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Persistent current driven by the Josephson effect in a triple-quantum-dot ring
with superconducting leads
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The Josephson effect in a superconductor/triple-quantum-dot ring/superconductor structure is theoretically
investigated. We find that in this structure, interdot spin correlation can be driven, which contributes to the
occurrence of new 0 and π phases of the Josephson current. Moreover, in the 0-π phase-transition process, an
intermediate bistable phase appears in which the Josephson current is completely suppressed. By analyzing the
interdot spin correlation, the electron motion mechanism is clarified. We then attribute the disappearance of the
Josephson current to the occurrence of the Josephson-Fano effect. What is interesting is that the disappearing
Josephson current is accompanied by the apparent persistent current in the ring whose direction is determined by
the superconducting phase difference. With the calculated results, we consider such a structure to be a candidate
for the realization of the persistent current bit.

DOI: 10.1103/PhysRevB.87.195442 PACS number(s): 73.63.Kv, 71.70.Ej, 72.25.−b

I. INTRODUCTION

In recent years, great advances in fabricating the hybrid
nanostructures with quantum dots (QDs), molecules, and
carbon nanotubes attached to conducting leads have attracted
an increasing interest in quantum transport through such
low-dimensional systems. The main reason is that in most
of these systems, electron correlations, e.g., the Kondo effect,
play a significant role in contributing to the quantum transport
properties.1–3 More interestingly, QDs have the advantage of
coupling to one another to construct various-configuration
QD molecules. In QD molecules, the intradot and interdot
electron correlations induce abundant transport behaviors,
such as the SU(N ) Kondo effect4 and Fano-Kondo effect.5

On the other hand, the properties of leads influence the
quantum transport through QD structure in a substantial
way. Specifically, when the leads are superconductors, the
interplay between the Josephson and electron correlation
effects causes intricate 0-π phase-transition behaviors.6–15

This prediction has been confirmed experimentally in both
carbon nanotubes and semiconducting nanowires.16,17 Mo-
tivated by this result, many groups dedicated themselves
to the Josephson effect in the structure of QD molecules
coupled to superconducting leads. It has been observed that
the complicated electron correlations in QD molecule systems
lead to some more intricate phase transition of the Josephson
current.18–20

With respect to the QD molecules, the coupled triple-QD
(TQD) structure is typical and has recently been paid much
attention from both experimental and theoretical aspects.21,22

One reason is the desire to develop capabilities to design
increasingly complex quantum systems at both single-particle
and many-particle levels. Such a quantum system by design
might serve as a laboratory for correlated electron systems
as well as a prototype quantum processor based on charge
and/or spin in QDs.23,24 The other applications of a TQD are
in the area of quantum computation. The three-spin system
is the smallest quantum system where quantum teleportation
can be realized. The TQD system allows for the realization
of the simplest three-level system and hence allows for
the application of tools known from quantum optics, such

as coherent electronic transfer using adiabatic passage or
rectification.25,26 On the other hand, a TQD allows one
to study new phenomena not present in single or double
QDs. For example, a TQD is the smallest artificial molecule
where topology plays a role, as it can form either a linear
or triangular molecule.27–30 Particularly, three QDs can be
coupled to one another and form the TQD ring (TQDR). Such
a circular geometry allows for the interplay between quantum
interference and electron-electron interactions, leading to
various transport phenomena.31 Furthermore, if a TQDR is
coupled to three terminals, the spin-orbit interaction can drive
the notable spin polarization, and even the pure spin current
can be observed in the nonequilibrium case.32

It is natural to think that the abundant physics included
in the TQD structure certainly plays a nontrivial role in
modulating the Josephson effect. With such an idea, in this
work we consider one typical structure, i.e., the TQDR, to
couple to two superconducting leads, and investigate the
interplay among the Josephson effect, quantum interference,
and the electron correlations. As a consequence, we observe
an interdot spin correlation which contributes to the new
0-π phase transition of the Josephson current. Additionally,
in such a 0-π transition process, an intermediate bistable
phase emerges in which the Josephson current is completely
suppressed. Further investigation shows that the disappearance
of the Josephson current is accompanied by the maximal
persistent current in the ring. We consider such a structure
to be a candidate for the realization of the persistent current
bit.

II. THEORY

The Hamiltonian of the superconductor/triple-quantum-dot
ring/superconductor (S/TQDR/S) structure is written as H =∑

α Hα + HD + HT , where

Hα =
∑
kσ

εαka
†
αkσ aαkσ

+
∑

k

(�eiϕαaαk↓aα−k↑ + �e−iϕα a
†
α−k↑a

†
αk↓),
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HD =
3∑

σ,j=1

εjd
†
jσ djσ +

3∑
σ,j=1

(tj d
†
j+1σ djσ + H.c.)

+
∑

j

Ujnj↑nj↓,

HT =
∑
kσ

(VLka
†
Lkσ d1σ + VRka

†
Rkσ d2σ + H.c.). (1)

Hα (α = L,R) is the standard BCS mean-field Hamiltonian
for the superconducting leads with phase ϕα and energy gap
�. HD models the TQDR, and HT denotes the tunneling
between lead-L(R) and QD-1(2). a

†
αkσ and d

†
jσ (aαkσ and

djσ ) are operators to create (annihilate) an electron with
momentum k and spin orientation σ in the lead-σ and in QD-j ,
respectively. εαk and εj denote the corresponding energy
levels. Uj indicates the strength of intradot Coulomb repulsion,
and tj is the interdot coupling coefficient. Vαk denotes the
coupling between lead-α and the QDs.

In such a structure, the Josephson current at zero tempera-
ture can be evaluated by deriving the ground-state energy Emin

with respect to the superconducting phase difference, i.e.,

IJ = 2e

h̄

∂Emin(ϕ)

∂ϕ
, (2)

where ϕ = ϕL − ϕR . However, note that the determination
of the ground state is a formidable task, which requires
some approximation scheme. A great simplification can be
made by integrating out the electronic degrees of freedom
of the superconducting leads. This procedure leads to an
effective low energy theory in which each superconductor is
replaced by a single site with an effective pairing potential �̃.
And, the hopping term Ṽα is replaced by an effective parameter
Ṽα . Accordingly, the new expressions of Hα and HT are given
by

Hα =
∑

σ

εαa†
ασ aασ + �̃eiϕαaα↓aα↑ + �̃e−iϕα a

†
α↑a

†
α↓,

(3)
HT =

∑
σ

(ṼLa
†
Lσ d1σ + ṼRa

†
Rσ d2σ + H.c.).

This approach, usually referred to as the zero bandwidth model
(ZBWM), has been discussed in some previous studies.9,13,33

One can see that the ZBWM can give qualitatively correct
results and can grasp the ground-state properties in this kind
of system in the approximate range 	 � �, where 	 is the
standard tunneling rate to the leads. We should mention that the
Hilbert space of the new system within the ZBWM is restricted
to 45 states and the z component of the total spin S is a good
quantum number. Thus, the eigenstates can be characterized
in terms of Sz and the eigenenergies can be obtained by the
block diagonalization of the Hamiltonian matrix.

III. NUMERICAL RESULTS AND DISCUSSIONS

Using the formulas developed above, we next calculate the
Josephson current in the S/TQDR/S structure. For calculation,
we consider that the temperature is zero and �̃ = Ṽα = 1,
i.e., all the energy quantities are scaled by �̃. In principle,
the effective parameters �̃ and Ṽα in this approach have to
be determined from the bare parameters � and Vα by means

of a self-consistency condition and a renormalization-group
analysis.34 However, here we shall adopt the simplified
assumption that �̃ = � and Ṽα = Vα without an attempt to
fine tune them within the range of parameters considered.
This is a reasonable choice as far as we are interested in the
qualitative trends rather than in the detailed quantitative results.
In addition, we set the Fermi energy of the leads to be zero
and consider ϕL = −ϕR = ϕ

2 .
The Josephson current in the superconducting system with

the embedded QDs is characterized by its phase. In order to
completely analyze the Josephson current, we first demonstrate
the phase of the Josephson current. Generally speaking, in such
a structure four different ground states can be distinguished,
i.e., the pure 0, π , 0′, and π ′ states. For the former two
cases, the ground-state energy as a function of the supercon-
ducting phase difference ϕ = ϕL − ϕR has a global minimum
at the points of ϕ = 0 and ϕ = π , respectively. Alternatively,
for the 0′ and π ′ phases, a local minimum is observed except
the global minimum at the points of ϕ = 0 or ϕ = π .

Figure 1(a) shows a (ε0,U ) phase diagram for the 0-π
transition of the Josephson current. The inter-dot coupling
is taken to be t0 = 2.0. In this figure, one can see that the
intradot Coulomb interaction makes a leading contribution to
the occurrence of the phase transition. In the weak Coulomb
interaction case (e.g., U � 5), two phase-transition regions
appear in the vicinity of ε0 = 0 and ε0 ≈ −U − 4. To be
concrete, in the region of ε0 ≈ −U − 4, the 0 → 0′ phase
transition is only observed, whereas in the other region the
phase transition 0 → π → π ′ → 0′ happens with the shift
of the QD level. Next, with the strengthening of the Coulomb

FIG. 1. (Color online) (a) The phase diagram of the Josephson
current of the S/TQDR/S structure in the ZBWM. (b) The Josephson
current as a function of QD level ε0 with U = 20. The other
parameters are taken to be t0 = 2.0 and ϕ = π

2 .
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interaction, the phase-transition region in the vicinity of ε0 = 0
splits. Then in the phase diagram, three 0-π transition regions
respectively appear in the vicinity of ε0 = 0, ε0 ≈ −U − 4,
and ε0 ≈ −U

2 . In the left (ε0 ≈ −U − 4) and right (ε0 = 0)
0-π transition regions, the phases 0, 0′, π ′, and π arise
successively with the change of ε0. But for the central one
(where ε0 ≈ −U

2 ), the 0′ and π ′ phases disappear with the
increase of U . Instead, when U � 10 a phase marked by BS is
observed, and the BS phase region is gradually widened by the
increase of Coulomb strength. In addition, we see that in such
a BS-phase region, the phase-transition process is asymmetric
about the change of QD level. For instance, in the case of
U = 20, when the QD level decreases from ε0 = −9.0 to
ε0 = −15.0 the Josephson current undergoes the 0, BS, π , and
0 phases, respectively. Therefore, in this structure the intradot
Coulomb interaction contributes to a phase transition of the
Josephson current.

The appearance of the BS phase is certain to change the
properties of the Josephson current. With this idea, in Fig. 1(b)
we focus on the case of U = 20 and plot the Josephson current
as a function of ε0. Here the superconducting phase difference
is taken to be ϕ = π

2 . It is obvious that the Josephson current
oscillates seriously with the change of ε0, and the properties
of the Josephson current exactly correspond to the phase
transition.35 Concretely, IJ is positive in the corresponding
0-phase regions marked by A, B, C, and D. In the π -phase
regions (marked by a, b2, and c) IJ becomes less than zero.
The reversal of the Josephson current direction corresponds
to the phase transition. In region b1, however, the Josephson
current is almost equal to zero, independent of the change of
the QD level. Based on these results, the relation between the
BS phase and the Josephson current has been clarified.

In Eq. (2), one can notice that the phase transition of the
Josephson current is determined by the ground-state energy
of this system. So, in Fig. 2 we present the curves of
the ground-state and the first excited state energies of the
system affected by the superconducting phase difference ϕ.
Here, we only focus on the left and central 0-π transition
regions because the mechanism of the right one is similar
to that of the former one. Figures 2(a)–2(d) correspond to
the phase-transition process in the left phase-transition region
in Fig. 1(a), where the 0 → 0′ → π ′ → π quantum phase
transition occurs with the change of ε0. Here we can find
that the zero-value Josephson current (green dashed lines) in
Figs. 2(a) and 2(d) appear at the points of ϕ = 0 and ϕ = π ,
respectively. Thus, the direction of the Josephson current is
changed. For the results in Figs. 2(b) and 2(c), the energy
levels of the ground (blue solid line) and the first excited states
(red dashed-dotted lines) are crossed and the currents show
a kinklike result, so the intermediate phases 0′ and π ′ come
into being. This phenomenon is attributed to the competition
between the Kondo effect and superconductivity.

For the phase transition in the central region in Fig. 1(a), we
can analyze it with the help of Figs. 2(e)–2(h). In this figure,
we can see that the intermediate phase is not the result of
the crossing of the different energy levels, and that no kink is
found in the current curves. Instead, in the intermediate phase,
the curve of the ground-state energy has two global minima
in one period of ϕ, which are symmetric about the point of
ϕ = π . We thus call this state a BS-phase state. Based on this

FIG. 2. (Color online) The ground-state energy levels and Joseph-
son current as functions of the superconducting phase difference
ϕ. The solid (blue), dashed-dotted (red), and dashed (green) lines
correspond to the ground states, first excited states, and Josephson
currents, respectively. The other parameters are taken to be t0 = 2.0
and U = 20.

result, we can understand the appearance of the BS phase. In
the 0-π phase-transition process, with the decrease of ε0, the
magnitude of the central peak in the curve of the ground-state
energy will decrease until such a peak becomes a minimum. In
such a process, if no energy-level crossing occurs, two minima
inevitably emerge in one period of ϕ.

We next analyze the electron correlation in this structure
to clarify the appearance of the BS phase. Figure 3 shows
the average electron occupation and the interdot and dot-lead
spin correlation as functions of ε0. From Fig. 3(a), we observe
that the opposite-spin electrons occupy the QDs with the equal
opportunity in regions A, B, and D. Accordingly, the system is
in an S = 0 ground state in these regions, which just leads to the
appearance of the 0 phase. In region a and region c, we find the
results that S = 1

2 and S = 1, respectively. Previous research

FIG. 3. (Color online) (a) The average electron occupation
number in the TQDR. (b) The electron correlation between QD-1
and lead-L. (c),(d) The electron correlation between QDs.
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demonstrated that in two such regions the S = 1
2 and S = 1

Kondo effects will occur.30,36 As a result, the interplay between
the Kondo effect and superconductivity induces the π phase
of the Josephson current. What is interesting is that in regions
b2, b1, and C, the result of S = 1

2 is robust, but the Josephson
current is manifested as the π , BS, and 0 phases, respectively.
This means that in these three regions the spin-correlation
properties become complicated, as shown in Figs. 3(b)–3(d).
In these figures, we can observe that in the three regions, the
value of 〈SLS1〉 remains equal to zero. This exactly indicates
that the Kondo effect is suppressed. For the interdot spin
correlations, however, they exhibit different results. In region
b2, 〈S1S2〉 = 0.2 and 〈S1S3〉 = −0.45. Hence in such a case,
the electrons in QD-1 and QD-2 exhibit the ferromagnetic
correlation, whereas the antiferromagnetic correlation occurs
between QD-1(2) and QD-3. According to this result, we
illustrate the Cooper pair tunneling in Figs. 4(a)–4(c). It
is clearly seen that such electron correlation results in the
high-order electron motion in the down arm of the TQDR;
accordingly, the π phase comes into being. On the other hand,
with respect to the spin correlation in region C, we find in
Fig. 3 that 〈S1S2〉 = −0.7 and 〈S1S3〉 = 0.0. Thus, different
from the results in region b2, the antiferromagnetic correlation
occurs between QD-1 and QD-2 in region C. It is certain that
herein the spin state in QD-3 decouples from the singlet state
formed by QD-1 and QD-2. Such a correlation mechanism
exactly induces the other electron motion picture shown in
Figs. 4(d)–4(f). To be specific, the electron motion is mainly
driven by the correlation in the upper arm of this TQDR, so
the 0 phase of IJ arises. Up to now, we have known that the
π and 0 phases of the Josephson current in regions b2 and
C are driven by the unique mechanisms of the interdot spin
correlations, respectively.

When the QD level shifts from ε0 = −9.0 to ε0 =
−12.0, the electron correlations 〈S1S2〉 and 〈S1S3〉 change
continuously [see Figs. 3(c) and 3(d)]. Thus, in such a regime,

FIG. 4. (Color online) (a)–(c) The illustration of electron motion
in region b2. (d)–(f) The illustration of electron motion in region C.

FIG. 5. (Color online) (a) The Josephson and persistent currents
in the case of ε0 = −11.0. (b) The ground-state energy tuned by the
superconducting phase difference ϕ.

the two kinds of electron motion in Figs. 4(a)–4(c) and
4(d)–4(f) will coexist. Consequently, the electron motion in
Figs. 4(d)–4(f), which mainly occurs in the upper arm of
the TQDR, induces the 0-phase Josephson current. But the
electron motion shown in Figs. 4(a)–4(c), contributed by the
down arm, tends to cause the π -phase Josephson current.
The 0-phase and π -phase Josephson currents are opposite,
therefore, the coexistence of these two different electron
motions certainly leads to the disappearance of the Josephson
current through this structure. On the other hand, we notice
that in comparison with the electron motion in Figs. 4(d)–4(f),
in Figs. 4(a)–4(c) the electron motion can be considered to
be resonant, because electrons will visit QD-3 in such a case.
It therefore clear that when the “resonant” and “nonresonant”
electron motion coexist, the interdot spin correlation will drive
the zero Josephson current. As is known, the co-occurrence of
the nonresonant and resonant electron tunneling results in the
Fano effect. Accordingly, in such a case, the disappearance of
the Josephson current can be called the Josephson-Fano effect.
With the help of the above analysis, the quantum transport
properties in such a structure have therefore been clarified.

Since the considered structure is a quantum ring, we would
like to study the persistent current in it. As is known, for
an isolated ring, the persistent current can only be driven by
a local magnetic flux. Its magnitude can be investigated by
evaluating the interdot current between the j th and the (j +
1)th QDs, i.e., Ij,j+1 = ie

h̄

∑
σ 〈0|tj d†

j+1σ djσ − H.c.|0〉, where
|0〉 denotes the ground state of the system. However, for our
model with two leads, the quantum ring is open. It has been
reported that in an open mesoscopic ring, the persistent current
is not necessarily driven by a local magnetic flux through the
ring. Benjamin and Jayannavar found that the persistent current
can be observed at nonequilibrium with zero magnetic flux.37

Namely, the persistent current in the open ring can be driven
by the transport current through the ring. Accordingly, in a
quantum ring with two leads, the persistent current can be
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redefined as35

Ip =

⎧⎪⎨
⎪⎩

0, IU · IL � 0

[1 − θ (|IU | − |IL|)] · IU + θ (|IU | − |IL|) · IL,

IU · IL > 0.

(4)

θ (x) is the step function. IU and IL are the cur-
rents through the upper and lower arms, respectively.
They are defined as IU = ie

h̄

∑
σ 〈0|t1d†

2σ d1σ − H.c.|0〉 and

IL = ie
h̄

∑
σ 〈0|t1d†

1σ d3σ − H.c.|0〉. In Fig. 5(a), we present
the persistent current and the Josephson current affected
by the change of the superconducting phase difference between
the leads. We only pay attention to the case where the phase
of the Josephon current is the BS phase, since we would
like to clarify the effect of the new phase on the persistent
current. Without loss of generality, we choose ε0 = −11.0.
It can be found that in such a phase, the superconducting
phase difference can drive finite persistent current in the ring.
Similar to the Josephson current, the direction of the persistent
current in the ring can also be adjusted by the change of
ϕ. In the case of ϕ = n

2 π (n is integer), both the Josephson
current and the persistent current are approximately equal to
each other. And, if n is even, the two currents are completely
suppressed. What is interesting is that when Ip reaches its
extremum around the points of ϕ = 0.3π and ϕ = 1.7π , the
Josephson current disappears. And, at these two points the
directions of the persistent current are opposite to each other.
This means that in the BS-phase case, the superconducting
phase difference can drive an isolated persistent current in the
ring, accompanied by the “decoupling” of the leads from the
TQDR. With the help of Fig. 5(b), we see that the maximal
persistent current exactly corresponds to the minimum of the
ground-state energy of this system. According to our above
analysis, the appearance of the isolated persistent current can
be well understood. In the BS-phase region, the two arms of
the ring carry the opposite-direction currents. With the shift
of QD level, one has a chance to get the result that IU = IL,
hence the persistent current reaches its maximum accompanied
by the disappearance of the Josephson current. Based on the
results here, we consider such a structure to be a candidate for
the persistent current bit.

Finally, we intend to discuss the role of the inter-dot
coupling in achieving the appearance of the BS phase of the
Josephson current. The numerical result is shown in Fig. 6.
In this figure, it can clearly be found that the value of t0
is a key factor to induce the Josephson phase transition. In
the case of the weak interdot coupling, i.e., t0 < 1.7, the
Josephson current exhibits as a modified 0 phase, since the
Josephson current is almost independent of the variation of ϕ

near the region of ϕ = π . With the increase of t0, such a current
plateau is squeezed until its disappearance. As a result, around
the position of t0 = 2.0, the Josephson current shows three
peaks and two valleys [see Fig. 2(g)], which just corresponds
to the BS-phase case. The further increase of t0 induces the
appearance of the π -phase Josephson current. Next, in the case
of t0 � 4.0, the 0-phase Josephson current occurs again. With
this result, we can clarify the role t0 in adjusting the Josephson
current. It is noteworthy that only when the interdot coupling
is adjusted to be t0 ≈ 2.0, the Josepshon-Fano effect has an
opportunity to come into being. In addition, by comparing the

FIG. 6. (Color online) (a) The Josephson current with the change
of t0. The other parameters are the same as Fig. 2(g).

results in Fig. 6 and the central region of Fig. 1, we can find
that the increase of t0 plays a similar role as the decrease of ε0

in inducing the phase transition. The main reason is that these
two manipulations decrease the ground-state energy of such
a structure in a similar way. Thus, the phase-transition results
are almost the same.

IV. SUMMARY

In summary, we have investigated the Josephson effect in
an S/TQDR/S structure by means of ZBWM. It has been
found that two interdot spin-correlation mechanisms exist
which cause the new 0 and π phases of the Josephson current.
Moreover, in the 0-π phase-transition process, an intermediate
BS phase appears in which the Josephson current is completely
suppressed. By analyzing the interdot spin correlation, the
electron motion mechanism has been clarified. We attributed
the disappearance of the Josephson current to the occurrence
of the Josephson-Fano effect. The interesting result is that
the zero Josephson current is accompanied by the apparent
persistent current in the ring whose direction is determined
by the superconducting phase difference. With the results, we
consider such a structure to be a candidate for the realization
of the persistent current bit.

Finally, we would like to remark on the phase transition
of the Josephson current in this structure. In such a struc-
ture, it is the alternate occurrence of the two interdot spin
correlation [i.e., the correlations between QD-1 and QD-2 (or
QD-3)] controlled by the shift of QD levels that modifies the
quantum interference of the high-order electron motion. As
a result, in the presence of appropriate structure parameters,
the Josephson-Fano effect is induced. Therefore, the TQDR
form of the structure is important for the Josephson phase
transition. Alternatively, if the QD structure is changed, a
similar phenomenon cannot arise. The reason is that the
interdot spin correlation does not necessarily drive the resonant
and nonresonant tunneling processes simultaneously. For
instance of the T-shaped double QDs and the four-QD ring
structures,35,38 no BS phase was observed in spite of the
interesting quantum transport properties in them.
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