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Anticorrelations from power-law spectral disorder and conditions for an Anderson transition
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We resolve an apparent contradiction between numeric and analytic results for one-dimensional disordered
systems with power-law spectral correlations. The conflict arises when considering rigorous results that constrain
the set of correlation functions yielding metallic states to those with nonzero values in the thermodynamic
limit. By analyzing the scaling law for a model correlated disorder that produces a mobility edge, we show that
no contradiction exists as the correlation function exhibits strong anticorrelations in the thermodynamic limit.
Moreover, the associated scaling function reveals a size-dependent correlation with a smoothening of disorder
amplitudes as the system size increases.
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I. INTRODUCTION

The necessary and sufficient conditions for the occurrence
of a disordered Anderson transition have received a fair amount
of attention in the past half century.1–8 Early theoretical
work with uncorrelated and short-range correlated disorder
potentials identified β = d lnG

d ln L
as the relevant scaling function.

This brought about a sufficient, but not necessary,9 condition
for the complete localization of eigenstates: If β depends
solely on the dimensionless conductance G, all the eigenstates
of a one-dimensional (1D) system will be localized;1,10 this
assumption is known as the single parameter scaling (SPS)
hypothesis.1 It was realized early on that a rigorous proof of
the SPS hypothesis involves an analysis of the full probability
distribution of lnG or, equivalently, its cumulants.11 For one-
dimensional systems (with uncorrelated disorder potentials),
an analysis of these quantities helped determine a relation
between the average dimensionless conductance and its vari-
ance, Var(lnG) = −2〈lnG〉, valid when the SPS hypothesis
holds.11,12 This relationship fails, however, for states at the
band edge13 and at the band center,14,15 which in turn signifies
the failure of the SPS hypothesis12 at these energies. These
violations allow the possibility of extended states but do not
guarantee the presence or absence of a delocalization transition
(mobility edge). More complications arise in the analysis of
the SPS hypothesis for systems with correlated disorder where
violations of SPS appear to be correlated with a crossover
between two different scaling regimes for the localization
length.16–18

Due to these limitations, different authors have endeavored
to determine the necessary conditions for the existence of
an Anderson transition from a more rigorous perspective.
A seminal work was carried out by Kotani in his theory of
random ergodic operators.3,4 In this work, he was able to
show that for the existence of an Anderson transition Gaussian
disorder potentials with correlations must be deterministic
(the whole disordered system can be described from the
behavior of the potential within a small region).3–6 Kotani’s
theorems also imply that a metallic band cannot exist if �(x),
the correlation function for the disordered potential, goes
to zero as the distance x → ∞ as a power law or faster.5

The theorem thus provides the mathematical justification
for the absence of a transition in models with uncorrelated

and scale-free disorder distributions in one dimension.16,18,19

More recently, a sufficient condition was also proposed7 for
continuum disordered models: To produce a mobility edge,
the disorder potential must be V (x) ∈ Cβ , with β > 1/2
and Cβ representing the class of continuous functions that
are β differentiable. Along with these theoretical advances,
experimental studies using ultracold atoms20,21 and microwave
cavities22 have called attention to the conditions for an Ander-
son localization transition in the presence of correlations.

Several numerical works on 1D systems with correlated
potentials have also addressed the conditions for the existence
of extended states. A broad classification distinguishes three
groups of models: discrete,23 quasi-periodic,24 and long-range
spectral correlations.25–27 Remarkably, the latter, characterized
by the use of a disorder spectral density S(k) ∼ 1/kα (with α

being a measure of the range of correlations), has been shown
to produce a localization to delocalization transition. Using
a tight-binding model in one dimension, a mobility edge is
predicted to appear for disorder strengths W < 4t and α � 2
(with t being the hopping energy).25 Despite considerable
efforts, however, the exact phase diagram for this model for
W > 4t remains controversial with contradictory evidence28,29

regarding the region of parameter space where the transition
should occur. Furthermore, numerical studies have remarked
on the smoothening of the disorder amplitude generated in this
model as the thermodynamic limit is reached, suggesting the
transition to be order to disorder instead of a true Anderson
transition.27

In addition to these issues, the authors in Ref. 7 pointed out
an apparent disagreement between Kotani’s theorem and the
localization to delocalization transition found in the model
with ∼1/kα correlations. The argument presented makes
use of the analytic Fourier transform of S(k) to find the
corresponding correlation function in real space, with the
introduction of an appropriate cutoff in order to deal with
the nonanalyticity at k = 0. After straightforward algebra, it is
found that for values of α < 1 the correlation function decays
as 1/x1−α . For α > 1, however, the Fourier transform renders
exponentially decaying correlations7 as

�(x) ≈ e−|cx|b for x 	 a, (1)

where c and b are parameters and a is the short-range
cutoff. Note that the correlation function goes to zero in the
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thermodynamic limit in both regimes; i.e., �(x) appears to
violate the necessary conditions for the existence of a mobility
edge.5 The authors thus raised the question of the validity of
the Anderson transition found numerically in Ref. 25.

In order to resolve these inconsistencies and provide some
insight into the nature of the transition produced by these
correlations, we have carried out a study of the properties
of the discrete real-space correlation function as presented
in Ref. 25. In this work we present a detailed analytic
calculation of the scaling expression for the discrete form of
the correlation function and support the resulting expressions
by the numerical evaluation of the correlation function as
defined in the original work. Our findings settle the apparent
contradiction between the necessary conditions as imposed
by Kotani’s results and those obtained in numerical studies
of disordered models with S(k) ∼ 1/kα spectral functions.
We show that the model contains anticorrelations between the
energies of the two most distant sites in the thermodynamic
limit. We also confirm that the correlation function obtained in
real space is system-size dependent and exhibits an unphysical
smoothening of disorder amplitudes as the thermodynamic
limit is reached. We argue that these features, some already
identified in previous works,27 appear to play a significant role
in the origin of extended states.

II. SCALING FORM OF THE CORRELATION FUNCTION

Let us review the procedure to numerically generate random
on-site correlated variables for tight-binding Anderson Hamil-
tonians. To set up notation, we introduce the one-dimensional
tight-binding model Hamiltonian with N sites as

H = −t
∑
〈i,j〉

c
†
i cj + H.c. +

N∑
i=1

εic
†
i ci , (2)

where t is the hopping integral, c
†
i (ci) is the creation

(destruction) operator for one fermion at site i, and εi is
the on-site disorder energy. 〈· · · 〉 stands for the sum over
nearest-neighbor sites only. In order to generate the discrete
random variables εi , we follow a standard procedure, as
presented in Ref. 30, which is based on colored noise models
with a power spectrum P (ωk) = ω−α

k . Here ωk = k�ω is a
discrete series of frequencies labeled by the integer k and
�ω = 2π/T , T being the total time interval in which the
random function is calculated as a discrete time series.30,31

Within this approach, a random variable X(tj ) (tj is time and
j is an integer) is defined by the discrete Fourier transform:

X(tj ) =
N/2∑
k=1

[ak cos(ωktj ) + bk sin(ωktj )], (3)

where N = T/�t , �t = (tj+1 − tj ), and the Fourier coeffi-
cients are defined by the power spectral function as ak =√

P (ωk)�ω cos(φk) and bk = −√
P (ωk)�ω sin(φk). Notice

that φk is a random independent variable chosen in the interval
[0,2π ]. Replacing the expressions for the Fourier coefficients
above yields

X(tj ) =
N/2∑
k=1

√
ω−α

k �ω cos(ωktj + φk). (4)

A map to a tight-binding model in real space is straightforward
using the transformations xj → tj and reciprocal variable
κk → ωk:

X(xj ) =
N/2∑
k=1

√
κ−α

k �κk cos(κkxj + φk). (5)

In this case, N , the number of total time steps, is replaced
by the total number of lattice sites, N = L/a, with L being
the system size, a being the lattice constant, κk = 2πk/L,
�κ = 2π/L, and xj = ja. Replacing these values into the
above equation we arrive at

εj =
N/2∑
k=1

∣∣∣∣2π

L

∣∣∣∣
(1−α)/2

k−α/2 cos

(
2πjk

N
+ φk

)
, (6)

where we have used εj to emphasize that this is the on-site
disorder energy (random variable) for the Anderson tight-
binding model. The disorder average of this quantity is given
by

〈εj 〉 =
N/2∑
k=1

∣∣∣∣2π

N

∣∣∣∣
(1−α)/2

k−α/2

〈
cos

(
2πjk

N
+ φk

)〉
(7)

=
N/2∑
k=1

∣∣∣∣2π

N

∣∣∣∣
(1−α)/2

k−α/2

×
(

〈cos φk〉 cos
2πjk

N
− 〈sin φk〉 sin

2πjk

N

)
. (8)

The expectation values 〈cos φk〉 = 〈sin φk〉 = 0, resulting in
〈εj 〉 = 0.

We can calculate the covariance through similar means:

〈εmεj 〉 =
N/2∑
q=1

N/2∑
k=1

∣∣∣∣2π

N

∣∣∣∣
1−α

(qk)−α/2

×
〈

cos

(
2πmk

N
+ φk

)
cos

(
2πjq

N
+ φq

)〉
. (9)

For k �= q, the expectation value can be factorized as φk

and φq , which are independent variables, and the only term
contributing to the expression is k = q:

k = q =
N/2∑
k=1

∣∣∣∣2π

N

∣∣∣∣
1−α

k−α

×
〈

cos

(
2πmk

N
+ φk

)
cos

(
2πjk

N
+ φk

)〉
, (10)

which can be simplified to yield a covariance of

〈εmεj 〉 = 1

2

N/2∑
k=1

∣∣∣∣2π

N

∣∣∣∣
1−α

k−α cos
2πnk

N
. (11)

This even function depends solely on the difference between
positions n = |m − j |. The normalized correlation, or auto-
correlation, function is defined as (for zero mean)

�(m,j ) = 〈εmεj 〉
〈ε2

j 〉
, (12)
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which when combined with Eq. (11) gives

�(α,n) =
∑N/2

k=1 k−α cos 2πnk
N∑N/2

k=1 k−α
. (13)

From this point on we impose periodic boundary conditions
with the correlation function defined in n ∈ [0,N/2]. This
expression has a natural limit of N → ∞ when written in terms
of the variable γ = 2n/N defined in [0,1]. The introduction of
this variable allows for the explicit removal of the system-size
dependence in the argument of both sums and emphasizes the
scaling form for the correlation function.32

The thermodynamic limit is obtained by taking the upper
limit of the sum (N ) to infinity:

�(α,γ ) =
∑∞

k=1 k−α cos πγ k∑∞
k=1 k−α

. (14)

In order to study this expression, we consider two cases: α > 1
and <1. When α > 1 both the numerator and denominator are
well defined and Eq. (14) can be rewritten in terms of imaginary
exponential functions:

�(α,γ ) =
∑∞

k=1 k−α(eiπγ )k + ∑∞
k=1 k−α(e−iπγ )k

2
∑∞

k=1 k−α
. (15)

The terms in the numerator are the polylogarithm functions
Liα(z), while the denominator corresponds to the Riemann-
Zeta sum ζ (α). The final expression for α > 1 is then

�(α,γ ) = Liα(eiπγ ) + Liα(e−iπγ )

2ζ (α)
. (16)

For general values of α > 1, Eq. (16) cannot be simplified
further; however, it takes a very simple expression at α = 2. It
is important to remark that this value corresponds to the critical
value beyond which a band of extended states appears.25 By
introducing the second-order Bernoulli polynomial, B2(γ /2),
and using the identity

Li2(eiπγ ) + Li2(e−iπγ ) = − (i2π )2

2
B2(γ /2), (17)

we obtain

�(α,γ ) = π2 B2(γ /2)

ζ (2)
, (18)

where ζ (2) = π2/6 and B2(γ /2) = (γ /2)2 − γ /2 + 1/6.
Finally, the correlation function reduces to

�(α = 2,γ ) = 3
2γ 2 − 3γ + 1. (19)

This expression is plotted in Fig. 1 together with results
from Eq. (16) for a few values of α above and below the
critical value α = 2. Three features are distinguished in these
results:

(1) The function is linear near γ ∼ 0 for the critical value
of α = 2, while the behavior is convex for α > 2 and concave
for α < 2.

(2) The correlation function goes negative for α > 1.
(3) The correlation function converges to a nonzero value at

the thermodynamic limit of γ = 1 and yields a value of −1/2
at the critical value, α = 2.

Notice that features 1 and 2 occur for smaller values of γ

and as such can be considered as short-range effects. Feature
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FIG. 1. (Color online) Plot of the correlation function as a func-
tion of the dimensionless distance γ . The red solid line corresponds
to the critical value of α = 2, which is given by Eq. (19). The other
curves correspond to various values of α in Eq. (16). Inset: Correlation
function between the two most distant points (γ = 1). The origin
corresponds to the critical value α = 2 and yields a correlation of
−1/2. For larger values of α, the correlation becomes more negative.

3, however, corresponds to a nonzero value of the correlation
function at infinite range.

Furthermore, the value of the correlation function between
the two most distant points, γ = 1, is

�(α,γ = 1) = Liα(−1)

ζ (α)
, (20)

where Liα(−1) = −η(α), with η(α) being the Dirichlet-eta
function. We can relate η(α) to the Riemann-zeta function
through the relationship η(α) = (1 − 21−α)ζ (α) and obtain

�(α,γ = 1) = 21−α − 1, (21)

which is plotted in the inset of Fig. 1.
The most remarkable characteristic of these expressions is

the existence of a very strong negative correlation between
infinitely separated sites. These negative correlations indicate
that any two sites separated by distances of the order of the
system size are statistically more likely to have energies with
opposite signs. As a result, an overarching sinusoidal structure
begins to develop in the disorder configuration that allows for
the appearance of extended low-energy states when α � 2. We
assign this structure to be one of the causes for the emergence
of extended states, as illustrated in Fig. 2, which highlight the
smoothening of potential amplitudes with increased system
size, already proposed in previous works.19 We should note
also that a second important element appears to be the value
of the correlation strength at infinite distances: our results
indicate that it should exceed the value of �(γ = 1) = −1/2
to produce extended states.

We turn our focus to the case when α < 1. We return to
Eq. (14) and examine the convergence of the numerator and
denominator. The denominator is easily seen to be divergent,
as the series converges more slowly than the harmonic series
for any value of α � 1. The convergence of the numerator
can be seen by applying the Dirichlet convergence test for
all α > 0. Note that the series for α = 0 is not convergent but
bounded. Thus, for all values of γ > 0 the correlation function
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FIG. 2. (Color online) Typical disorder realization for N = 1000,
α = 2 (thick solid, blue), α = 4 (dotted, red), α = 10 (dashed,
black), and α → ∞ (thin solid, purple). Energy is normalized as
〈ε2〉 = 1. Plots show the tendency for disorder realization to develop a
sinusoidal form as expected from the α → ∞ limit when the disorder
distribution takes the form εj = cos( 2πj

N
+ φ1). Inset: Enhancement

of outlined region to emphasize that randomness persists even for
larger values of α.

is zero, since the numerator is bounded (or convergent) and the
denominator diverges. At γ = 0, the numerator and denomi-
nator are equal and the correlation function gives the value 1.
The correlation function for α � 1 can be summarized by

�(α,γ ) = δγ,0, (22)

where δγ,0 is the Kronecker-delta function. Thus for values
of α < 1, the correlation function corresponds to an effective
short-range correlated function that precludes the existence
of extended states.

An additional assumption necessary for the application
of Kotani’s results is the fact that the random variables
generated with correlations given by Eq. (13) must be Gaussian
distributed. A straightforward test for this condition consists
of calculating the fourth cumulant of the distribution to check
if its value is zero. By following a similar procedure as the
one outlined above, one can show that the fourth cumulant of
the distribution is K4 = 3

4ζ (α)2 − 9
8ζ (2α) when α > 1. Note

that for α < 1 the correlations correspond to the regime where
no transition takes place. Because it has a nonzero value, the
distribution generated is effectively non-Gaussian, thus ruling
out the applicability of Kotani’s theorems.

Finally, and in addition to the analysis of the scaling form,
it is important to mention that our study of the β function
and its variance for this model reveals strong violations of
the SPS relation Var(lnG) = −2〈lnG〉 for all energies when

α > 1. This result further highlights the peculiar nature of the
transition found for the set of values α � 2.

III. DISCUSSION

An identification of the salient features of potential models
with ∼1/κα correlations, as proposed in Ref. 25, shows that
the disordered potential thus generated does not contradict the
rigorous conditions put forward in Kotani’s work. The scaling
form of the correlation function does not vanish in the thermo-
dynamic limit (a necessary condition for the absence of metal-
lic states), but reaches negative values. Moreover, the random
energies are not Gaussian variables as required by the theorem.
As a consequence, Kotani’s theorem cannot be used to rule out
the existence of a mobility edge for this type of model. Notice
that a key result of our analytic derivation in the limit N → ∞
is the scaling form for the correlation function. This scaling
emphasizes the fact that the correlation between any two given
points is size dependent, producing a smoothening of disorder
amplitudes as the system size increases. This feature, that has
been already pointed out in previous works,19,32 favors the rise
of an ordered potential in the thermodynamic limit, with its
corresponding extendedlike states.

More insight into the effect of long-range negative corre-
lations can be gained by analyzing the correlation function of
the random dimer model23 with site energies ε1 and ε2. As is
well known, a discrete level with extended states appears at
ε1 = t and ε2 = −t . In this case, a numerical evaluation of the
correlation between any two points yields ∼0.3. Once again,
this value is different from zero and consistent with Kotani’s
theory.

Finally, these results suggest that two key ingredients are
necessary for the existence of a band of extended states:
the crossover to negative correlations in the thermodynamic
limit and a minimum correlation strength between the two
most distant points. When considered together, however, they
indicate the transition to be an order to disorder one instead of
a classical Anderson transition.
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