , and we can merge the corresponding
two lattice points into a single lattice point. The resulting
points lie on the midpoints of a square lattice, and the spins
are governed by the following effective Hamiltonian7:

HTC = −Jeff

∑
vertices v

∏
i∈N (v)

σ z
i − Jeff

∑
plaquettes p

∏
i∈p

σ x
i . (15)

The effective spins in the immediate neighborhood N (v) of
any vertex v of the square lattice interact according to the first
term in Eq. (15), where Jeff = J 2

x J 2
y /(16|Jz|3). In the ground

state,
∏

i∈N (v) σ
z
i = 1 for all v and

∏
i∈p σ x

i = 1 for all p. The
I quasiparticle is simply the absence of any other quasiparticle

or, in other words, when the system is in its ground state. The e

quasiparticles are vertices v at which
∏

i∈N (v) σ
z
i = −1. The m

quasiparticles are plaquettes p at which
∏

i∈p σ x
i = −1. The

ψ quasiparticles are plaquettes p at which
∏

i∈p σ x
i = −1, one

of whose vertices v satisfies
∏

i∈N (v) σ
z
i = −1.

The pseudo-ground-state degeneracy on the torus is four-
fold (NT 2 = 4) in the thermodynamic limit. The fusion and
braiding properties (see Appendix A) are determined by the
fusion algebra

I × I = I, I × e = e, I × m = m, I × ψ = ψ,

e × e = I, e × m = ψ, e × ψ = m, m × m = I,

m × ψ = e, ψ × ψ = I, (16)

together with the associativity F symbols and braiding R

symbols.
The F symbols are defined by the statement that if the

system is in the state in which quasiparticle types a, b, and
c fuse to d such that a and b have definite fusion channel
e, then the system has amplitude [Fabc

d ]ef to be in the state
in which b and c fuse to f [see Eq. (A6)]. In the toric code
[i.e., the D(Z2) phase], all of the F symbols are trivial, i.e.,
they are 1 × 1 matrices equal to 1. (When a fusion process
is prohibited by the fusion algebra, the state space is empty,
so the corresponding F symbols are trivially equal to 0 and
conventionally left implicit.)

The R symbols are defined such that a state of two
quasiparticles of types a and b in the definite fusion channel
c acquires the phase Rab

c when the two quasiparticles are
exchanged in a counterclockwise manner [see Eq. (A8)]. For
Ising anyons, the only nontrivial R symbols are

R
ψψ

I = −1, Rme
ψ = −1. (17)

All other R symbols are equal to 1. The apparent asymmetry
between Rem

ψ = 1 and Rme
ψ = −1 is not observable and can

be changed by a gauge transformation. Only the combination
Rme

ψ Rem
ψ is observable.

The B phase is described by the so-called “Ising TQFT.”
This phase has three quasiparticle types: I , σ , and ψ . These
particles can be understood as follows. As usual, the I

quasiparticle is the absence of any other quasiparticle or,
simply, when the system is in its ground state. The following
operator commutes with the Hamiltonian:

Wp =
6∏

i=1

Se(i)(i), (18)

where the product is over the vertices of a hexagonal plaquette
p, and e(i) = z for a vertex which sits between x and y links
on the plaquette, y for a vertex which sits between x and z

links on a plaquette, and x for a vertex which sits between y

and z links on a plaquette. In the ground state, Wp = 1
26 . A σ

quasiparticle is a plaquette at which Wp = − 1
26 . ψ is a neutral

fermionic excitation. A pair of ψ quasiparticles can be created
at neighboring sites i and j , connected by an x link, if we act
on the ground state with Sx

i Sx
j .

The degeneracy of the pseudo-ground-state space on the
torus is threefold (NT 2 = 3) in the thermodynamic limit.
The fusion and braiding properties (see Appendix A) are
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determined by the fusion algebra

I × I = I, I × ψ = ψ, I × σ = σ,
(19)

ψ × ψ = I, ψ × σ = σ, σ × σ = I + ψ,

together with the associativity F symbols and braiding R

symbols. As a result of these fusion rules, the plane with 2n

σ -charged punctures whose combined topological charge is
trivial has 2n−1-fold degeneracy in the thermodynamic limit.
Consequently, σ particles can be understood as supporting
Majorana zero modes: a pair of Majorana zero modes is
an ordinary fermionic level, which has two states, occupied
or unoccupied. Therefore, we will often use the terms σ

particle and Majorana zero modes interchangeably. However,
when the distinction is important, we will use “σ particle” in
topological phases or quasi-topological phases and “Majorana
zero modes” in symmetry-protected quasi-topological phases.
Note, however, that we will use the term “Majorana fermion”
to refer to ψ particles; the defects that carry Majorana fermion
zero modes have different topological charge from gapped
Majorana fermion excitations.

For Ising anyons, the nontrivial F symbols are

Fψσψ
σ = F

σψσ

ψ = −1,
[
Fσσσ

σ

]
ef

= 1√
2

[
1 1

1 −1

]
ef

, (20)

where e,f = I and ψ . The other (trivial) F symbols are 1 × 1
matrices equal to 1 if they are allowed by the fusion rules and
0 if they are not allowed by them.

For Ising anyons, the (nontrivial) R symbols are

R
ψψ

I = −1, Rψσ
σ = Rσψ

σ = −i ,
(21)

Rσσ
I = e−iπ/8 , Rσσ

ψ = ei3π/8.

From these fusion rules and F and R symbols, we see that σ

particles in an Ising anyon system (such as the B phase) are
non-Abelian anyons.

In this section, we have spelled out several examples of
topological phases in (somewhat pedantic) detail in order to use
it as a point of reference for later sections. Other examples of
ideal systems that can be similarly constructed include discrete
gauge lattice models (of which the “toric code” is an example)7

and the Levin-Wen lattice models.26 All of these systems
have no bulk gapless excitations (when suitably designed)
and satisfy the definition of a topological phase (given in
the Introduction). Up to exponentially small corrections, the
N� pseudo-ground states are degenerate, and the unitary
transformations associated with braiding operations are equal
to those of a TQFT in the limit that the quasiparticles are all
far apart, the braid operations are done very slowly, and the
temperature T is small.

B. Disordered systems

It is worth keeping in mind that, in the real world, solids
contain impurities and other defects. As a result, the gap may
close. For instance, consider the toric code Hamiltonian in
Eq. (15) and suppose that the coupling constants in front of

the two terms are random:

H = HTC −
∑

vertices v

J1(v)
∏

i∈N (v)

σ z
i −

∑
plaquettes p

J2(p)
∏
i∈p

σ x
i .

(22)

For instance, we can consider, as a simple model, the situation
in which J1(v) and J2(p) are independently chosen at random
from the interval J1(v),J2(p) ∈ [−W,W ]. For W � Jeff , the
system will have excitations at arbitrarily low energies.
However, the states which are at low energies will be localized.
In order to be more precise, we note that, in the toric code
Hamiltonian in Eq. (15) or its disordered version in Eq. (22),
quasiparticles can not move, so they are always localized.
However, if we perturb the model even slightly, for instance,
by adding a weak magnetic field with components in both the
x and z directions, then both e and m quasiparticles will be
able to move in the absence of disorder. In the presence of
disorder, all quasiparticles will be localized (since the system
is two dimensional27). Consequently, even though there will
be no gap for W � Jeff , the system is still in a topological
phase. Only a slight modification of the definition (given in
the Introduction) is needed. We first define a localized state
more formally.

A state |ψ ′〉 is defined to be a localized excitation of |ψ〉
with localization length λ if Eψ ′ > Eψ and the following
conditions hold: (1) There exists a bounded, local operator
φ satisfying

|〈ψ ′|φ|ψ ′〉 − 〈ψ |φ|ψ〉| > 1. (23)

(2) There exists a set of (not-necessarily connected) regions
Aε ⊂ � parametrized by ε > 0 such that (a) LAε

< λ ln(1/ε),
(b) ε1 < ε2 implies that Aε2 ⊂ Aε1 , and (c) for any bounded,
local operator φ acting in Ac

ε = � \ Aε (the complement
of Aε)

|Tr
(
ρ ′
Ac

ε
φ
) − Tr

(
ρAc

ε
φ
)| < ‖φ‖ ε, (24)

where ρ ′
Ac = TrA(|ψ ′〉〈ψ ′|), ρAc = TrA(|ψ〉〈ψ |), and ‖φ‖

is the operator norm of φ. Intuitively, the two states are
distinguishable using local operators, but are essentially
indistinguishable outside some region (the size of which grows
logarithmically slowly compared to 1/ε).

Definition (Topological phase). A system is in a topological
phase if there is an energy � and a length ξ , which, respec-
tively, have a strictly positive limit and a finite, non-negative
limit as L → ∞, such that the following properties hold. On
a manifold �, there is a set of orthonormal energy eigenstates
|a〉, a ∈ {1,2, . . . ,N�}, with energies Ea < �, including the
absolute ground state |1〉 of the system (which, without loss of
generality, we take to have energy E1 = 0). N� depends only
on the topological configuration of the system. For any local
operator φ,

〈a|φ|b〉 = Cδab + O(e−L/ξ ) (25)

for some length scale ξ , where C is a constant independent
of a,b ∈ {1,2, . . . ,N�}. The Hamiltonian of the system is a
particular local operator, so it follows that these states satisfy
Ea = O(e−L/ξ ) and form the basis of the pseudo-ground-state
spaceH0 = span{|1〉, . . . ,|N�〉} of the system. All other states
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FIG. 1. (a) The spectrum of a topological phase in a clean system.
(b) The spectrum of a topological phase in a system in which
impurities have caused the gap to be filled in by localized states
(depicted with dashed lines).

with energies less than � are localized excitations of states in
H0.

We note that ξ in Eq. (25) may now be interpreted as
the localization length for quasiparticles. The energy � is no
longer an energy gap, but is, instead, a mobility gap. If there are
localized states below �, all the way down to zero energy, then
we expect that, in general, the first energy eigenstate above H0

is at energy ∝ 1/V , where d is the spatial dimension and V

is the volume ∼Ld . The spectrum in a disordered system is
compared to the spectrum in a clean system in Fig. 1.

In the definition above, a key property characterizing the
pseudo-ground states is that local operators can not distinguish
them or have nontrivial matrix elements between them.
However, we have also required that N� depend only on the
topological configuration of the system. Consequently, Haah’s
three-dimensional model28 does not satisfy our definition;
although the ground states are locally indistinguishable, their
number depends on the system size (in a highly nontrivial
manner), not just on the topological configuration.

An alternative definition of a topological phase29 starts,
instead, from the requirement that the states |a〉 with a ∈
{1,2, . . . ,N�} not be topologically trivial in the following
sense. If a state |ψ〉 is topologically trivial, then for any ε > 0
there is a d < L (the system size) and a unitary quantum circuit
U of range d such that |ψ〉 satisfies

‖ |ψ〉 − U |ψprod〉‖ � ε, (26)

where |ψprod〉 is a product state (e.g., the state with all spins
up). The range d is the maximum linear size of the support of
unitary operators in the circuit multiplied by the depth of the
circuit. In other words, by acting with a unitary transformation
which only couples spins which are a distance d apart, it is
possible to transform the density matrix of a topologically
trivial system into that of a system with all spins up. In a
topological phase, such as that described in Eq. (14), the
pseudo-ground states are topologically nontrivial, so this is
impossible.29

In closing this section, we mention that many putative
topological phases are more accurately described as Z2-
graded topological phases and are described by spin field

theories30 rather than TQFTs. In particular, this includes
electron systems, such as quantum Hall states, in which the
electron is considered akin to the trivial vacuum quasiparticle
type. Since electrons have nontrivial Fermi statistics, which
differs from the trivial statistics of the vacuum, one must
exercise care and use the mentioned Z2 grading and spin field
theory structure where treating them as “vacuum.” While it
is important to be aware of the distinction, we will abuse
terminology and continue to use “TQFT” when we really mean
“Z2-graded TQFT” or “spin field theory.”

IV. RELATION TO TQFT

We now make the notion of a topologically nontrivial
excitation more precise. Consider, for the sake of concreteness,
a system in two spatial dimensions in a topological phase. An
excited state ρ is topologically trivial in a bounded region R
which is homeomorphic to an open disk if for any ε > 0, there
exists a state |ψ〉 ∈ H0 and a unitary transformation U on the
degrees of freedom of R such that∥∥ρR − (

U †ρψ

RU
)∥∥ � ε, (27)

where ρR = TrRc (ρ) is the reduced density matrix for the
region R in the excited state and ρ

ψ

R = TrRc (|ψ〉〈ψ |) is the
reduced density matrix for the region R in the state |ψ〉.
We emphasize that the unitary transformation U is essentially
arbitrary in the open diskR. In less technical terms, this means
that an excitation in region R is topologically trivial if it can be
related to a pseudo-ground state by unitary operations acting
entirely within R. The requirement that R have the topology
of an open disk ensures that the unitary transformation does
not simply move a topologically nontrivial excitation out of
R, which is ensured since U does not act on the boundary ∂R.
If an excited state is not topologically trivial in a region R,
then there is a topological excitation in R.

As we discuss in more detail elsewhere,31 we can further
define different types of quasiparticles by the condition that
local unitary transformations can not transform them into each
other, which can be stated in a manner similar to Eq. (27).
We can also define a quantum number associated with this
quasiparticle type, called topological charge, and ascribe it
to the boundary of the region. (From this perspective, the
definition of a topological excitation given in the previous
paragraph is simply the condition that an excitation is of a
different type from trivial excitation.) We can then continue
and define fusion rules for these quasiparticle types as follows.
We consider two disjoint open disklike regions and determine
their respective topological charges. We then determine the
topological charge of the combined excitation by considering
a larger open disklike region that contains the two smaller
regions. In a topological phase, we can continue and define
braiding, as long as we are in the adiabatic regime in which
braiding is well defined, i.e., δE0 
 ω 
 �, where ω defines
the rate at which the adiabatic exchange process is carried out.
If we assume there are a finite number of quasiparticle types,
the algebraic fusion and braiding properties are described by
a unitary modular tensor category (see Appendix A).

As we mentioned in the Introduction, there are two ways
to think about topologically nontrivial localized objects. They
can be viewed as excited states that locally “look like” the
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ground state, except in compact regions where the reduced
density matrix for a region can not be unitarily transformed into
that of a pseudo-ground state, as per the previous paragraphs.
A second way to realize a topologically nontrivial object is
as a component of the boundary of the system. In this case,
we can discuss the properties of ground states on manifolds
with boundary (with various possible boundary conditions).
The relation between the two realizations of topologically
nontrivial objects is analogous to that between Abrikosov
vortices and Josephson vortices in superconductors. In the
definitions in this paper, we will adopt the latter perspective
and focus on ground-state properties (and gapless excitations
above these ground states) in the presence of boundaries.

Thus far, we have not made any assumption that the braiding
and fusion rules obtained in this manner should be those of a
TQFT. It can be shown that the definition of a topological phase
leads to the conclusion that the properties of the low-energy
states of the system are encapsulated by a TQFT (see Ref. 31
for a pedagogical discussion). As a consequence, for instance,
the dimension NT 2 of the pseudo-ground-state subspace on a
torus in a two-dimensional topological phase is equal to the
number of quasiparticle types.

If one considers a system that does not have a gap �

above the pseudo-ground-state space, then these arguments
may break down. In this case, at least some correlations may
not decay exponentially. Consequently, there may be some
quasiparticle types which are not locally indistinguishable
from the ground state. Thus, these quasiparticle types may not
lead to pseudo-ground states on the torus. We now consider
systems with gapless excitations in detail to determine what
properties of topological phases are capable of surviving
without a proper gap.

V. QUASI-TOPOLOGICAL PHASES

A. Kitaev’s honeycomb model with phonons and photons

We first reconsider the previous example(s) without the
unrealistic assumption that the atomic masses are infinite,
thereby introducing phonons. We can view the (acoustic)
phonons as a gapless environment which perturbs the spin
system and determine which aspects of a topological phase
survive. Intuitively, we expect that the spin system is quan-
titatively, but not qualitatively, affected by the coupling to
phonons. The gap to excitations of the spin system � will be
modified, but remain nonzero. At energies less than �, the
spectrum should essentially decompose into a direct product
of the topological pseudo-ground states with states of gapless
phonon excitations. On the torus, we expect that there will
still be NT 2 pseudo-ground states, corresponding to distinct
topological sectors (quasiparticle types). Each sector should
also have excited states over it corresponding to gapless
phonon excitations.

To see that these expectations are correct, let us make the
model a little more concrete. We will assume, for simplicity,
that the three-dimensional solid has cubic symmetry. Then, we
can write a low-energy effective action for the lattice degrees
of freedom in the form

Sph[�u] = 1

2

∫
dt d3x

[
ρ(∂tui)

2 − 2μuijuij − λu2
kk

]
. (28)

Here, �u(�r) is the displacement of the atom from a lattice
position �r; this atom is located at �r + �u(�r). Here, we have used
the abbreviated notation uij ≡ (∂iuj + ∂jui)/2. The density is
ρ, and μ and λ are the Lamé coefficients.

The spins are coupled to the phonons. The detailed form of
this coupling will depend on the physics which generates the
spin-spin interactions in Eq. (14), but it is reasonable to assume
that the interaction between spins depends on the distance
between them so that when the atoms in the lattice are displaced
from their equilibrium positions, the coupling constants Jx ,
Jy , Jz are affected. Therefore, we expect an interaction of the
form

Hspin-phonon = gs-ph

∑
x links

Sx
i Sx

j x̂ · [�u(�ri) − �u( �rj )]

+ (x → y) + (x → z). (29)

In the absence of non-Abelian quasiparticles or nonzero
genus, the spin system has a gap, which stabilizes it
against generic weak interactions, including interactions with
phonons. In other words, if the system is in a situation in
which there is a nondegenerate ground state, then the spin
model’s gap protects it from the effects of the phonons. Gapless
phonons could only have an interesting effect when there are
degenerate pseudo-ground states. In this case, we essentially
have the problem of a field theory (for the gapless phonons)
coupled to a quantum-mechanical system with a finite number
of degrees of freedom (the topological pseudo-ground states).

Consider the Ising B phase of Kitaev’s honeycomb model.
Using Kitaev’s representation15 of spin operators in terms of
Majorana fermion operators, Sa

i = iba
i c

a , with a = x,y,z, we
can rewrite Eq. (29) in the form

Hspin-phonon = −gs-ph

∑
x links

bx
i b

x
j cicj x̂ · [�u(�ri) − �u( �rj )]

+ (x → y) + (x → z)

= −gs-ph

∑
x links

uij cicj x̂ · [�u(�ri) − �u( �rj )]

+ (x → y) + (x → z), (30)

where uij ≡ ba
i b

a
j , where a is the type of link which connects

sites i and j . We see from Eq. (30) that the coupling to
phonons does not change one of the basic simplifying features
of the Kitaev model: the uij ’s commute with the Hamiltonian.
Furthermore, the uij ’s are not gauge invariant, so the energy
depends only on the gauge-invariant constants of the motion∏

plaquette uij . Since the three pseudo-ground states on the
torus have the same

∏
plaquette uij for all plaquettes, they have

the same energy. Hence, the coupling to phonons does not
affect the pseudo-ground-state space degeneracy. There can
be phonon excitations above the pseudo-ground-state space
H0, but the pseudo-ground states are unaffected.

Now, let us consider σ quasiparticles in the Ising phase.
Phonons can, in principle, couple to the Majorana zero mode
in the core of a σ quasiparticle. Following Kitaev, we represent
the spins by Majorana fermions Sa

Ri
= iba

Ri
cRi

, and replace
bilinears of b’s on links by their expectation values (which
commute with the Hamiltonian). Then, the Hamiltonian takes
the form of a hopping Hamiltonian for the cRi

’s. In the presence
of a σ quasiparticle, i.e., aZ2 vortex, this hopping Hamiltonian
has a zero mode (Z2 vortices must be present in pairs, although
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one of them may be at infinity). Let us call such a zero mode
c0, which we assume to be localized at the origin. There is
no possible coupling of phonons to such a zero mode. The
obvious guess would be

Hzm-ph = c0 c0 ∂juj (�r = 0). (31)

But, since c2
0 = 1, this does not, in fact, couple phonons to the

zero mode. There can be a coupling of phonons to a zero mode
and a nonzero mode:

Hzm-ph = i c0 cn ∂juj (�r = 0), (32)

where cn is some other, higher-energy, eigenmode of the
Hamiltonian (but, of course, one which is near the origin,
since we assume that the coupling is local). However, since cn

is gapped, we can integrate it out. This could generate a term
in the action of the form

Szm-ph =
∫

dt c0 i∂t c0 [∂juj (�r = 0)]2 + . . . . (33)

Such a term gives no contribution to the Hamiltonian and is,
therefore, unimportant. One might worry that this term can
affect the anticommutation relation for c0. If we now integrate
out phonons, we will rescale the coefficient of c0 i∂t c0.
Physically, this just represents the fact that the coupling to
phonons has caused the zero mode c0 to mix with nonzero
modes cn so that the correct zero-energy eigenmode is actually
a linear combination of c0 and cn’s.

Therefore, there are two reasons why phonons, although
gapless, have a very small effect. The first is that phonons
are Goldstone bosons (of broken translational symmetry in
a crystalline solid) and, therefore, have irrelevant derivative
interactions with quasiparticles. Second, there is no way, at low
energies, to couple phonons to interesting topological degrees
of freedom, such as Majorana zero modes. As a result, although
phonons are gapless, the degeneracy of topological ground
states is split by terms exponentially small in L, rather than by
power laws in L.

The example above is the most innocuous situation which
one can imagine: there are gapless excitations in the system,
but the coupling of these excitations to topological degrees
of freedom is irrelevant. In this case, the gapless degrees
of freedom do not qualitatively alter the topological ones,
and so effectively decouple from the topological degrees of
freedom at low energies. The Hilbert space for energies below
� decomposes into the product of the Hilbert space of a TQFT
(describing the pseudo-ground-state space) and the Hilbert
space of the gapless degrees of freedom.

There is a quantitatively important effect of the coupling
to phonons which is not addressed by the definition of a
quasi-topological phase. In this definition, quasiparticles are
assumed to be fixed. However, if quasiparticles can move
quantum mechanically, then they can emit or scatter off
phonons. This is a situation which is beyond the definition
of a quasi-topological phase since, once quasiparticles are
mobile, the system is no longer in a quasi-topological phase,
i.e., a moving quasiparticle can cause transitions between the
different topological sectors. However, if there is just one or
a few moving quasiparticles, then their topological properties
are governed by the quasi-topological phase which gave birth
to them. Consider a σ quasiparticle; phonons couple to its

translational motion. As far as this coupling is concerned, the
exotic properties of the σ particle are unimportant and we can
write a low-energy effective interaction between quasiparticles
and phonons:

Sqp-ph = gqp-ph

∫
d2x dt hqp(x,t) �∇ · �u(x,t), (34)

where hqp is the energy density due to quasiparticles.
Therefore, there will be an effective interaction between
quasiparticles of the form

Heff =
∫

d2q

(2π )2

dω

2π
h1

qp(q,ω) V (q,ω) h2
qp(q,ω), (35)

where h1,2
qp (�q,ω) are the (Fourier transformed) energy densities

of the two quasiparticles, and

V (q,ω) = g2
qp-ph

q2

ω2 − v2q2
, (36)

where v = √
(2μ + λ)/ρ. If quasiparticle 1 does not move, so

that h1
qp(q,ω) ∝ δ(ω), then the effective interaction between

the two quasiparticles is V (q,0) = −g2
qp-ph/v

2 or, in real space,
V (r) ∝ δ(2)(�r). In other words, there is no interaction if one
particle is motionless while the other one stays far away.
Therefore, if one quasiparticle is taken around another, while
remaining away from it, there is no dynamical phase due to
the phonon-mediated interaction.

However, there is a second effect of phonons. When
quasiparticles are moved, phonons will be emitted. [One can
view the phonon-mediated interaction in Eq. (35) as the effect
of off-shell or virtual phonons, while phonon emission is
the effect of real phonons.] Phonon emission does not affect
the phase which results when two quasiparticles are braided.
However, if we are trying to observe this phase by interfering
two different quasiparticle trajectories, there is some amplitude
that the change in phonon number (which we presumably do
not measure) is different along the two trajectories. This will
reduce the visibility of the interference: if we try to interfere
two trajectories with a combined length l, then interference
between the two trajectories will decay with l as e−l/Lφ

for some coherence length Lφ . Phonon emission will give
a contribution to 1/Lφ of the form (1/Lφphonon) ∝ g2

qp-phT
5

since gqp-ph is irrelevant by two powers of energy. By going
to sufficiently low temperatures (which may, admittedly, be
technically difficult), we can make the effect of phonons on
the visibility as small as we wish. This is an important practical
consideration, but is not a fundamental change in the physics
of the state.

Now, suppose that we remove the superconductor, so there
will be gapless photons present in the system. They couple to
the spin system in the form

Hspin-photon = gμB S · B. (37)

Again, in the low-energy limit, there is no way to couple
B to a zero mode c0. Unlike in the phonon case, there will
be a photon contribution to the nonuniversal phase associated
with quasiparticle exchange simply as a result of the inter-
action between the electromagnetic field and the motion of
the quasiparticles; this contribution depends on the precise
trajectories of the quasiparticles and also on how fast the
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process occurs. There will also be a reduction of the visibility
of interference patterns as a result of photon emission (similar
to that resulting from phonon emission). However, the basic
physics of the topological phase will be unaffected, as in the
phonon case. One difference, however, is that there may be
photons of arbitrarily low energies even when the spin system
has finite size L. This will be the case generically, but if we
place the spin system within a waveguide of size L0 with
very high Q factor, there will be a finite-size gap 	 ∝ 1/L0.
For L0 	 L, the regime in which the system behaves as if
it were in a gapped topological phase will be even smaller:
ω,T 
 	 ∝ 1/L0. Nevertheless, there is a � below which
the system is simply the product of the pseudo-ground states
with the gapless excitations.

We now imagine connecting our spin system to a metallic
lead at a single point or weakly coupling it to a metallic
gate. In addition to gapless phonons and photons, there are
now gapless electrons that can, in principle, tunnel into the
system. However, there is an energy gap which prevents this
from occurring, in spite of the gapless phonons and photons.
In order for an electron to tunnel into Kitaev’s honeycomb
lattice model, a fermion must be created and charge −e must
be created. There are zero-energy fermions at Z2 vortices.
However, there is a hard charge gap. Kitaev’s model is a
pure spin model, so the charge gap is infinite in the model as
originally formulated. However, it can be generalized32–34 to
a model that allows doping. If we decompose the electrons
into spinons f

†
iσ (where σ =↑ , ↓ is the spin index) and

holons bi ,

c
†
iσ = f

†
iσ bi, (38)

then, when there is one electron per site, the holons bi are
gapped and the spinons form a p-wave paired state, so that
we recover the Kitaev honeycomb model. However, we can
change the electron density, thereby introducing a finite density
of mobile holons bi’s. As long as the chemical potential lies in
the charge gap (i.e., as long as the spin system is weakly
coupled to the metallic lead or gate, rather than strongly
coupled, which would dope it as a result) low-energy electrons
can not tunnel into the system since a holon would have to be
created.

In fact, the stability is even better than this. An electron can
not tunnel into the system at low energy because a charged
excitation must be created. But, let us suppose that there are
right-handed neutrinos (as neutrino oscillation experiments
imply) and that these right-handed neutrinos do not carry
any weak isospin (nor any conserved quantum numbers other
than fermion parity). Then, they have the same electroweak
quantum numbers as Majorana quasiparticles in Kitaev’s
model. Therefore, the charge gap no longer protects the system.
One might worry that a neutrino could be absorbed by a
Majorana zero mode. However, this process is still not allowed.
To see this, it is helpful to use a representation of the spins in
terms of Majorana fermions which has only two (rather than
four) Majorana fermions per site of the honeycomb lattice,35

so as to avoid any gauge redundancy. We will call the two
Majorana fermion operators on each site a1 and a2, with
Sz

j = ia1j a2j . Then, we might worry about a tunneling term

such as

Htun = it a1j νR(�r = �Rj ). (39)

Here, νR is the right-handed neutrino operator. We are
interested in the potentially dangerous case in which the j th
lattice site �r = �Rj is at a Majorana zero mode. However, the
coupling in Eq. (39) is, in fact, not allowed. If we rewrite the
Majorana fermion operator in terms of the spin operators, then
it takes the form a1j = (

∏
i<j Sz

i )Sx
j , where the product runs

over all sites that lie along a string between the site j and the
edge of the system. (If there are other vortices and zero modes
in the system, then we could write an operator that is bilinear
in two Majorana fermion operators. Such an operator would
involve a string of spin operators connecting the two vortex
locations and would cause a splitting between zero modes.)
Consequently, the tunneling term takes the form

Htun = it

⎛
⎝∏

i<j

Sz
i

⎞
⎠ Sx

j νR(�r = �Rj ). (40)

This is clearly not a local coupling, so it can not occur. On
the other hand, a local coupling with amplitude t ′ could
generate a term such as that in Eq. (40) at order ∼L in
t ′, i.e., t ∼ (t ′)L. Given that the coupling is a perturbation
with t ′ small, the resulting effect on the zero mode will be
exponentially suppressed by the system size. This is good
news for the stability of this phase, but bad news if one were
hoping to use the phase as a neutrino detector.

B. Definition

With the above example in mind, we now define the concept
of a quasi-topological phase.

Definition (Quasi-topological phase). A system is in a
quasi-topological phase if there is an energy � and a length
ξ , which, respectively, have a strictly positive limit and a
finite, non-negative limit as L → ∞, such that the following
properties hold.

(i) On a manifold �, there is a set of orthonormal
energy eigenstates |a〉, where a ∈ {1,2, . . . ,N�}, including the
absolute ground state |1〉 (with energy E1 = 0), such that for
any local operator φ,

〈a| φ |b〉 = Cδab + O(e−L/ξ ) (41)

for a,b ∈ {1,2, . . . ,N�}, where C is independent of a,b. The
Hamiltonian is a particular local operator, so it follows that

δE0 ≡ max(|Ea|) = O(e−L/ξ ) (42)

for a ∈ {1,2, . . . ,N�}, where Ea is the energy of the state |a〉.
(ii) N� depends only on the topological configuration of

the system.
(iii) We define

	 ≡ min(|Eχ − Ea|) (43)

for any a ∈ {1,2, . . . ,N�} and |χ〉 /∈ H0 ≡ span
{|1〉, . . . ,|N�〉}. Then, there must exist a finite z > 0
and an L independent κ > 0 such that

	 ∼ κL−z. (44)

(iv) There are no states with energy less than � that have
topologically nontrivial excitations.
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FIG. 2. The spectrum of a quasi-topological phase. The pseudo-
ground states have exponentially small splitting, while their separa-
tion from the rest of the spectrum vanishes as a power law. Note that
the multiplets at energies below � do not necessarily have the same
number of states in a generic quasi-topological phase (as depicted),
but they would in a strong quasi-topological phase.

In other words, the topologically protected pseudo-ground
states approach each other exponentially fast in the system
size, forming a pseudo-ground-state space H0 separated from
the rest of the spectrum by a finite-system-size gap 	 ∼ κL−z

as shown schematically in Fig. 2.
The energy � can be understood to be a “topological

mobility gap” in the following sense. � is the minimum energy
required to pair create topologically nontrivial excitations (as
defined in Sec. III B) from a pseudo-ground state. We note
that there may be topologically trivial excitations of energy
less than �. These may include bound states of topologically
nontrivial excitations that are collectively topologically trivial
(i.e., their combined topological charge is trivial). These
excitations below � do not cause a splitting between putative
degenerate states. Only when there are topologically nontrivial
excitations capable of moving to separations on the order of
L, r , or � can these excitations cause a splitting between
putative degenerate states. For instance, in a perturbed toric
code Hamiltonian (so that e excitations interact and move), a
pair of e excitations can change the winding number only if
they have enough energy for one of them to encircle a generator
of the torus. Therefore, � is the energy gap to the creation of a
pair of topologically nontrivial excitations which are capable
of moving to separations on the order of L, r , or �.

From the preceding discussion, we see that Kitaev’s model
in a solid with the concomitant coupling to phonons and
photons (as considered in Sec. V A) is an example of a quasi-
topological phase. It is a phase of matter in which the splitting
between ground states δE remains exponentially suppressed
in spite of gapless excitations with an energy spacing 	.
However, some features of this example are not generic for
quasi-topological phases. In particular, for this example, there
is a regime of energy and temperature δE0 
 ω,T 
 	 in
which the system behaves as a gapped topological phase with
the pseudo-ground-state degeneracies, braiding and fusion
rules expected from the Ising TQFT. Moreover, there is a
much larger regime δE0 
 ω,T 
 � in which the Hilbert

space of the system can be understood in terms of topological
sectors, each of which contains a topological ground state and
gapless excitations above that ground state. In other words, the
low- (compared to �) energy effective theory of the system
is essentially a TQFT tensored with a set of relatively benign
gapless theory. However, this is not necessarily the case in all
quasi-topological phases, as we will demonstrate in the next
section.

We will use the term strong quasi-topological phases to
refer to phases which satisfy the property that they show the
characteristic behavior of a topological phase in the regime
δE0 
 ω,T 
 	. The topological properties encapsulated in
N� , F , and R matrices, etc., are all precisely the same as
in some TQFT (which was the Ising TQFT in the example
considered in this section).

Other examples of strong quasi-topological phases include
the toric code7 and Levin-Wen26 models, when either one
is realized as a spin system in a solid; and also fractional
quantum Hall states realized in ultracold bosonic atoms in
rotating traps (see, e.g., Refs. 36 and 37) and in optical lattices
with effective gauge fields (see, e.g., Ref. 38). In fact, some
well-known phases actually satisfy our definition of strong
quasi-topological phases. Ordinary insulators are trivial strong
quasi-topological phases: they have a gap � and a unique
ground state for any manifold topology (precisely as in the
trivial TQFT), but they also support gapless phonons and
photons. Meanwhile, three-dimensional (3D) superconductors
with finite atomic masses have the topological properties of
the TQFT described in Sec. III A1, but with gapless phonon
excitations.

Strong quasi-topological phases are the most ideal cases
one could hope for when introducing gapless excitations into
a topological phase since all of the topological properties
survive, and the system below � is simply the product of
a TQFT with the gapless degrees of freedom. More generally,
gapless degrees of freedom will be able to couple nontrivially
to the topological degrees of freedom. As discussed at the end
of Sec. IV, gapless degrees of freedom may generally introduce
long-ranged correlations that cause the TQFT structure to
break down. In the next section, we will see examples of
quasi-topological phases that are not strong.

C. Fractional quantum Hall effect

For examples of quasi-topological phases that are not
“strong,” we turn now to fractional quantum Hall (FQH)
states12,39 in electronic systems, which are the most commonly
given examples of topological phases.40–43 However, there are
gapless phonons and photons in a GaAs quantum well or
heterostructure, so the (entire) system does not have a gap.
The phonons are relatively harmless in these phases, and if
these were the only gapless degrees of freedom included, the
quantum Hall systems would be in strong quasi-topological
phases. On the other hand, photons have a nontrivial effect that
breaks the TQFT structure. We will begin by demonstrating
this in the case of a Laughlin state.12 The extension of this
analysis to other FQH states, such as the Haldane-Halperin
hierarchy/composite fermion states,44–46 is straightforward,
but we explicitly consider Ising-type FQH states47–51 and
Read-Rezayi states,52 as these are particularly physically
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relevant examples that also highlight the varying levels of
TQFT structure that can survive in quasi-topological phases.
Other examples of quasi-topological phases include quantum
Hall ferromagnets.53

1. Laughlin states

The effective theory for a ν = 1/m Laughlin state (where
m is an odd integer for fermionic particles) is the U(1)m Chern-
Simons theory with action:

S =
∫

d2x dt
m

4π
εμνλaμ∂νaλ. (45)

This TQFT has mg-fold degenerate ground states on a manifold
� of genus g. We consider the effect that coupling this TQFT
to gapless degrees of freedom has on its ground states, in
particular when the system is on a torus (g = 1).

First, let us consider coupling to phonons. The lowest-order
possible coupling of this effective theory to phonons is

SFQH-ph = λ

∫
d2x dt εij ∂iaj ∂kuk, (46)

where i,j = 1,2 are spatial indices. This interaction is irrele-
vant by one power of energy.

For the (pseudo-) ground states, we can focus on zero-
momentum modes. Then, the action (including phonons) takes
the form

S =
∫

dt
m

4π
(ã2∂t ã1 − ã1∂ta2) + 1

2
ρ

∫
dt (∂t ũi)

2, (47)

where ãi and ũi are the p = 0 Fourier components of ai and
ui . The interaction between the gauge field and phonons in
Eq. (46) vanishes for the zero-momentum modes, so the Chern-
Simons field decouples from phonons. (Phonons, like all
Goldstone bosons, have derivative couplings, so they decouple
in the zero-momentum limit.) Therefore, the ground-state
degeneracy of the U(1)m Chern-Simons theory is unaffected by
the coupling to phonons and the low-energy theory is simply
a product of the TQFT and phonon degrees of freedom.

Any quantum Hall state will have an Abelian U(1) Chern-
Simons field as part of its effective field theory, in order to
account for the charged degrees of freedom (and the Hall
conductance), so our conclusion about the decoupling of
phonons holds from the U(1) sector holds for any quantum Hall
state. If the quantum Hall state has other Abelian sectors, then
the lowest-order possible coupling to phonons is of the same
form. Therefore, the zero-momentum modes decouple. Non-
Abelian sectors can not couple to phonons in this way since
the field strength of a non-Abelian gauge field is not gauge
invariant; therefore, the lowest-order coupling is between ∂kuk

and (Fa
ij )2, which also vanishes in the zero-momentum limit.

So far, everything is just as we would expect in a strong
quasi-topological phase. Next, however, we consider the
coupling of a ν = 1/m Laughlin state to the electromagnetic
field, focusing on a system on a torus. The effective field theory
takes the form

S =
∫

d2x dt

(
m

4π
εμνλaμ∂νaλ + 1

2π
A2D

μ

)
εμνλ∂νaλ

+ 1

2e2

∫
d3x dt FMNFMN. (48)

We have used Greek letters for (2 + 1)D indices μ = t,x,y and
uppercase Roman letters for (3 + 1)D indices M = t,x,y,z.
We will use lowercase Roman letters for 2D spatial coordinates
i = x,y. Here, AM is the electromagnetic gauge field, A2D

μ is
its restriction to the torus, and −e is the charge of an electron.
Again, to study ground states we focus on the zero-momentum
modes. For simplicity, we will assume that the 3D world
is a torus T 3 on which we have coordinates 0 � x1,x2 � L

and 0 � x3 � Lz with x1 ≡ x1 + L, x2 ≡ x2 + L, and x3 ≡
x3 + Lz, and furthermore that the 2D quantum Hall system
is on the torus T 2 defined by x3 = Lz/2, 0 � x1,x2 � L.
(This is merely a convenience in order to avoid dealing with
curved coordinates on a torus embedded in R3.) We must now
exercise some care in order to normalize the fields properly
in finite volumes. We write aμ(x,t) = 1

L

∑
p eip·x ãμ(p,t) and

Aμ(x,t) = 1
L Lz

1/2

∑
p eip·xÃμ(p,t) [since aμ is a (2 + 1)D field

and Aμ is a (3 + 1)D field]. With these normalizations, the
effective action for zero-momentum modes takes the form

S =
∫

dt
m

4π
(ã2∂t ã1 − ã1∂t ã2) + 1

2e2

∫
dt (∂t ÃM )2

+ 1

L
1/2
z

∫
dt Ãiεij ∂t ãj . (49)

Here, ãi and Ãi are the p = 0 Fourier components of these
fields and, in this equation, M = x,y,z. We have normalized
the Fourier transforms so that the first two terms do not depend
on L and Lz. At zero momentum, at and At drop out of
the theory. (However, in the full theory, we could take the
gauge at = At = 0 and also an additional gauge condition,
such as ∂iai = ∂iAi = 0.) As a result of the decoupling
of At , we see that the long-ranged Coulomb interaction
does not affect the ground-state degeneracy on the torus in
the infrared limit. Indeed, any static interaction will leave
the ground-state degeneracy topologically protected (i.e., the
degeneracy splitting will be exponentially suppressed), so
long as the quantum Hall state remains stable. However,
dynamical photons can have a more interesting effect, as we
will demonstrate.

Now, we integrate out Ãi to obtain an effective action for
ãi alone:

S =
∫

dt

[
m

4π
(ã2∂t ã1 − ã1∂t ã2) − 1

2

e2

Lz

ã2
i

]
. (50)

This is the lowest Landau level action on the torus (with
ã1 and ã2 playing the roles of the x and y coordinates of
a particle in the lowest Landau level) in the presence of a
harmonic oscillator potential. Therefore, the energy levels
have spacing δE0 ∝ e2

Lz
= α c

Lz
. Here, we have restored the

speed of light c and the fine-structure constant α = e2/c. The
splitting caused by the electromagnetic field is small due to
the smallness of the fine-structure constant α ≈ 1/137. But, it
vanishes, nevertheless, as a power of Lz. Incompressibility is a
hallmark of quantum Hall states: the electron density is locked
to the magnetic field and, therefore, can not fluctuate. However,
when the magnetic field itself has quantum fluctuations, the
density also fluctuates. This results in the O(L−1

z ) splitting
found above.
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From this analysis, we see that the m would-be pseudo-
ground states [corresponding to the ground states of the
U(1)m Chern-Simons TQFT] actually exhibit a power-law
energy splitting themselves when (3 + 1)D electromagnetism
is included, rather than exponential splitting. Therefore, the
pseudo-ground-state subspace H0 has dimension NT 2 = 1
(i.e., it only includes the single true ground state) since it
only includes states that are degenerate with the ground state
to within exponential accuracy O(e−L/ξ ). It is clear that this
will also give N� = 1 for an arbitrary 2D manifold �. We
note that the trivial TQFT (which has no nontrivial topological
excitations) also has N� = 1 for all �, so one might wonder
whether the result is simply a strong quasi-topological phase
corresponding to a trivial TQFT. To see this is not the case, we
consider the braiding statistics of quasiparticles.

Quasiparticle excitations of quantum Hall states can be
electrically charged and can, therefore, couple to photons more
strongly than spin excitations in Kitaev’s model. There will be
a V (r) = q1q2/r interaction between two quasiparticles with
electric charges q1 and q2, respectively. Therefore, there will
be a nonuniversal dynamical contribution to the phase which
does not decay with the separation between the quasiparticles.
(This can be seen microscopically from the wave functions, as
in Refs. 54 and 55.) The dynamical phase φ satisfies

φ =
∫ τ

0
dt E(t) ∼ τ

r
∼ 1

v
>

1

vmax
. (51)

Therefore, we can not make the dynamical phase arbitrarily
small. In addition, there will be an Aharonov-Bohm phase56

γAB , which depends on the area enclosed in quasiparticle
trajectories (as well as the quasiparticles’ charge and the value
of the background magnetic field). Both of these terms are due
to nonuniversal physics which is beyond the TQFT description.
Consequently, exchanging quasiparticles leads to the unitary
transformation

U = eiγAB e−iφR, (52)

where R is the (topological) quasiparticle braiding statistics
described by the U(1)m TQFT. For a counterclockwise ex-
change of a pair of charge e/m fundamental quasiholes in
a ν = 1/m Laughlin state, the braiding statistics factor is
R = eiπ/m, corresponding to that of U(1)m flux 1 objects.57

Although neither one of the nonuniversal phases is small a
priori, in an interference experiment, we can vary the area
in order to isolate the Aharonov-Bohm contribution and, in
principle, we can make the dynamical phase the same for two
different interfering trajectories. Therefore, the topological
braiding phases predicted by the original U(1)m Chern-Simons
TQFT do have a well-defined meaning, even though it may be
difficult to measure it in practice.

Thus, the Laughlin FQH states physically realized in
electronic systems are quasi-topological states that are not
“strong.” They retain the braiding statistics of quasiparticles
of a U(1)m Chern-Simons TQFT, but they do not possess
the TQFT structure for surfaces of genus g > 0. The basic
underlying reason for this is that the different quasiparticle
types in these states are locally distinguishable, even far away,
as a result of the electromagnetic fields which they generate.

2. Ising-type states

In a non-Abelian quantum Hall state, the situation can be
more interesting. Consider, for instance, the Moore-Read (MR)
Pfaffian state at filling fraction ν = 1

m
, where m is an even

integer for fermionic particles (and one can always add integers
to the filling since they may be treated as “inert” so that the ν =
1
2 MR state gives a candidate for the ν = 5

2 FQH plateau). The
corresponding TQFT for this state can be written as a spectrum
restriction of the product of a U(1)m TQFT and an Ising TQFT,
where the spectrum restriction requires the I and ψ Ising
topological charges to be paired with integer U(1)m flux values,
and the σ Ising charge to be paired with half-integer U(1)m flux
values (for more details, see, e.g., Ref. 58). The ground-state
degeneracy on the torus for this TQFT is NT 2 = 3m, with the
familiar factor of m coming from the Laughlin-type U(1)m
sector corresponding to the charged degrees of freedom and
the factor of 3 from the non-Abelian Ising sector’s degrees of
freedom.

We can now introduce coupling to photons as we did for
the Laughlin states. The electromagnetic field couples only
to the charged degrees of freedom, so one might naively
conclude that the degeneracy on the torus is reduced to
3. However, quasiparticles carrying non-Abelian topological
charge σ must carry electrical charge (n + 1

2 )e/m for integer
n (corresponding to half-integer fluxes), which differentiates
them electrically from quasiparticles carrying Ising topolog-
ical charge I or ψ , which must carry electric charge ne/m

for integer n (corresponding to integer fluxes). Therefore,
the corresponding ground states on the torus will have their
energy degeneracy lifted by the same mechanism that split
the ground-state degeneracy of the Laughlin states. One might
now expect that ground states corresponding to the electrically
neutral topological charges I and ψ around one nontrivial
cycle of the torus remain degenerate, but this is not the case.
The modular transformations of the MR TQFT indicate that
these states may be rewritten as a linear combination of states
which have definite values of topological charge around any
other generator of the torus. In this way, the states with the
electrically neutral topological charges I or ψ with respect
to a given generator of the torus will have a superposition
of states that include ones with topological charge σ with
respect to a different generator of the torus. This can be seen
directly from the MR TQFT’s modular S matrix, which can
not be written as a direct product of an S matrix for the
neutral quasiparticle subsector and an S matrix for the charge
subsector. For example, the ν = 1

2 MR state has

S = 1√
8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
√

2 1 1
√

2

1 1 −√
2 1 1 −√

2√
2 −√

2 0 i
√

2 −i
√

2 0

1 1 i
√

2 −1 −1 −i
√

2

1 1 −i
√

2 −1 −1 i
√

2√
2 −√

2 0 −i
√

2 i
√

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(53)

where the columns and rows are labeled, in order, by the
quasiparticle types carrying Ising×U(1)2 topological charge
labels I0, ψ0, σ 1

2
, I1, ψ1, and σ 3

2
, where the subscripts
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indicate the U(1)2 Chern-Simons flux value. Because of this,
the degeneracy between states with topological charge I0

and ψ0 (or I1 and ψ1) with respect to a given generator
of the torus is broken as well, leaving NT 2 = 1. Similar
arguments also result in N� = 1 for any manifold without
boundaries. Hence, the coupling to the electromagnetic field
only directly affects the charged degrees of freedom, but
in some topological phases, such as the MR states, the
charged and neutral degrees of freedom are inseparably linked
through the selection rules of allowed topological charges
and the modular transformations. Consequently, topological
degeneracies associated with seemingly neutral degrees of
freedom are lifted as well.

Turning now towards the braiding statistics of this state, we
consider systems with boundaries or quasiparticles. We find
that the pseudo-ground-state degeneracy due to boundaries
and/or quasiparticles that carry non-Abelian Ising charge
σ is unaffected by the inclusion of gapless photons. Just
as we showed for Laughlin states, the effect of including
electromagnetism appears in an overall dynamical phase.
This phase does not alter the quasiparticle braiding statistics,
although perhaps makes it very difficult to experimentally
extract. Hence, exchanging quasiparticles leads to the unitary
transformation

U = eiγAB e−iφR, (54)

where R = RIsingRU(1)m is the (topological) quasiparticle
braiding statistics described by the MR state’s TQFT, which
takes the form of a product of the braiding statistics due to the
Ising and the U(1)m sectors (see Ref. 58 for more details and
a proof of the braiding statistics of these states).

While the nonuniversal phases will make it difficult to
observe the absolute phase factors of any braiding operation,
it does not in any way disturb the relative phases acquired
by different fusion channels of the non-Abelian anyons.
In particular, the ratio of Rσσ

I and Rσσ
ψ , for braiding two

quasiparticles carrying an Ising σ topological charge each,
is robust. The underlying reason is that the σ topological
charges (Majorana zero modes), which are responsible for the
non-Abelian statistics of quasiparticles in these systems, do
not couple to photons or phonons, as we saw in the previous
section in the context of Kitaev’s honeycomb lattice model.
The non-Abelian statistics is “mediated” by the neutral fermion
ψ , which only couples to the Ising topological degrees of
freedom in these quasi-topological phases.

The behavior of other Ising-type quantum Hall states is
very similar under coupling to gapless degrees of freedom, but,
in some cases, have interesting differences. The anti-Pfaffian
state48,49 is constructed by taking the particle-hole conjugate of
the ν = 1

2 MR state. As such, its TQFT is simply the complex
conjugate of the MR state’s TQFT. The analysis for the MR
state applies exactly the same, except the braiding statistics
factors R are complex conjugated.

The Bonderson-Slingerland (BS) hierarchy states50,51 built
on the MR and anti-Pfaffian states have similar TQFTs, except
the U(1)m sector is replaced by multiple U(1)’s coupled
together in a fashion described by a coupling K matrix,
which we therefore write as U(1)K [and σ Ising charges
are paired with half-integer flux values in the first U(1)].
These states will have certain filling fractions ν = p/q (with

p and q mutually prime), which can be determined from
the K matrix (for example, an experimentally prominent
sequence of BS states is given by filling fractions ν = n

3n−1 ).
The ground-state degeneracy on the torus for a BS state’s
TQFT is NT 2 = 3 det K , the factor of 3 coming from the
Ising sector and the factor of det K coming from the U(1)K
sector.

When the numerator p of the filling fraction is odd for
these BS states, the analysis for coupling to phonons and
photons is similar to that of the MR state. The TQFT and
hence the S matrix can not be written as a product of a neutral
sector TQFT (or S matrix) with a charged sector TQFT (or S

matrix), so the TQFT’s ground-state degeneracy due to genus
g > 0 is fully split by the presence of (gapless) photons in
the system coupling to the quasiparticles’ electric charges.
Hence, the resulting quasi-topological phase has N� = 1
for all manifolds � without boundaries or quasiparticles.
The pseudo-ground-state degeneracy due to boundaries or
quasiparticles carrying Ising σ topological charge is preserved.
Although there are nonuniversal phases similarly occurring for
quasiparticle exchange processes, the braiding statistics of the
quasiparticles is again preserved, in this case being described
by R = RIsingRU(1)K .

In the case when the numerator p of the filling fraction
is even for these BS states, something more interesting
occurs. Namely, the neutral quasiparticle sector will contain
a quasiparticle that carries Ising topological charge σ (in
addition to the two neutral quasiparticles that carry Ising
topological charges I and ψ , respectively). Moreover, an even
numerator BS state’s TQFT takes the form of a product of a
TQFT describing the neutral sector and a TQFT describing
the charged sector. In particular, the charge sector will be a Zq

TQFT, and the neutral sector TQFT will be one of the eight
Galois conjugates of the Ising TQFT, meaning it has the same
Ising fusion rules listed in Eq. (19), but the F and R symbols
may be different (see, e.g., Table 1 of Ref. 15). These eight
different Ising TQFT Galois conjugates can be distinguished
entirely by the topological twist factor θσ = ei 2n+1

8 π of the σ

quasiparticle, with the integer n (mod 8) labeling the different
TQFTs. For example, the Ising TQFT has θσ = ei π

8 and the
ν = 2

5 BS state built over the MR state has θσ = e−i 3
8 π in its

neutral sector.
Since these even numerator BS states have this product

structure, the coupling of the TQFT to (gapless) photons
to electric charge will split the degeneracy associated with
the charge sectors, but not that of the neutral sectors. The
neutral sector (Ising-Galois conjugate) TQFT structure is fully
preserved in this quasi-topological phase. The pseudo-ground-
state degeneracy on any manifold is that of the Ising TQFT.
Despite this, the quasi-topological phase is still not quite
strong (although it is close). This is because the braiding
statistics of quasiparticles is not quite described by the
neutral sector TQFT, as there are additional Abelian braiding
statistics phase factors that arise from the charged sector,
i.e., R = RIsingRU(1)K . We describe this situation by saying
the the neutral topological degrees of freedom form a “strong
subsector” of the quasi-topological phase. There are, of course,
also nonuniversal (dynamical and Aharonov-Bohm) phase
factors that arise for quasiparticle exchange operations, just
as for the other cases.
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The stability of a quasi-topological phase is greater than
one might naively expect, not just the “strong” ones, which
have a strong family resemblance to (true) topological phases,
but even more generic quasi-topological phases. Suppose, for
instance, that an Ising-type FQH state is coupled to gapless
electrons. This could be due to a metallic lead. Or, for
instance, suppose that there is a parallel conduction channel
in a GaAs quantum well (e.g., in the dopant layer), and that
there is tunneling from the parallel conduction channel to the
two-dimensional electron gas (2DEG). Even if the tunneling
were to occur at a σ quasiparticle, where there is a Majorana
zero mode, there would be a charge gap protecting the bulk
system against such tunneling at low energies. For an electron
to tunnel into an Ising-type state, it must create a neutral
fermion (which costs zero energy at a σ quasiparticle) and
a charge −e, which costs a finite energy (roughly twice the
transport gap). However, a gapless Majorana fermion edge
excitation is very different from an electron in this respect.
A gapless Majorana fermion from the edge can tunnel to a
zero mode in the bulk at low energies. However, this tunneling
will be exponentially suppressed with distance of the bulk
quasiparticle from the edge. Therefore, it is important to
keep σ quasiparticles far from the edge to prevent this from
happening.59–61

As we noted in the case of the Kitaev honeycomb lattice
model, neutrinos are not a problem, either. Although no
charged excitations would be created if a neutrino were to be
absorbed by the Majorana zero mode of a σ quasiparticle,
such a tunneling operator would be suppressed because it
is a nonlocal operator when written in terms of electrons.
To see this, note that the Majorana zero mode operator is
a Bogoliubov–de Gennes operator for a composite fermion
p + ip superconductor. Since the composite fermion operator
is nonlocal in terms of the electron operator, ψcf(x) =
ψel(x) e

i
∫ x

x0
a (the gauge field a is determined by the Chern-

Simons constraint), where x0 is on the boundary of the system,
a term that is linear in such an operator is nonlocal in terms of
electron operators.

Therefore, the quasiparticle degeneracy and braiding statis-
tics of an Ising-type FQH state is robust against phonons,
photons, and (weak) coupling to a metal. However, only the
projective part of the braid group representation is likely
to be readily measurable because the dynamical phase is
never arbitrarily small since the gapless excitations in the
system do not decouple in the low-energy limit. Moreover,
the pseudo-ground-state degeneracy on higher-genus surfaces
exhibits an O(L−1

z ) splitting due to the interaction with photons
(although some states retain protection of the degeneracy and
other TQFT properties of their neutral sector).

In such a quasi-topological phase, no fine tuning is required
to keep the system in this phase. Consequently, it is not fatal
to have mobile electrons in the dopant layer. Even though they
can, in principle, tunnel into the quantum Hall droplet, they
are prevented from doing so at low energies. Even when there
are degenerate states due to Majorana zero modes, it costs
a nonzero energy for an electron to tunnel into the system
because charged excitations must be created, and they have
nonzero energy cost. Therefore, as we discuss in Sec. VII,
topological qubits in the Ising-type FQH states (or any other
non-Abelian FQH state) can serve as quantum memories which

are perfect in the limit that the temperature approaches zero
and all distances (the size of the system, the separation between
quasiparticles) go to infinity. However, the overall phase
associated with braiding is not protected. This is not important
because we are generally interested in relative phases.

3. Read-Rezayi states

The Zk-parafermionic Read-Rezayi (RR) FQH states
(which have filling fraction ν = k

Mk+2 , where M is odd for
fermionic systems) exhibit behavior similar to the Ising-type
FQH state when coupling to gapless degrees of freedom. These
states similarly split into two classes. For all k even, the
RR state’s corresponding TQFT does not have the form of
a product of TQFTs (the neutral and charged quasiparticles
are inseparably linked through modular transformations). For
these states, the TQFT’s ground-state degeneracy due to
genus is completely broken by the introduction of gapless
photons (N� = 1 for manifolds � without boundaries), while
the degeneracy associated with boundaries and non-Abelian
quasiparticles, as well as the quasiparticle braiding statistics
are described by the RR state’s TQFT.

For all k odd, the RR state’s corresponding TQFT is the
product of a neutral sector TQFT and a charged sector TQFT.62

In particular, the neutral sector TQFT is given by SU(2)k/Z2

[which is the restriction of the SU(2)k Chern-Simons TQFT
to integer spin quasiparticles]. For example, in the k = 3 RR
state, the neutral sector is described by the Fibonacci TQFT
[SU(2)3/Z2]. Again, the charged sector TQFT experiences
similar effects due to the presence of photons, but the neutral
sector is unaffected. The neutral sector is, thus, a strong
subsector and is described by a fully preserved SU(2)k/Z2

TQFT structure. However, these quasi-topological phases are
not strong because the charge sector still contributes to the
braiding statistics of quasiparticles, which is described by the
full RR state’s TQFT.

VI. ELECTRON PARITY-PROTECTED
AND OTHER SYMMETRY-PROTECTED

QUASI-TOPOLOGICAL PHASES

A. 2D superfluids and superconductors

In the previous examples, we have seen how the topological
character of a phase is modified by coupling to Goldstone
bosons, gapless gauge field excitations (such as photons), and
even gapless fermions. However, the Goldstone bosons which
we considered, i.e., phonons, were, in a sense, “external” to the
topological system. We now consider what happens when the
Goldstone bosons are more intimately linked to the topological
degrees of freedom.

2D paired fermion superfluids and superconductors63–65

share many properties with topological phases and are often
treated as though they are actually topological phases. An s-
wave paired fermion superfluid has vortex excitations and un-
paired fermions. Since vortices have logarithmic interactions
with each other, it is difficult to define a regime in which the
braiding phase dominates the dynamical phase when vortices
are moved. However, in a two-dimensional superconductor,
the vortex-vortex interaction falls off as 1/R2. Therefore, for
large enough separation, we can define braiding. Vortices are
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bosonic with respect to each other, but when a vortex encircles
an unpaired fermion or vice versa, the state of the system
acquires a minus sign. In this respect, vortices and unpaired
fermions are similar to the e and m quasiparticle types in the
toric code phase. Furthermore, one can consider a collective
formed by a vortex and an unpaired fermion, and it is analogous
to a ψ quasiparticle. The fusion rules also follow those of the
quasiparticle types of the toric code. A chiral p-wave paired
fermion superfluid has Majorana zero modes in its vortex
cores. As a result, it has the fusion rules expected for σ particles
in the Ising topological phase. Braiding can only be defined
up to a phase, as result of the logarithmic interaction between
vortices noted above; the relative braiding phases (e.g., the
ratio Rσσ

I /Rσσ
ψ ) are those expected for Ising anyons. In a chiral

p-wave superconductor, the braiding phases are well defined
and equal to those of Ising anyons, with an unpaired fermion
identified with the ψ quasiparticle. Despite these similarities
between superfluid/superconducting states and topological
phases, there are important differences, as we will see.

Consider, for example, the 2D paired superfluid or su-
perconductor on a torus. For simplicity, we first consider
the example of s-wave pairing and then discuss the more
interesting example of p-wave pairing. We begin with the case
of neutral superfluids, which have gapless Goldstone modes.
The order parameter θ will have winding numbers wm and wl

around the meridian and longitude of the torus, respectively.
We assume that the torus has modular parameter i or, in other
words, that it is an L × L square with periodic boundary
conditions, so that we have θ = 2πwmx/L + 2πwly/L. As
a result of the Goldstone mode, a state with winding numbers
(wm,wl) on this torus will have energy

E = ρ2D
s

2

∫
d2x (∇θ )2 = 2π2ρ2D

s

(
w2

m + w2
l

)
. (55)

We assume that the torus is very thin, and ρ2D
s is the superfluid

density per unit area. Therefore, the (0,0) state is the ground
state and the gap to nonzero winding states is a constant,
independent of L. [A fourfold-degenerate ground state, corre-
sponding to winding numbers (0,0),(1,0),(0,1),(1,1), would
be expected if a two-dimensional s-wave paired superfluid
were in a toric code topological phase, as one might have
anticipated, for reasons discussed above.] We emphasize that,
despite this O(L0) gap to the topologically excited, nonzero
winding states, the system has O(L−ζ ) energy separation
(with ζ = 1) between the ground state and topologically trivial
gapless excitations, namely, phase fluctuations.

In the case of a chiral px ± ipy paired superfluid, a similar
analysis holds, although the situation is more complicated
because gauge symmetry and rotational symmetry are inter-
twined by the ordering. As a result, the (1,1) state has odd
fermion number and there are only three pseudo-ground states
with even fermion number. However, the basic observation in
Eq. (55) remains unchanged: the splitting between would-be
ground states on the torus is a constant, independent of
L. A chiral px ± ipy paired superfluid has an additional
feature which is not present in the s-wave case. Consider
a chiral px ± ipy paired superfluid with 2n vortices (i.e.,
2n punctures with a vortex at each puncture). There will
be a 2n−1-dimensional space of pseudo-ground states, due

to the existence of Majorana (nearly) zero modes localized
at the vortices. This degeneracy has exponentially decaying
splittings caused by hybridization between the (nearly) zero
modes; fluctuations of the order parameter do not change this.
Therefore, in the chiral px ± ipy case, the stiffness of the order
parameter causes some energy splittings to be independent of
the system size while others still decay exponentially.

Now suppose that we couple a chiral px ± ipy superconduc-
tor to gapless fermions. A fermion can tunnel into a Majorana
zero mode because its fermion number can be absorbed by
the condensate. Suppose, for instance, that we have a metallic
lead which is brought into contact with a vortex. The coupling
takes the form

Htun = λ c†(�r = 0) γ e−iθ/2 + λ∗γ c(�r = 0) eiθ/2. (56)

Here, γ is the Majorana zero mode operator and c(�r = 0) is
the electron annihilation operator in the lead at �r = 0, which
is assumed to be the location of the vortex. In the superfluid
state, θ can be taken to be a constant. Whereas 〈γ (ω)γ (−ω)〉 =
1/(ω + iδ) (with δ → 0) in the absence of the lead, in the
presence of the lead we, instead, have 〈γ (ω)γ (−ω)〉 = 1/(ω +
i�), with � = λ2NF , where NF is the density of states at
the Fermi energy in the lead. Consequently, the zero mode is
absorbed by the lead, and there is no longer any ground-state
degeneracy, as evidenced by the absence of a pole at ω = 0. It is,
of course, obvious that this would happen, but it is instructive
to see how the case of a superfluid is different from the Kitaev
honeycomb lattice model or an FQH state. In the latter two
cases, the charged mode is gapped, so the analog of the operator
e−iθ/2 (which we can treat as a constant in a superfluid) creates
a gapped excitation.

We now consider the case of a two-dimensional super-
conductor on a torus. In the s-wave case, this system would
be in a toric code topological phase if the electromagnetic
gauge field were purely two dimensional. However, the three
dimensionality of the electromagnetic field leads to important
differences, as we now see.

A nonzero winding number state will have magnetic flux
threading through the corresponding generator of the torus.
If the superconducting surface is thicker than the London
penetration depth, then the flux will be hc/2e. If the torus
has longitude ∼L, then the magnetic field strength will be
|B| ∝ 1/L2. If the torus also has meridian ∼L, then the total
magnetic field energy will be ∝B2L3 ∝ 1/L. In addition, there
will be some gradient or superflow energy coming from the
toroidal shell which is within a London penetration depth λ

of the inner and/or outer surface (depending on which hole
has flux penetrating through it). For L 	 λ, the superflow or
gradient energy will be Esf ∝ ρ3D

s λ(w2
m + w2

l ), where ρ3D
s is

the superfluid density per unit volume. Therefore, the field
energy gives a contribution to the splitting between ground
states which is ∝1/L, while the order parameter gradient
energy gives a contribution which is independent of L for the
(realistic) case of ρ3D

s , which is independent of the thickness
L′ of the torus. [However, when expressed in terms of ρ2D

s , the
gradient energy takes the form Esf ∝ (ρ2D

s /L′)λ(w2
m + w2

l ),
from which we see that the gradient energy is reduced from
the neutral superfluid case by a factor of λ/L′, where L′
is the thickness of the torus.] On the other hand, if the
superconducting surface is thinner than the London penetration
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depth L < λ, then the flux can be much smaller. In the limit
of an infinitely thin superconducting surface, there will be no
magnetic field, and there will be an energy cost for nonzero
winding due to the gradient of the order parameter given in
Eq. (55), precisely as in the case of a neutral superfluid. On
the other hand, the splitting of multivortex states caused by
coupling to gapless fermions as in Eq. (56) is unchanged by
the electromagnetic field because Eq. (56) is already gauge
invariant, so there is a constant splitting, regardless of whether
we are dealing with a neutral or charged superfluid.

From the preceding discussion, we see that in 2D super-
conductors and superfluids, there is no pseudo-ground-state
degeneracy on the torus (NT 2 = 1) and, if there is a coupling to
gapless electrons, there is no degeneracy of multivortex states.
These two lifted degeneracies are related. The latter is due to
the fact that an electron can tunnel into a Majorana zero mode
without having to overcome an energy gap (if we can neglect
fluctuations of the order parameter, which is the case in the
ordered superfluid or superconducting states). The connection
to the case of the torus follows from the fact that an electron can
be converted into a Majorana fermion in the superconductor by
a coupling such as that in Eq. (56). In two of the three would-be
ground states on the torus, a Majorana fermion operator γ

must change sign in going around one of the generators of the
torus. But, since an electron creation/annihilation operator c†

or c must be single valued and Htun must be single valued,
the phase of the order parameter θ must also wind around
the corresponding generator. This winding leads to the energy
splitting on the torus in Eq. (55).

An underlying reason that a 2D superconductor is not in a
topological phase is because the 3D electromagnetic field does
not give an Anderson-Higgs gap to the 2D Goldstone mode.
The 3D electromagnetic field gives a gap to the would-be
Goldstone mode of a 3D superconductor, and a 2Dgauge field
(which would have to be an emergent gauge field) would give
a gap to the would-be Goldstone mode of a 2D superconductor
(the latter is the scenario considered in Ref. 66). However, the
3D electromagnetic field leaves a gapless would-be Goldstone
mode with dispersion relation ωp ∝ √

p. Therefore, a 2D
superconductor could, at best, be in a quasi-topological phase,
and even this is only possible if electron parity is maintained.
There is a second effect of the three dimensionality of the
gauge field: the gauge-field configuration which cancels the
order parameter gradient A = ∇θ must necessarily have a
nonzero magnetic field somewhere in 3D space, i.e., there is
no pure gauge extension of A = ∇θ to the entire 3D world. As
a result, there is magnetic field energy associated with nonzero
windings and even some gradient energy due to the nonzero
penetration depth of the magnetic field. If, on the other hand,
the universe were a 3D torus T 3 and the superconducting
torus T 2 wrapped around two of the directions of the universe,
then the gauge field A = ∇θ could be trivially extended to
the whole universe and there would be no energy splitting
between different ground states on the torus. Therefore, one
can understand the order parameter gradient energy splitting
between different would-be ground states on the torus as
resulting from a mismatch between the topology of the 2D
system and the topology of the 3D space. (Note that a 2D gauge
field would perfectly screen gradients in the order parameter
rather than leave an unscreened layer at the surface of thickness

equal to the penetration depth.) Furthermore, the embedding
of the torus in a real 3D world leaves open the possibility
that different 2D pseudo-ground states might be locally
distinguishable by measurements in three dimensions, which
is the case when there is magnetic flux threading the torus.

B. Definition

A chiral 2D p-wave superconductor is an example of an
electron parity-protected quasi-topological phase: a phase
which is quasi-topological so long as electron parity is
conserved. If we generalize this, by replacing electron parity
by any symmetry, then we have the notion of a symmetry-
protected quasi-topological phase.

Definition (Symmetry-protected quasi-topological phase).
A system is in a symmetry-protected quasi-topological phase
associated with a symmetry group G if there is an energy �

and a length scale ξ which, respectively, have a strictly positive
limit and a finite, non-negative limit as L → ∞, such that the
following properties hold.

(i) On a manifold �, there is a set of orthonormal
energy eigenstates |a〉, where a ∈ {1,2, . . . ,N�}, including the
absolute ground state |1〉 (with energy E1 = 0), such that for
any local operator φ that is invariant under the group G

〈a| φ |b〉 = Cδab + O(e−L/ξ ) (57)

for a,b ∈ {1,2, . . . ,N�}, where C is independent of a,b. For
operators which are not invariant under G, the corrections will
be bounded below by αL−ζ for some nonzero coefficient α and
finite non-negative exponent ζ . The Hamiltonian is a particular
local operator that is invariant under the group G, so it follows
that

δE0 ≡ max(|Ea|) = O(e−L/ξ ) (58)

for a ∈ {1,2, . . . ,N�}, where Ea is the energy of the state |a〉.
(ii) N� depends only on the topological configuration of

the system.
(iii) We define

	 ≡ min(|Eχ − Ea|) (59)

for any a ∈ {1,2, . . . ,N�} and |χ〉 /∈ H0 ≡ span
{|1〉, . . . ,|N�〉}. Then, there must exist a finite z > 0
and an L independent κ > 0 such that

	 ∼ κL−z. (60)

(iv) There are no states with energy less than � that have
topologically nontrivial excitations.

Note that, as in the case of quasi-topological phases, the
pseudo-ground-state space of a symmetry-protected quasi-
topological phase does not need to be described by a
TQFT (although it is for strong quasi-topological phases).
In the case of a 2D superconductor, N� = 1 for manifolds
without boundaries, but the quasiparticle braiding statistics
(and pseudo-ground-state degeneracy for 2D chiral p-wave
superconductors) is nontrivial. These features definitely can
not be described by a TQFT since N� = 1 for all manifolds
without boundaries only for a trivial TQFT.

Symmetry-protected quasi-topological phases are simi-
lar in spirit to symmetry-protected topological phases.67–70

Topological insulators are an example of the latter: they
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can not be continuously deformed into trivial insulators if
time-reversal symmetry is respected. However, they have
no nontrivial quasiparticles and if one is allowed to violate
time-reversal symmetry, then topological insulators can be
continuously deformed into trivial insulators. Thus, when
viewed as topological phases, subject to arbitrary perturba-
tions, they are trivial. Similarly, the following systems are
trivial topological phases in the absence of symmetry protec-
tion: px ± ipy superconductors;64,71 three-dimensional topo-
logical insulator–s-wave superconductor heterojunctions with
hc/2e vortices present;72 superconductor–spin-orbit-coupled
semiconductor–ferromagnetic insulator heterojunctions;73 and
spin-orbit-coupled quantum wires with superconductivity in-
duced through the proximity effect.74–77 However, if electron
parity is preserved, then they all have interesting topological
character, which fits the definition above.

For instance, in the case of three-dimensional topological
insulator–s-wave superconductor heterojunctions, it is cru-
cial that the topological insulator have an insulating three-
dimensional bulk. As a matter of principle, the insulating
phase is stable and exists over a range of parameters, so
fine tuning is not required. However, as a practical matter,
in insulators with small band gaps (such as all of the known
topological insulators), even a small density of impurities
will lead to metallic behavior. Therefore, some effort is
needed to eliminate this bulk electrical conduction. In the case
of spin-orbit-coupled quantum wires with proximity-induced
superconductivity, metallic gates may be used to bring the
chemical potential into the necessary regime. This does not
require fine tuning since there is a range of chemical potentials
in which the wire will support Majorana zero modes. However,
the leakage of electrons from the metallic gates to the quantum
wire must be suppressed, or else electron parity will not be
conserved in the wire.

In order to guarantee that electron parity is preserved, some
effort may be required, as in the case of conventional qubits, as
described above in the case of ions and superconducting qubits.
However, once this this is accomplished, which amounts to the
preservation of a (discrete) symmetry, then Majorana fermion
zero modes can serve as topologically protected quantum
memory and other sources of error will be exponentially
suppressed in the temperature or system size.

However, as we have seen from the discussion of the
previous section, electron parity-protected quasi-topological
phases differ from topological phases very drastically when it
comes to the splitting between would-be ground states on (for
instance) the torus: in the former case, this splitting remains
finite, even for large system size, while in the latter case,
it vanishes exponentially fast. The only way to make the
splitting small is to fine tune it, essentially by suppressing
the superconducting long-ranged order.

VII. PROTECTING QUANTUM INFORMATION

A. Conventional systems

To understand the protection of quantum information
afforded by topological and quasi-topological phases of
matter, it is helpful to contrast it with “conventional”
qubits based on local degrees of freedom. As exam-

ples, we consider trapped ions and superconducting charge
qubits.

In ion trap qubits, the two-level system which stores
quantum information is the ground state and a long-lived
excited state of an ion. The excited state has a long lifetime
because the decay rate through photon emission is proportional
to the fine-structure constant α ≈ 1

137 , which is small, and to
the square of the transition matrix element, which is small
if the transition is electric dipole forbidden. The energy
splitting between the two states is very accurately measured
and stable, so long as the ion is isolated. Thus, trapped ions
form excellent qubits, for which gates have been designed.78

However, although the lifetime of the excited state is very
long, it is fixed once and for all, once the ion and the excited
state have been chosen. Said differently, the ionic qubit is
long-lived because it interacts weakly with the environment.
Although this interaction is weak, it can not be made arbitrarily
weak. Therefore, for computations longer than the lifetime of
the excited state, it will be necessary to use software-based
error correction (see, e.g.. Ref. 79).

A superconducting charge qubit80 (or “Cooper-pair box”)
is a pair of superconducting islands whose charging energy is
tuned so that the state with N Cooper pairs on one island is
degenerate with the state with N + 1 Cooper pairs on that
island. This qubit is stable as long as the temperature is much
lower than the gap, so that the system can not be in a state with
N + 1

2 Cooper pairs due to thermally excited quasiparticles.
However, the energy difference between the states with N

and N + 1 Cooper pairs can vary if the electrostatic potential
varies. Gate voltage noise or stray charges can easily cause
such potential variations, so Cooper-pair boxes can only
operate as qubits if these sources of electrostatic potential
fluctuations are kept small. In a “transmon” qubit,81 the
Josephson coupling between the islands is sufficiently large
that the energy difference between the two states is insensitive
to variations in the electrostatic potential. In fact, the sensitivity
is exponentially small in the ratio between the Josephson
and charging energies EJ /Ec. However, this ratio can not
be made arbitrarily large because, if EJ /Ec is too large, then
quantum gate operations are likely to cause leakage errors to
higher excited states. Therefore, once again, one must choose
a ratio EJ /Ec to give a small, but fixed, error rate. For longer
computations, software error correction is necessary.

B. Topological protection

In a topological phase, quantum information is protected
for a different reason: it is encoded in degrees of freedom that
do not couple to local perturbations (up to corrections that are
exponentially suppressed in L). Although some tuning may be
necessary to bring a system into a topological phase, the phase
will be stable throughout a region of parameter space and no
system parameters need to be at precise values to optimize
the protection from errors. A topological qubit’s lifetime
τ increases without bound as the temperature is decreased
and the system’s length scales increased (τ ∼ �/T,L/ξ ). In
contrast, for conventional qubits (such as those described in
the previous paragraphs), it is not possible, even in principle,
to make the error rate arbitrarily small as a function of
some parameter. Of course, in practice, there may be very

195451-18



QUASI-TOPOLOGICAL PHASES OF MATTER AND . . . PHYSICAL REVIEW B 87, 195451 (2013)

little difference between a long-lived topological qubit and
a long-lived conventional qubit, and topological qubits may
ultimately require software error correction, but there is, at
least, a difference in principle.

In addition to protecting the quantum information encoded
in qubits, it is also important to manipulate quantum informa-
tion without introducing errors. This provides another point of
contrast between the conventional and topological approaches.
Similar to the situation for qubit lifetimes, the fidelities of
gates and measurements for conventional qubits are fixed at
some optimized value by the system parameters, whereas, for
topological qubits, these fidelities can be made arbitrarily close
to 1, with exponentially suppressed errors as L is increased
and ω and T are decreased. One might naı̈vely worry that
qubits which are truly topologically protected from noise
will also be incapable of being read out or acted upon with
computational gates. However, topological qubits can be read
out either by performing an operation that makes the (formerly
nonlocally encoded) quantum information local, e.g., by
moving quasiparticles close to each other, followed by a local
measurement, or by performing a nonlocal measurement of the
topological degrees of freedom, e.g., anyonic interferometry.82

Such measurements enjoy topological protection in the sense
that they are measuring topological quantum numbers which
are not destroyed by the measurement nor local operations, so
they can be repeatedly measured to improve the measurement
fidelity.

In a topological phase, unitary transformations may be
generated by performing topological operations on the sys-
tem, such as adiabatic quasiparticle exchanges,7,8 topolog-
ical charge measurements,83,84 or changing the system’s
topology.85–87 The action of such unitary transformations on
the pseudo-ground Hilbert space will similarly be topolog-
ically protected, i.e., have exponentially suppressed errors,
as long as the system’s lengths are long compared to the
correlation length and the temperature, energies, and inverse
time scales are small compared to �. However, the set of
topologically protected gates that can be generated may not be
computationally universal, meaning it may not enable arbitrary
quantum computations to be performed. For two-dimensional
systems, the ideal scenario is when braiding operations are
computationally universal, which is the case for many TQFTs,
such as SU(2)k for k = 3 and k � 5.88 For these cases, one
only needs planar geometries with quasiparticles/boundaries
and the ability to perform (braiding) exchanges or topological
charge measurements of pairs of quasiparticles/boundaries to
generate computationally universal gates.

Unfortunately, in a topological phase of Ising anyons
[which is computationally equivalent to SU(2)2], braiding
operations alone can not generate universal gate sets. This
is because, working in the standard (one qubit in four σ

quasiparticles) encoding, braiding only generates the single-
qubit Clifford gates. To make this gate set universal, it
must be supplemented by an entangling gate, such as the
controlled-NOT or controlled-Z gate, and a phase gate outside
the set, such as the π/8-phase gate (or any θ -phase gate
with θ �= nπ

4 ). A topologically protected entangling gate can
be implemented given the ability to measure the collective
topological charge/total fermion parity of up to (at least)
four Ising σ quasiparticles.89 Both of these missing gates

can be implemented with topological protection for the Ising
TQFT given the ability to perform certain topology-changing
operations,87 following the protocol of Bravyi and Kitaev85

(see Ref. 86 for a recapitulation of their construction). For these
topology-changing protocols, the topological protection of de-
generacies in the pseudo-ground-state subspace due to higher
genus plays a crucial role. Consequently, topology-changing
protocols do not produce topologically protected gates in
those quasi-topological Majorana phases that do not preserve
these degeneracies. Without topology-changing operations,
one must resort to topologically unprotected operations to
generate the missing phase gate, such as using quasipar-
ticle separation to explicitly split the energy degeneracies,
interference techniques,90 or coupling to conventional qubit
systems.91,92 Fortunately, the other topologically protected
Ising gates allow for error-correction of a noisy π/8-phase gate
(which is sufficient supplementation to achieve universality)
with a remarkably high threshold of approximately 14%.93

To summarize, a topological phase will always have
some gates (necessarily including the identity gate) that
are topologically protected, which means they can be made
arbitrarily accurate by lowering the temperature and increasing
the systems’ length scales. The contrast with conventional
qubits, which enjoy no topological protection, is starkest when
the protected gates are computationally universal. When some
unprotected gates are needed, the situation vis-a-vis these
gates is similar, in principle, to conventional qubits, although
error-correction thresholds may be significantly less strict. We
now consider how the situation differs for quasi-topological
phases (reiterating some of the previous discussions).

1. Strong quasi-topological phases

Strong quasi-topological phases behave essentially the
same as topological phases. The low-energy (E < �) degrees
of freedom are a direct product of a TQFT and the gapless
degrees of freedom. All topological degeneracies and oper-
ations given by the TQFT are preserved and topologically
protected. In particular, topology-changing protocols can be
employed (at least in principle), if necessary. The visibility
of interference processes may be reduced by the presence of
the gapless degrees of freedom, but this is not a fundamental
distinction.

Strong quasi-topological phases with universal braiding
could potentially be realized by certain lattice models,7,26

however, these are likely too difficult to practically implement.
Kitaev’s honeycomb model in the B phase exhibits the Ising
TQFT, which, as previously mentioned, requires topology-
changing operations to achieve topologically protected uni-
versal quantum computation.

2. Quasi-topological phases

Quasi-topological phases that are not “strong” have a
pseudo-ground-state subspace that is not described by a TQFT.
This pseudo-ground-state subspace may still exhibit exponen-
tially suppressed splitting of degeneracies and, hence, topolog-
ical protection of qubits and topological gate operations acting
within this subspace. The algebraic structure of these protected
subspaces and operations within them will depend on the
details of the system. Typically, the pseudo-ground states will
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be those of the nonlocal anyonic state space of non-Abelian
anyons (boundaries/quasiparticles) in the system, rather than
states associated with nontrivial topology (e.g., genus). How-
ever, it is possible for a system to have a strong subsector,
i.e., a subspace of the pseudo-ground-state subspace that is
actually described by a TQFT and behaves like a strong quasi-
topological phase. Within this smaller subspace, topology-
changing operations would still be topologically protected. We
emphasize that topologically protected quantum information
and computational gates are better protected than is sometimes
appreciated for quasi-topological phases. For example, these
phases provide robust protection from gapless electrons.

As described in Sec. V C2, Ising-type FQH states47–50,58

are likely to occur in the second Landau level, notably at
ν = 5

2 and 12
5 . These quasi-topological phases have topological

protection associated with their non-Abelian anyons, which
carry Ising σ topological charge. Thus, qubits encoded in the
non-Abelian quasiparticles and gates produced from braiding
or measurement operations will be topologically protected for
all of these states. As previously discussed, these operations
alone are not computationally universal for Ising (or Ising-
type) quasiparticles. Topology-changing operations will only
be topologically protected within a strong subsector of a quasi-
topological phase (assuming it has one). For the (fermionic)
states with odd numerator (not counting fully filled Landau
levels), such as the ν = 5

2 MR and anti-Pfaffian states, there
is no strong subsector and none of the degeneracies due to
genus remain protected. In the (fermionic) states with even
numerator (not counting fully filled Landau levels), such as the
ν = 12

5 BS states, the neutral sector forms a strong subsector in
which the TQFT structure retains topological protection. We
also note that, if the long-ranged Coulomb interactions could
somehow be eliminated from FQH states, so that topology-
changing operations could be implemented with topological
protection for all the Ising-type FQH states, only the states
with odd denominators have modular transformations capable
of enhancing the gate set to make it computationally universal.

The (particle-hole conjugate94 of the) Z3-parafermionic
Read-Rezayi state52 is also a strong candidate for the ν =
12
5 FQH state. This quasi-topological phase has topological

protection associated with its non-Abelian anyons (which
carry Fibonacci ε topological charge). Moreover, the neutral
sector is a strong subsector described by the Fibonacci TQFT.
Qubits encoded in the non-Abelian quasiparticles and gates
produced from braiding or measurement operations will be
topologically protected, and quasiparticle braiding is computa-
tionally universal. Topology-changing operations are protected
within the strong pseudo-ground subspace and described by
the Fibonacci TQFT. Actually, these properties are common
to all Zk-parafermionic Read-Rezayi states with k odd (and
k > 1), except that the strong subspace is described by the
SU(2)k/Z2 TQFT [the restriction of SU(2)k to integer spins].

3. Symmetry-protected quasi-topological phases

Symmetry-protected quasi-topological phases behave as
quasi-topological phases, with the prerequisite that the sym-
metry of the system is not violated by an external effect.
The extent to which qubits and gates are topologically
protected is bounded by the extent to which this symmetry

is protected. Fortunately, it is not necessarily difficult to
provide excellent protection of this symmetry. For example,
fermion parity protected quasi-topological phases can be
protected from fermion parity violating effects simply by
introducing insulating layers between the symmetry-protected
quasi-topological system and dangerous electron sources (e.g.,
metallic leads) capable of causing the topological protection to
fail. This can be very strong protection since electron tunneling
through an insulating barrier is exponentially suppressed as a
function of inverse temperature and layer thickness.

The px ± ipy paired superconducting systems64,71–77,95 are
fermion parity protected quasi-topological phases. As long
as the system is protected from fermion parity violations,
these phases have topological protection associated with their
Majorana zero modes (which are akin to Ising σ topological
charge), but do not maintain any topological protection for de-
generacies associated with higher genus. Thus, qubits encoded
in the Majorana zero modes and gates produced from braiding
or measurement operations will be topologically protected.
As previously discussed, quasiparticle braiding operations
alone are not computationally universal. Topology-changing
operations will not be protected.

It is worth mentioning that the potential drawback of
needing to protect fermion parity in these superconductivity-
based Majorana systems could also prove to be advantageous.
Their sensitivity to fermion parity is the basis for proposals
to coherently couple topological qubits in these systems with
conventional qubits.91,92,96 For example, the fermionic parity
of a Majorana qubit can be measured by the Aharonov-Casher
effect with ordinary flux hc/2e superconducting vortices
which may, themselves, be outside the Majorana system.
Consequently, an hc/2e vortex tunneling into a flux qubit
or around a quantum dot will be sensitive to the fermionic
parity of a Majorana qubit in an electron parity-protected
quasi-topological phase. This enables one to coherently couple
and transfer quantum information between the topologically
protected qubits and conventional qubits.

VIII. DISCUSSION

It is virtually unimaginable for a system to be in a
topological phase, according to the usual definition given at the
beginning of this paper. If we were to take an L × L × L region
of space and shield it perfectly from the rest of the universe,
it would still be the case that the Hamiltonian for the interior
of this region would have gapless excitations. If it is not filled
by a superconducting solid, then there will be gapless photons
(or, to be more precise, photons with a gap c/L). If it is filled
by a solid, superconducting or otherwise, then there will be
gapless phonons. In order to give an example of a topological
phase in Sec. III, we had to consider the unphysical limit of a
superconducting solid composed of infinitely massive atoms.

It follows that TQFTs can not give a complete description
of real systems. This is, perhaps, somewhat surprising because
the mathematical theory of TQFTs does not give any clues
about its limitations, unlike most quantum field theories, which
would suffer from ultraviolet divergences in the absence of a
high-energy cutoff and, therefore, are only applicable below
this cutoff. All predictions of TQFTs are perfectly finite and
physically reasonable.
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Therefore, the best that one can hope for in the real world is
a situation in which there are gapless excitations, but they
decouple at low energies from the topological degrees of
freedom or, in the terminology introduced in this paper, the
system is in a “strong” quasi-topological phase. In this case, a
TQFT will apply to some of the degrees of freedom of a system,
but only in the low-energy, low-temperature, long-distance
limit and, even in this regime, the degrees of freedom which
they do not encompass decouple only as a power law in the
temperature or system size. (It would be interesting to see if the
methods used to prove the stability of topological phases19,20

can be extended to prove the stability of quasi-topological
phases as well.)

In many other cases, the situation may be even worse.
And yet, this does not mean that one should discard TQFTs
altogether. In fact, some of their predictions hold (possibly
with modifications) in a wide variety of systems. Therefore, it
is important to distinguish between the different possible types
of discrepancies between a physical system and the predictions
of a TQFT.

In this paper, we have classified such systems as quasi-
topological phases and symmetry-protected quasi-topological
phases. They offer successively less protection for quantum
information. Ironically, it appears that they are successively
easier to realize in nature. It is, therefore, important to
understand if there is a fundamental reason for this or whether
it is merely an accident due, ultimately, to the fact that we
understand the physics of topological superconductors, which
are in an electron-parity protected quasi-topological phase,
better than we understand quasi-topological phases. Another
interesting question for further research is whether there are
more quasi-topological phases than topological phases or, in
other words, whether the loosening of the requirements of
a true topological phase allows for more possibilities. We
also note that a parallel classification may apply to critical
points at which a topological degeneracy coexists with gapless
excitations, such as the one introduced and analyzed in Ref. 97.
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APPENDIX A: ALGEBRAIC PROPERTIES OF
A (2 + 1)D TQFT/MODULAR TENSOR CATEGORY

In this Appendix, we briefly review the algebraic properties
of fusion and braiding of quasiparticles, as described by unitary
braided tensor categories (BTC). When a BTC has unitary S

matrix, it is a modular tensor category and corresponds to a
TQFT. For additional details, see Refs. 15, 62, 82, 98, and 99.

There is a finite set of topological charges C, which obey a
commutative, associative fusion algebra

a × b =
∑
c∈C

Nc
ab c, (A1)

where Nc
ab are positive integers indicating the number of

distinct ways charges a and b can be combined to produce

charge c. There is a unique “vacuum” charge, denoted 0 or I ,
which has trivial fusion (and braiding) with all other charges,
i.e., Nc

a0 = δac, and which defines the unique conjugate ā of
each topological charge a via N0

ab = δāb.
Each fusion product has an associated vector space V c

ab with
dim V c

ab = Nc
ab, and its dual (splitting) space V ab

c . The states
in these fusion and splitting spaces are assigned to trivalent
vertices with the appropriately corresponding topological
charges:

c

ba

μ = a, b; c, μ| ∈ V c
ab, (A2)

c

ba

μ = |a, b; c, μ V ab
c , (A3)

where μ = 1, . . . ,Nc
ab. Most TQFTs of interest have no fusion

multiplicities, i.e., Nc
ab = 0,1, in which case the vertex labels

μ are trivial and can be left implicit (as is done elsewhere in
this paper).

General states and operators are described using fu-
sion/splitting trees constructed by connecting lines with the
same topological charge. The trivalent vertices written here
are orthonormal, in that the inner product is defined as

a, b; c, μ|a, b; c , μ = a b

c

c

μ

μ

= δcc δμμ

c

. (A4)

(It is often convenient to weight the trivalent vertices with fac-
tors that provide an isotopy-invariant formulation of diagrams,
although we do not do so here.) The identity operator on a pair
of anyons with charges a and b is written diagrammatically as

11ab =

ba

=
c,μ

c

ba

ba

μ

μ
. (A5)

Associativity of fusion is represented in the state space
by the F symbols, which (similar to 6j symbols) provide a
unitary isomorphism relating states written in different bases
distinguished by the order of fusion. Diagrammatically, this is
represented as

a b c

e

d

α

β
=

f,μ,ν

F abc
d (e,α,β)(f,μ,ν)

a b c

f

d

μ

ν
.

(A6)

The counterclockwise braiding exchange operator of topo-
logical charges a and b is represented diagrammatically as

Rab =
a b

=
c,μ,ν

Rab
c μν

c

ab

ba

ν

μ
, (A7)
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where the R symbols represent the unitary operator for
exchanging two anyons in a specific fusion channel, i.e.,

c

ab

μ =
ν

Rab
c μν

c

ab

ν . (A8)

A BTC is defined entirely by its Nc
ab, F symbols, and

R symbols. The Nc
ab must provide an associative and com-

mutative algebra. The F and R symbols are constrained by
the “coherence conditions” (also known as the “polynomial
equations”), which ensure that any two series of F and/or R

transformations are equivalent if they start in the same state
space and end in the same state space.100 Physically, these
consistency conditions are interpreted as enforcing locality in
fusion and braiding processes.

Distinct sets of F and R symbols describe equivalent
theories if they can be related by a gauge transformation given
by unitary transformations acting on the fusion/splitting state
spaces V ab

c and V c
ab (which are just redefinitions of the basis

states). Ocneanu rigidity demonstrates that the only infinites-
imal deformations of a UBTC that continue to satisfy the
consistency conditions are infinitesimal gauge transformations
of this sort.16,17 Consequently, for a given fusion algebra, there
are a finite number of distinct (up to gauge transformations)
UBTCs that satisfy the coherence conditions. The physical
consequence of Ocneanu rigidity is that the UBTC describing
a system is unchanged by perturbations to the system.

From the quantum dimensions

da = dā = ∣∣[Faāa
a

]
00

∣∣−1
(A9)

and topological twist factors

θa = θā =
∑
c∈C

dc

da

Raa
c = da

[
Faāa

a

]
00

(
Rāa

0

)∗
(A10)

(which are roots of unity), one can compute the topological S

matrix

Sab = 1

D
∑
c∈C

Nc
abdc

θc

θaθb

, (A11)

where D = √∑
a∈C d2

a is the total quantum dimension. A
theory is modular (and associated with a TQFT) iff S is
unitary. In this case, the S matrix together with the T matrix
Tab = θaδab, and the charge conjugation matrix Cab = δāb

obey the modular relations up to a phase

(ST )3 = �C, S2 = C, C2 = 1, (A12)

where

� = 1

D
∑
a∈C

d2
a θa (A13)

is a root of unity.

APPENDIX B: SOME PHASES OF MATTER
WITH ALGEBRAICALLY PROTECTED

TOPOLOGICAL DEGENERACY

We now discuss two systems which have topological
degeneracies, with all splittings decaying only as power laws
in the system size. It is interesting to note that one example is

one dimensional and the other is three dimensional, unlike all
of the other examples given in this paper.

Recently, it was shown that a three-dimensional system
in which topological insulating behavior can coexist and
compete with superconductivity could support hedgehoglike
defects with Majorana fermion zero modes.101,102 This system
is most definitely not in a topological phase. The ground
state on the 3-torus is nondegenerate. There is a particular,
highly symmetric Hamiltonian for which the system has a
U(N)/O(N) symmetry group and Goldstone bosons. Away
from this point, there is a particular preferred ground state.
In either case, hedgehogs interact through a linear confining
force and, therefore, are not the low-energy quasiparticle
excitations of the system. However, if one is willing and
able to pay the energy cost associated with keeping the
hedgehogs apart, they have interesting topological properties.
When there are 2n hedgehogs at fixed positions, the system
has a 2n−1-dimensional Hilbert space of degenerate states up
to exponentially small splittings. This is a three-dimensional
system, so there is no braiding per se, but the transformations
associated with exchanging hedgehogs and then healing the
order parameter comprise the ribbon permutation group. This
group is represented only projectively on the Hilbert space
of the theory. The unitary transformations which result are
precisely the same (up to phases) as the unitary representations
of the braid group for Ising anyons.101,102

To get a system in which these hedgehogs are quasiparticles
of the system, we could increase quantum fluctuations of the
order parameter until its stiffness disappears at a quantum
phase transition into a new phase.103 In this phase, hedgehogs
are deconfined. However, there is an emergent gauge field
which has gapless fluctuations. This gauge field mediates a 1/r

potential between hedgehogs, similar to the photon-mediated
interaction between charged quasiparticles in the FQH sys-
tems. In addition, there are gapless fermionic excitations called
Hopfions.

This phase can be described most transparently in terms
of a (4 + 1)d effective field theory. In this theory, there is
an SU(2) fermion doublet ci (where i is a lattice point) in
4 + 1 dimensions which fills a band with second Chern number
equal to 1. The system is assumed to be a slab of infinite
extent in three spatial dimensions x,y,z and finite extent in the
fourth dimension 0 < u < 1. At the two three-dimensional
boundaries of the slab, there are gapless fermionic excitations.
The fermions interact with an SU(2) gauge field aiα̂ which
lives on the links of the lattice, e.g., between lattice point i

and i + α̂. Finally, there is a Higgs field �� which transforms
in the triplet representation of SU(2). The lattice model for the
fermions has the form

S ′
4+1 =

∑
i

∫
dτ

[
c
†
i (∂τ − ia0) ci + (M + 4B)c†i �

0ci

−
4∑

α̂=1

(
c
†
i

i�α + B�0

2
eiaiα̂ ci+α̂ + H.c.

)

+ (m�kc
†
i (T ⊗ τyτk)c†i

T + H.c.)

]

+ SM[aμ] + Sσ [�]. (B1)
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Here, ci is the fermion annihilation operator. The τk are Pauli
matrices. The coupling constant m determines the strength of
the interaction between the fermions and the order parameter.
The parameters M and B determine the band structure of the
fermions. So long as they are in the range −2 < M/B < 0, the
Chern number is equal to 1. The Hermitian Dirac � matrices
�0,1,...,4 satisfy �a† = �a and {�a,�b} = δab. SM[aμ] is the
Maxwell term for aμ and Sσ [�] is the lattice version of the
sigma-model action 1

2g
Dμ

�� · Dμ ��. T is the time-reversal
matrix analogous to σy for the two-component fermion. We
assume that the Higgs field �� condenses for u < 1

2 while
〈 ��〉 = 0 for u > 1

2 . Then, we have a gapped system at the u= 0
boundary with magnetic monopoles which interact through
a U(1) gauge field (which is the unbroken subgroup when
�� condenses). These magnetic monopoles support Majorana
fermion zero modes. At the u = 1 boundary, on the other hand,
there is an SU(2) doublet of gapless Weyl fermions.

These gapless fermions coexist with localized Majorana
zero modes because, as a result of the pseudorelativistic
spectrum, their coupling to Majorana zero modes is irrelevant.
The scaling dimension of this coupling is − 1

2 , which reflects
the limited phase space for a Majorana zero mode to decay into
the bulk. As a result, the splitting between the two states of a
pair of hedgehogs a distance r apart decays as 1/r2 at T = 0. In
a finite-sized system, we can have topological degeneracy, up
to O(1/r2) splittings, while gapless gauge field excitations and
fermions have energies O(1/L). Therefore, exchanges which
occur faster than O(1/r2) but slower than O(1/L) are in the
adiabatic regime.

Such a system already has gapless Hopfions in the bulk, so
connecting it to metallic leads would seem, at first glance,
to be unimportant. However, a metallic lead will have a
finite density of states at zero energy, and therefore the phase
space restrictions which save the Majorana zero modes from
decaying into Hopfions will not save it from coupling to a
metal. However, there is, once again, a charge gap protecting
the system against electron tunneling. This state of matter is
an insulator with a charge gap. While the Fermi statistics of an
electron can be accommodated at zero energy by a Majorana
zero mode, its charge will cost a finite energy, so such processes
can not occur at low energies.

Therefore, this is an example of a phase in which the
splitting between ground state decays as a power of the
quasiparticle separation [O(1/r2) in this case] and the splitting
between the ground states and the excited states decays as a
smaller power of the system size [O(1/L) in this case].

One can imagine such a phase in a three-dimensional
wire network77,104 in which the wires in the network can
fluctuate quantum mechanically between the topological and
nontopological phases. In such a system, as described in
Sec. V C, fine tuning is not required because an electron
can not tunnel into the system at low energy. In this sense,
qubits in such a phase protect quantum information against
more types of perturbations than superconductivity-based
Ising anyons do. However, there are gapless fermions in
the bulk, so error rates only go to zero as a power of the
temperature or inverse system size. (Furthermore, there are not
any known protocols for performing a π/8 phase gate in such a
system.)

We now discuss a spin-orbit-coupled nanowire in contact
with an algebraically ordered superconducting wire.95 Such
a system has Majorana zero modes but it is gapless and
the Majorana zero modes have finite-size splittings which
decay as a power law in the system size. The simplest setup
exhibiting the key physics is one with two semiconducting
nanowires in contact with the same power-law-ordered su-
perconducting wire. The semiconducting wires have strong
spin-orbit coupling, and a magnetic field is applied along the
wires so that there is only a single branch of excitations
in each direction. The superconducting wire has length L

and each semiconducting wire has length �. We introduce
a coordinate −L/2 � x � L/2 along the superconducting
wire. One semiconducting wire lies along the −L/2 � x �
−L/2 + � part of the superconducting wire and the other one
lies along the L/2 − � � x � L/2 part of the superconducting
wire. The superconducting and semiconducting wires are
coupled via electron tunneling and short-ranged density-
density interactions. The former are suppressed by the gap
in the superconducting wire, so that only pair tunneling is
important at low energies and temperatures. The effective
Hamiltonian is

H2 wires =
∫ −L/2+�

−L/2
dx

(
v1

2π
[K1(∂xθ1)2 + K−1

1 (∂xφ1)2]

− �P 1

(2πa)
sin(

√
2θρ − 2θ1)

)

+
∫ L/2

L/2−�

dx

(
v2

2π
[K2(∂xθ1)2 + K−1

2 (∂xφ1)2]

− �P 2

(2πa)
sin(

√
2θρ − 2θ2)

)

+
∫ L/2

−L/2
dx

vρ

2π
[Kρ(∂xθρ)2 + K−1

ρ (∂xφρ)2]. (B2)

Here, K1, K2, and Kρ are Luttinger parameters for the
two semiconducting wires and the superconducting wire.
The semiconducting wires are effectively spinless Luttinger
liquids, due to spin-orbit coupling and the magnetic field,
and are described by the bosonic fields θ1,φ1 and θ2,φ2. The
superconducting wire has a spin gap and is described the
bosonic fields θρ,φρ for its charge mode.

This model has Majorana zero modes at x = ±L/2 and
x = ±L/2 − �, which correspond to the different minima
of the sinusoidal potentials in Eq. (B2), as discussed in
Ref. 95. As is further discussed there, impurities in the region
−L/2 + � � x � L/2 − � of the superconducting wire cause
backscattering/phase-slip processes which split the ground
states. A single impurity of strength v causes a splitting

�E ∝ 〈v cos(
√

2φρ)〉 ∝ |v|
LKρ/2

, (B3)

while a random distribution of impurities of variance W causes
a splitting

�E ∝ W

LKρ−2
. (B4)

Therefore, this is a system in which the nearly degenerate
ground states have a splitting which decays as a power law
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1/LKρ/2 or LKρ−2 in system size. Meanwhile, the overall total
charge mode of the system is a gapless relativistic free field
in the thermodynamic limit, so the bulk gap in a finite-sized
system is ∝1/L. This is, therefore, another system in which
gapless excitations coexist with a power-law split topological
degeneracy.

Unlike in the previous 3D example, however, this system
is not impervious to coupling to gapless excitations. If a
metallic lead were coupled to the end of such a wire,
then there would be a term in the effective Lagrangian
(without loss of generality, we have coupled the lead to the
x = −L/2 point)

Hlead = ��†(0)eiθ1(0)
√

2 + H.c., (B5)

where �(x) is the electron annihilation operator in the lead.
Since θ1 = (θ+ + θ−)/2 and θ− is fixed to be at one of the
minima of the sinusoidal potential in Eq. (B2), the scaling
dimension of � is determined by the scaling dimension of
the total charge mode θ+. If the Luttinger parameters in
the semiconducting and superconducting wires satisfy K1 =
K2 = 2Kρ (which can accommodate the case in which the
semiconducting nanowire has repulsive interactions while the
superconducting nanowire has attractive interactions), then
eiθ+/

√
2 has scaling dimension 1/(4Kρ). Consequently, �2 has

scaling dimension 1 − 1/(2Kρ). Since Kρ < 1 if the super-
conducting wire has attractive interactions, tunneling into the
Majorana zero mode is a highly relevant perturbation. There-
fore, this system is only stable if fermion parity is enforced.
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