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From a one-dimensional crystal to a one-dimensional liquid:
A comprehensive dynamical study of C60 peapods
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We report an inelastic neutron-scattering investigation of the longitudinal acoustic modes of C60 chains confined
inside single walled carbon nanotubes. We take advantage of the orientations of the chains within the plane of
the pellet sample to isolate their scattering signatures in the (Q,ω) space, which we follow as a function of
temperature from 260 K up to 1100 K. The results show the progressive evolution of the confined chain from a
one-dimensional (1D) crystal to a linear liquid, the transition occurring within a temperature range of ∼150 K
centered around 600 K. The comparison of the data obtained on monomer and polymer peapods allows extracting
the speed of sound in the monomer crystalline chains (vmono = 3.5 km s−1, vpoly/vmono = 1.7). We find that the
sound velocity is further reduced by half in the liquid state which reveals that the melting is not only due
to harmonic additive thermal fluctuations, but that anharmonic terms in the intermolecular potential play an
important role at high temperatures.
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I. INTRODUCTION

The first observation of C60 fullerene chains inside sin-
gle walled carbon nanotubes (SWNTs)1—also known as
“peapods”—has led to a vast amount of theoretical studies.
Certainly motivated by the elegance of the perfect autoassem-
bly of what was commonly referred to as one-dimensional
(1D) (nanotube) and 0D (C60) forms of carbon, a large number
of theoretical studies have been published, many of them
concerned with the electronic properties of the peapods while
some others were devoted to their thermodynamics.2–8 On the
experimental side, the majority of the investigations published
so far are concerned with electron microscopy and diffraction,
as well as Raman spectroscopy, x-ray diffraction, or NMR.
Most of them are related to the modifications of the optical
properties9 and to the evolution of the structure under different

conditions, like pressure10–14 or doping.15 Few publications
report on the fluctuations and on the low-frequency dynamics
of confined C60 molecules. In particular, it was found that
confining the C60 on a chain results in a large temperature
downshift of the so-called “order–disorder” or orientational
melting transition. The latter transition indeed occurs at 255 K
in solid (fcc) C60,16–18 while it was observed around 100 K
in peapods.19,20 The low dimensionality of peapods was also
recently reported by us to be at the origin of the progressive
translational melting of the confined 1D C60 chains at high
temperature,21 a behavior almost perfectly described by the
Takahasi-Gűrsey model introduced by Girifalco and Hodak.7

In particular, we have shown that the high filling ratio of
our samples (97% peapods internal volume occupied by
C60 chains) prevents some predicted clusterization of the
chains to occur when increasing the temperature.7,8 In this
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case, the melting process was established to result from
the sole increase of thermal longitudinal fluctuations within
the chain. What remains unclear at the moment is to what
extent the anharmonicity of the inter-C60 potential plays a role
in the transformation. A full understanding of the physics at the
origin of the 1D translational melting phenomenon therefore
requires the ability to grasp the full dynamics of the confined
chain, i.e., rotations and translations.

In this paper, we extend our previous investigations of the
1D translational melting by probing directly the translational
dynamics of the confined C60 chain using inelastic neutron
scattering (INS). In the whole temperature range investigated
in this study (T ∈ [260,1100] K), the peapods are in the
“orientational disordered” phase, with the C60 molecules
undergoing fast isotropic rotations.19,20,22 In this phase, there
is no correlation between the molecular orientations along the
chain. The melting transition that will be discussed in the
following thus concerns the loss of long-distance correlation
between the C60 center of mass along the chain with increasing
temperature. Therefore, the 1D melting transition discussed in
the rest of this paper is different in nature from the orientational
melting transition occurring at ∼100 K.

As will be described along the paper, we mainly focused on
the investigation of the physics of “monomer” peapods, i.e.,
peapods for which the confined fullerenes are packed through
van der Waals interactions inside the nanotubes. It is well
known that under specific conditions of pressure and temper-
ature, one can synthesize metastable “polymer” peapods, for
which adjacent C60 are linked via (2 + 2) covalent bonds.10 In
our experimental approach, we use the large difference in the
magnitude of the force constants between the monomer and
polymer bonds to derive quantitative information related to the
monomer peapods. This is based on the reasonable assumption
that the nanotube host and the low dimensionality of the chain
do not have a strong influence on the covalent C60 bonds of the
polymer peapods. We therefore assume that the linear stiffness
of the confined polymer chain is the same as that measured
in some well-known C60 crystalline polymer phases, and we
consider that the sound velocity, for example, is equivalent in
both systems to a very good approximation.

The study presented in this paper is articulated as follows:
First, we describe the sample preparation and the experimental
setup we used. Then, we discuss two analytical models (1D
harmonic crystal and 1D harmonic liquid), which are the basis
of the data analysis. Finally, we present the experimental mea-
surements in the [260,1100]-K temperature range and discuss
them. The comparison of data coming from the two systems
(monomer and polymer peapods) allows extracting quantita-
tive information such as the speed of sound in monomer chains
or the mean system size. Our conclusions follow.

II. EXPERIMENT

A. Sample preparation

The peapod samples were elaborated with the aim of being
used for INS measurements. Therefore, extreme care not to
introduce any hydrogenated pollutant was taken during their
preparation. Nanotubes of the SO type were purchased from
the Meijo company,23 and the fullerenes are MER (Ref. 24)
sublimed C60 99.9% graded. Following the method developed

in Ref. 25, carbon nanotubes under the form of buckypapers
were first heated at 600 ◦C under dynamic vacuum in order
to extract any solvent impurities. They were further heated
in air at 500 ◦C in order to selectively open them around
the reactive sites located at the tips and the defects of the
tubes. The tubes and the fullerenes were then sealed in a Pyrex
tube under a 10−6-mbar vacuum, and subsequently heated at
550 ◦C during 8 days. Buckypapers with fullerenes inside
nanotubes were then washed in toluene and heated again at
600 ◦C under dynamic vacuum in order to remove the solvent
and the fullerenes that did not enter the tubes. Prior to the
neutron experiment, the 1.8-g C60 peapod buckypapers were
pressed into pellets and heated at 100 ◦C while pumping in
order to remove water molecules that could have adsorbed on
the sample postsynthesis.

Part of the peapods synthesized as above were then poly-
merized. Polymerization of C60 molecules inside of SWNTs
was achieved by high-pressure high-temperature treatment
(HPHTT) of the monomer state of the peapods. Cold-pressed
pellets of the pristine monomer C60 peapods (12 mm diameter
and 6 mm height) embedded in an insulating capsule of
hexagonal boron nitride were inserted into a graphite heater
and then placed inside the high-pressure cell. HPHTT of
the samples was carried out in a high-pressure apparatus of
“toroid” type.26 The experimental procedure involved loading
of the apparatus to the pressure of 2.5 GPa, followed by the
heating and isothermal holding of the samples at temperature
of 280 ◦C during 30 min. This process creates (2 + 2)
“cycloadditive” covalent bonds all along the C60 chains. This
high-pressure state was preserved by quenching the sample to
room temperature under pressure. At ambient condition, the
polymer and monomer samples were characterized by Raman
spectroscopy, scanning, and transmission electron microscopy
(SEM and TEM) and x-ray diffraction (XRD) (see Fig. 1).

The structural analysis of the peapods give the following
characteristics:21,28 nanotubes diameter Gaussian distribution
centered at 14.2 Å with 2 Å full width at half maximum
(FWHM); bundle mean size: ∼85 tubes; inter-C60 distance:
9.9 Å for monomer and 9.2 Å for polymer; nanotubes filling
ratio by C60 molecules (monomer): 97%. The length of the
nanotubes varies between 1 and 5 μm.23 The quantitative
analysis of the x-ray-diffraction profile of the monomer and
polymer C60 peapods further shows that, for both samples, the
peapods take all possible orientations within the plane of the
pellet but have their long axis lying in this plane with a ±30◦
off-plane distribution.12,28,29 We refer to this configuration as
a “partial” 2D orientation of the peapods.

B. Inelastic neutron scattering

The inelastic neutron scattering (INS) investigations were
performed on the cold neutron time of flight (TOF) spec-
trometers IN5 at the ILL (Grenoble, France) and TOFTOF
at FRMII (Garching, Germany), allowing us to monitor the
evolution of the density of states of the 1D acoustic phonons
as a function of temperature. Both instruments are very similar
in terms of signal-to-noise ratio. A cryofurnace was installed
on IN5, allowing varying the temperature between 260 and
420 K (standard ILL orange cryofurnace), whereas a standard
high-temperature vacuum furnace (20 mbar helium pressure
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FIG. 1. (Color online) Left: TEM images of monomer (top)
and polymer (bottom) peapods (monomer and polymer peapods are
usually found in bundles, but a better viewing was offered by this
isolated monomer peapod). Right: X-ray diffraction of monomer
and polymer samples. The peak around 0.4 Å−1 labeled (10) is the
first nanotube bundle peak (peapods are organized in bundles on a
two-dimensional hexagonal lattice which leads to Miller indices (hk)
in reciprocal space; here h = 1 and k = 0). The one around 0.65 Å−1

arises from the 1D C60 chains.27 The mean distance d between the
C60 molecules is given by the position Q1 of the inflexion point of the
sawtooth peak just after 0.6 Å−1 (Q1 = 2π/d).21 The polymerization
results in a clear shift of the C60 correlation peak towards higher Q

values:10–12 Qmono
1 = 0.637 Å−1and Q

poly
1 = 0.685 Å−1.

corrected at each temperature) was installed on TOFTOF for
measurements in the [300,1043]-K range. On both instru-
ments, incident neutrons with wavelength of 8 Å were used,
giving an elastic resolution of 25 μeV and a dynamical range
limited to energy transfers h̄ω ∈ [0,1] meV on the Stokes
side, and elastic scattering vectors Q within the [0.4,1.4] Å−1

range. Here the scattering vector Q is defined as Q = k − k′

with k (k′) the incident (scattered) neutron wave vector;
energy transfer is defined as h̄ω = E − E′ with E (E′) the
incident (scattered) neutron energy. Experimental resolutions
were measured at 2 K on IN5 and 300 K on TOFTOF. After
the measurements, the data were subsequently background
corrected and normalized to vanadium. Finally, the spin-echo
spectrometer IN11 at the ILL was used to complete these
measurements with a better energy resolution (∼0.6-μeV
resolution) between 150 and 485 K [a measurement at 2 K
being necessary for the determination of the normalization
factor I (Q,0); see Sec. IV].

The quantity measured in a TOF experiment is the
double differential scattering cross section, proportional to
the dynamical structure factor S(Q,ω).30,31 The S(Q,ω)
function corresponds to the space-time Fourier transform of
the pair correlation function G(r,t), and represents therefore a
physical observable bridging the gap between the microscopic
theoretical description and the macroscopic experimental
measurements. As G(r,t) contains both “self” and “distinct”
contributions, S(Q,ω) consists of both incoherent and coherent
terms,30 and single-particle and collective contributions could
partially overlap. However, in the case of peapods, one can
neglect the single-particle incoherent contribution as peapods
are namely composed of carbon—which is a purely coherent

scatterer.32 A spin-echo experiment gives direct access to the
intermediate scattering function I (Q,t), which is linked to
S(Q,ω) and G(r,t) by a time or a space-Fourier transform,
respectively.

An additional function that we will call “susceptibility”—
particularly useful for our data analysis and its theoretical
interpretation—is defined as the imaginary part of the re-
sponse function divided by the frequency, χ ′′(Q,ω)/ω. The
fluctuation-dissipation theorem connects the linear-response
theory approach to the pair-correlation function formalism,
and in the high-temperature limit of kBT � h̄ω, this theo-
rem can be approximated by χ ′′(Q,ω)/ω ∝ S(Q,ω)/T . The
generalized phonon density of states G(Q,ω) is given by33

G(Q,ω) = S(Q,ω)
Q2

ω
n(ω,T ) , where n(ω,T ) is the Bose population.

This function is known to be temperature independent for
harmonic crystals33 since it corresponds to a count of the
modes (weighted by the masses and the scattering lengths of
the scatterers) in a dω interval. In the high-temperature approx-
imation, one thus has χ ′′(Q,ω)/ω ∝ ω−2G(Q,ω). Therefore,
since the susceptibility is temperature independent for a
harmonic crystal, it is the most suited function in order to
monitor any deviation from a harmonic crystal behavior. All
the above listed functions are equivalent and represent the
same physics, the choice of using one or another depending
only on the focus of the discussion.

III. THEORETICAL MODEL

In this section, we calculate the dynamical structure factor
S(Q,ω) for a harmonic chain of N molecules. We first consider
the case of a pinned crystalline chain and discuss the elastic
and inelastic contributions to the intensity scattered by such a
system. In a second step, we discuss the dynamical response
of a harmonic liquid chain, which extends the crystalline case
to infinite N and/or high temperature. This reminder will help
the discussion of the data, which follows in the next part.

A. Reminder about the 1D harmonic chain

We consider a harmonic 1D lattice of masses m separated
by a distance d, in which the longitudinal speed of sound is v.
The Hamiltonian writes34

H = 1

2

N∑
j=1

[
π2

j

m
+ mv2

d2
(uj − uj+1)2

]
(1)

with uj = xj − x0
j the displacement of the mass indexed

j from its equilibrium position x0
j = jd, and πj = mu̇j

its momentum. Note that this model only accounts for the
longitudinal modes of the chain oriented along the axis (Ox).

If N is large enough, edge effects can be neglected and
one may apply the Born–von Karman boundary conditions
along the axis of the chain.35 In that case, the expression of the
phonon dispersion equation resulting from the Hamiltonian
Eq. (1) is

ωp = 2v

d
| sin(qpd/2)|, qp = 2pπ

Nd
, p = 1, . . . ,N,

where ωp and qp refer to the pulsation and wave vector
associated with the pth phonon. In the case of large N ,
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the associated mean-squared displacement at temperature T ,
〈u2(T )〉, is given by

〈u2(T )〉 = 1

N

N−1∑
p=1

h̄

2mωp

[1 + 2n(ωp,T )]


 Nd2kBT

2π2mv2
, (2)

where n(ωp,T ) is the Bose population of the mode ωp at
temperature T , and where the high-temperature approximation
is used. Equation (2) shows that for a 1D system, the mean-
squared displacement 〈u2〉 is proportional to the system size N ,
which is a characteristic result of low-dimensional systems.36

B. Generalities about neutron scattering

Let us now consider the intermediate scattering function
I ( Q,t), which is the space Fourier transform of the pair-
correlation function G(r,t) of the observed system—G(r,t)
gives the probability to find a scatterer at the position r and
at the instant t [i.e., noted (r,t)], if one is at the origin at time
t = 0 [i.e., (0,0)]. At very long times, correlations become
independent of time and one can express I ( Q,t) as

I ( Q,t) = I ( Q,∞) + I ′( Q,t). (3)

Since S( Q,ω) is the time Fourier transform of I ( Q,t), we can
write the dynamical structure factor as

S( Q,ω) = I ( Q,∞)δ(ω) + Sinel( Q,ω). (4)

In the latter expression, the dynamical structure factor
separates into elastic [I ( Q,∞)] and inelastic [Sinel( Q,ω)]
contributions. We will now calculate these two terms in the
case of a 1D harmonic chain.

C. Elastic intensity

The elastic intensity is entirely contained inside I ( Q,∞),
i.e., this contribution to the dynamical structure factor charac-
terizes the occurrence of correlations at infinite times. Consid-
ering the chain characterized by the Hamiltonian Eq. (1), and
writing ρ(x) as the scatterer density along the chain axis, one
can write37

G(x,t) = 1

N

∫
dx ′〈ρ(x ′ − x,t = 0)ρ(x ′,t)〉,

(5)

I ( Q,∞) = 1

N

∫
dxe−iQxx

∫
dx ′〈ρ(x ′ − x)〉〈ρ(x ′)〉

with Qx the projection of the scattering vector Q along the
chain axis.

In the case of a harmonic chain of size N with a density
ρ(x) = ∑N

j=1 δ(x − xj ), this yields

I (Q,∞) = 1

N
√

2π
e−〈u2〉Q2

x
sin2(QxdN/2)

sin2(Qxd/2)
. (6)

Equation (6) represents the well-known expression of the
intensity diffracted by a crystalline chain of size N , the thermal
fluctuations of the atoms being accounted for by the presence
of the Debye-Waller factor e−〈u2〉Q2

x . The powder averaging
of this expression results in the characteristic Q-asymmetric
feature extensively developed in Refs. 38 and 27. Close to
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FIG. 2. (Color online) Evolution of I (Q1,∞) as a function of
the system size N and of the temperature, for a harmonic chain of
C60 with speed of sound v = 3.5 km s−1 (value determined from
our experiments; see Sec. IV). The inset shows the evolution of
I (Q1,∞)/Itotal(Q1) as a function of temperature for various chain
sizes.

Q = Q1 = 2π/d, the squared ratio of the sine functions tends
towards N2, whereas 〈u2〉 is linear with N as shown in Eq. (2):
the scattered intensity is thus governed by the competition
between an increasing number of scatterers and increasing
thermal vibrations.

The evolution of the elastic intensity is represented in Fig. 2.
This figure shows that above a certain chain size, the elastic
contribution decreases when the temperature or the number of
molecules increases. This means that a chain smaller than a
few thousand constituents will behave as a harmonic crystal at
room temperature—i.e., correlations remain at long (infinite)
times. As the number of molecules increases, the chains
progressively evolve to a liquid state—i.e., the correlations
are lost at long (infinite) times. This results in the vanishing
of the elastic contribution of the scattering. This difference
in behavior is explained qualitatively by the N dependence
of the mean-squared displacement: for small systems, the
molecules remain well localized around their equilibrium
positions, and the behavior is that of a crystal. For very large
systems, the molecules will explore an area eventually as broad
as the inter-C60 distance and behave like a liquid. Such a
liquid character for very long atomic harmonic chains has, for
instance, been observed in various composite crystals.36,39–41

A well-known phenomenological argument—the Lindemann
threshold42—states that a crystal has melted when the atomic
displacements have reached between 15 and 30% (depending
on the system) of the crystalline interatomic distance. In most
common systems, such a limit is reached when the anharmonic
terms of the potential become important. In a 1D chain,
however, this limit can also be reached for a purely harmonic
potential.

Given the above discussion, two limit cases are to be
considered: the case where the number N of C60 molecules
per chain and the associated 〈u2〉 are very large (i.e., the
liquid case), and the one where N is small enough so that
〈u2〉 remains small compared to d2 (i.e., the crystal case). One
shall emphasis here is that these two cases are but limited cases:
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there is no “phase transition” in the usual sense between the
two cases (as expected for a large 1D system with short-range
interactions43), but rather a progressive evolution from one
limit to the other, as is illustrated by Fig. 2 and its inset.

D. Inelastic intensity

In the following, we calculate the coherent dynamical
structure factor for 1D chains of rigid C60 molecules described
by the Hamiltonian Eq. (1). The rigid body approximation
appears reasonable as the internal modes of the molecules
are well separated from that of the external modes (a gap of
20 meV exists between the lattice modes and the first molecular
vibration in the C60 crystal19). Therefore, the only degree of
freedom in this model concerns the longitudinal translations of
the molecules’ center of mass. The justification of ignoring the
rotational and transverse acoustic modes will appear clearly in
the next section.

1. Crystal case

Let us recall that we have defined the crystal case by the case
where the system size N is finite. This results in a small 〈u2〉
with respect to d2, which in turn results in the occurrence of
structural correlations at infinite times (translated in the INS by
the presence of an elastic intensity around Q = Q1)—which
is characteristic of a crystal.

In the 1D system we have considered until now and in the
case where only the one-phonon events are accounted for, it
can be shown that the inelastic part of the dynamical structure
factor takes the form30,37

Sinel( Q,ω) = σ coh
C

2dm

∑
l

∑
{qp}∈BZ

|F ( Q|qp)|2
ωp

×{[1 + n(ωp)]δ[qp − (Qx + Ql)]δ(ω − ωp)

+ n(ωp)δ[qp + (Qx + Ql)]δ(ω + ωp)} (7)

with Ql = 2πl
d

(l = 1, . . . ,N) the reciprocal-lattice vectors,
σ coh

C the coherent cross section of a carbon atom, BZ
the first Brillouin zone (i.e., qp = 2pπ

Nd
with p = 1, . . . ,N),

and F ( Q|qp) the phonon form factor. In the rigid body
approximation, the phonon form factor writes

|F ( Q|qp)|2 = |F (Q)|2Q2
x. (8)

Equation (8) implies that a longitudinal component of the
scattering vector Q is necessary to observe the longitudinal-
acoustic modes. If Q is set orthogonal to the chain axis (i.e.,
Qx = 0), the scattered intensity is null.

In the following, we will focus on l = 1 and will therefore
only consider acoustic modes at low wave vectors (smaller than
2 Å−1), which results in approximating the C60 molecules by
homogeneous spheres. In that case, the C60 form factor is given
by F (Q) = 60 sinc(QrC60 ), with rC60 = 3.55 Å the radius of a
C60 molecule.27 This form factor is at the origin of the intensity
difference of the chain features observed in the diffraction pat-
terns of the monomer and polymer peapods, Fig. 1, F (Q) being
a decreasing function in the [0,0.88] Å−1 Q range. In addition
we use the high-temperature approximation, and we suppose

that N is large enough to use the integral limit of the above
expressions.

In the case where Q is set parallel to the chain axis (Qx =
Q), Eq. (7) writes

Sinel(Q,ω) = σ coh
C Nd2kBT

8hmv2
|F (Q)|2 Q2

| sin(Qd/2)|2

×
[
δ

(
ω + 2v

d
| sin(Qd/2)|

)

+ δ

(
ω − 2v

d
| sin(Qd/2)|

)]
. (9)

One shall note here that Eq. (9) shows that in the case of a 1D
harmonic crystal, Sinel(Q,ω)/T ∝ χ ′′(Q,ω)/ω is, as expected,
independent of temperature.

The convolution of Eq. (9) with an experimental energy
resolution is shown in Fig. 3(a). One observes the dispersion
branch of a single-crystalline fiber that would be experi-
mentally obtained keeping Q parallel to the chains axis at
each (Q,ω). Note that the extinction observed at around
Q = 0.88 Å−1 is due to the fullerene form factor F (Q) which
goes to zero at this value.

When taking into account a Gaussian off-plane orientation
distribution and the specific TOF geometry, the 2D powder
averaging of the dynamical structure factor results in the
scattering map shown in Fig. 3(b).28 For these calculations,
an off-plane misalignment of 30◦ half width at half maximum
(HWHM) was injected into the calculations. This value was
determined by former diffraction investigations.28 The specific
response from the longitudinal acoustic phonon takes the
form of a triangular-shaped signal located in the vicinity
of the elastic line at the first C60 correlation peak (i.e., at
Q1 = 2π/d 
 0.64 Å−1).

Consider the function S(ω) [respectively χ ′′(ω/ω)], defined
as the Q integration of S(Q,ω) [respectively χ ′′(Q,ω/ω)] in
the [0.5,0.8] Å−1 range, where the signal from the first-order
peak is located. By definition,

S(Q,ω) ∝
(

sinc(QrC60 )

sinc(Qd/2)

)2

S(ω). (10)

Besides, ω2

T
S(ω) is proportional to the density of state of the

acoustic phonon G(ω) which, in the long-wavelength limit, is
given by G(ω) = 1/v. Consider now two chains of C60 with
two different speeds of sound, v and v′, and two different
lattice parameters, d and d ′ (e.g., monomer and polymer
peapods). If the Q integration of the dynamical structure
factors S(Q,ω,v,d) and S(Q,ω,v′,d ′) are performed over a
sufficiently large range around 2π/d and 2π/d ′, one has the
following relationship:

S(ω,v′,d ′) = η ηv × S(ω,v,d) (11)

with η being given by

η =
(

sinc(2πrC60/d)

sinc(2πrC60/d
′)

)2

and

ηv = v

v′ .
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FIG. 3. (Color online) Simulated inelastic part of the dynamical
structure factor S(Q,ω) scattered by harmonic C60 chains, with d =
10 Å, v = 3.5 km s−1 and a Gaussian energy resolution of FWHM =
25 μeV: (a) for a fiber of crystalline C60 chains and with Q collinear
to the fiber at each (Q,ω) point; (b) on a TOF spectrometer for a
pellet of crystalline C60 chains with off-plane orientations distribution
of ±30◦. The combined effect of the 2D anisotropy of the sample
and of the TOF geometry is responsible for the triangular shape of
the observed S(Q,ω) signal—whose intensity is proportional to the
density of states of longitudinal-acoustic phonons. The intensity is
saturated for a better viewing, the central line being due to elastic
scattering; (c) on a TOF spectrometer for a pellet of liquid C60 chains
(infinite chains). In that case, the intensity is of purely inelastic nature.

Therefore, if both monomer and polymer peapods behave like
1D harmonic crystals, their Q-integrated dynamical structure
factors (respectively susceptibilities) should only differ by a
factor η ηv with ηv = vmono/vpoly.

2. Liquid case

We have defined the liquid case as a 1D harmonic chain
where the number of constituent N is very large. This results
in a large 〈u2〉 with respect to d2 and in the loss of structural
correlations at long times. This translates into the INS spectra
by the absence of elastic intensity around Q = Q1, which is
characteristic of a liquid.

In such a model, the mean-squared displacement becomes
too large to neglect the multiphonon terms. It can be shown
that the dynamical structure factor takes the form34,36,40

S(Q,ω) ∝ α2
l |F ( Q)|2(

α2
l + (

ql + ω
v

)2)(
α2

l + (
ql − ω

v

)2) , (12)

where αl = 2l2π2kBT /dmv2 and ql = Q − 2lπ/d. In the
derivation of this expression, and in contrast to the previous
case, no separation between elastic and inelastic scattering
has been made.28,40 Therefore, the signal scattered by an
infinite harmonic chain is of purely inelastic nature, which
is characteristic of a liquid. The resulting map is shown
in Fig. 3(c). The triangular feature already discussed in the
crystalline case is also observed, the difference between the
two cases residing in the absence of an elastic contribution in
the liquid spectrum.

When integrated over Q, Eq. (12) yields (since only the
T dependence is investigated, we neglect the molecule’s form
factor)

S(ω) ∝ αl(
ω
v

)2 + α2
l

. (13)

As a consequence, if the confined C60 chains were to behave as
harmonic liquid chains, the longitudinal acoustic-phonon sig-
nal would result in a purely Lorentzian quasielasticlike signal
located around Ql = 2πl/d, whose width would vary linearly
with T/v2. The fact that the width of the signal evolves with
temperature even in the harmonic hypothesis results from the
damping of the acoustic phonons via multiphonon interaction.

Let us summarize the principal information one can extract
from these two models. In the case of chains of “reason-
able size” at sufficiently “low” temperatures, one expects
a crystalline behavior, which would be translated into the
dynamical structure factor by (i) an elastic contribution, and
(ii) an inelastic contribution whose width does not evolve
with temperature. In the case of very long chains or high
temperature, the expected behavior is that of a liquid, which
will translate in the INS spectrum by the absence of an elastic
contribution and a signal whose energy broadening should
evolve as T/v2.

Finally, one shall emphasize that the coherent signal in
Figs. 3(b) and 3(c) can be labeled as “quasielastic” because
of its location around the elastic line. Nevertheless, in both
crystal and liquid cases, this signal arises from the density of
states of longitudinal-acoustic phonons and therefore does not
correspond to any diffusive process.

IV. RESULTS AND DISCUSSION

A. Isolating the longitudinal modes

The experimental strategy followed during the neutron in-
vestigations resides on isolating the longitudinal modes of the
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confined chains by combining the 2D anisotropy of the peapod
pellets, and on the strong dependence of the scattered intensity
with the orientation of the scattering vector Q with regards to
the chain axis [Eq. (8)]. Therefore, two measurements were
performed at each temperature. They are referred to as “para”
and “ortho” in the following, and correspond to configurations
in which the plane of the sample holder is set either parallel
or orthogonal to the elastic-scattering vector Q with Q = Q1.
According to Eq. (8), the signal arising from the longitudinal
translations of the confined C60 molecules will be enhanced
in the para configuration compared to the ortho one. Using a
specific data treatment scheme presented in the Appendix, we
managed to isolate the longitudinal response of the C60 chains
in the TOF data. This treatment is based on the hypothesis that
the inelastic scattering arising from the nanotubes is weak and
not strongly dependent on the sample orientation in the (Q,ω)
region of interest. This assumption appears rather reasonable
as the dynamics of the nanotube bundles consists essentially
of internal “radial” modes involving atomic displacements
perpendicular to the tube axis. Therefore the dot product in
Eq. (8) should not vary for these modes between the two
configurations, and the tubes contribution is eliminated by
a “controlled” subtraction (see the Appendix).

After data manipulation, the longitudinal contribution of
the chain can be isolated and one obtains the typical triangular
feature discussed in the previous sections. An illustration of the
data treatment is presented in Fig. 4 showing the S(Q,ω) maps
taken on IN5 at 420 K in both para and ortho configurations.
Let us note that the fixed geometry of a TOF instrument
implies that the sample plane will only be parallel (respectively
orthogonal) to the wave vector Q for Q = Q1 and ω = 0.
For example, in the vicinity of the second “diffraction” order
at Q2 
 1.28 Å−1, the angle between Q and the sample is
around ∼30◦ in both configurations. Due to the ± 30◦ off-plane
distribution of the orientations of the bundles, the scattering
function remains almost configuration independent around
Q2. Therefore when discussing the TOF data, we will restrict
ourselves to the region where Q belongs to [0.5,0.8] Å−1 and
ω stays within [−0.5,0.5] meV in order to monitor the most
parallel and the most orthogonal configurations. In addition, as
far as the polymer phase of the peapods is concerned, S(ω) and
the derived susceptibility are further corrected for the factor η

discussed in Eq. (11) (d and d ′ being the 1D lattice parameters
of the monomer and polymer phases, respectively).

Figure 5(a) shows the normalized intermediate structure
factor I (Q,t)/I (Q,0) for different Q values and different
temperatures T obtained using the spin-echo spectrometer
IN11. The instrument geometry is such that for every Q value,
Q is set either parallel or orthogonal to the scattering plane.
Each data set was fitted using the function

I (Q,t)

I (Q,0)
= I (Q,∞) + Iinel(Q) e−t/τ , (14)

which allowed deriving the Q and T dependence of the
“elastic” I (Q,∞) and “inelastic” Iinel(Q) contributions of the
scattering. For each Q in the para configuration, the data can
be reproduced keeping a constant “relaxation time” τpara

over the complete temperature range of the experiment. The
evolutions of Iinel(Q) and τpara with Q for a temperature
T = 485 K are shown Fig. 5(b) for both ortho and para

FIG. 4. (Color online) Top: S(Q,ω) maps taken at 420 K on IN5,
for incident wavelength of 8 Å, in the parallel (left) and orthogonal
(right) configurations. Maximum intensity is saturated for clarity.
The white cross indicates the point (Q = Q1,ω = 0), the only point
where the wave vector transfer Q with a norm Q1 is strictly either
parallel or orthogonal to the pellet. The horizontal lines define the
Q range considered in the integration to obtain S(ω) [see Fig. 6(a)].
Bottom: S(Q,ω) map at 485 K after data treatment and subtraction
(description in the Appendix).

configurations. By lack of time during the experiment, the
ortho configuration was measured only around the second
order Q2. The anisotropy of Iinel(Q) for Q ∼ Q2 is attributed to
the signature of the longitudinal motions of the C60 molecules,
and the same anisotropy is expected around Q1.

B. “Low” temperatures

The TOF Q-integrated dynamical structure factor S(ω)
obtained at 373 K is shown in Fig. 6(a). It is very well
reproduced by a scattering function modeled by an elastic
contribution added to a Lorentzian line shape to account for
low-frequency inelastic scattering. The ∼60 μeV HWHM of
the inelastic contribution agrees well with the “relaxation time”
τ ∼ 50 ps derived from the spin-echo data at the same Q

values.45 These observations suggest that the signal observed
on both instruments arises from the same dynamics.

The temperature evolution of the susceptibility χ ′′(ω)/ω
in the temperature range [260,420] K derived from the TOF
data is represented on Fig. 6(b) for the monomer and polymer
phases of the peapods. The susceptibilities are found to be
constant in this temperature range for both peapod phases. In
addition, the inset of Fig. 5(a) shows the temperature evolution
of the inelastic part of the spin-echo signal Iinel(Q) measured
at Q = Q1 on IN11. The linear temperature dependence of the
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FIG. 5. (Color online) (a) Normalized intermediate scattering
function I (Q,t)/I (Q,0) for Q = 0.48 Å−1 and Q = 0.72 Å−1 at
different temperatures, as measured in the parallel configuration on
the spin-echo spectrometer IN11 at the ILL. Data are fitted by a
decreasing exponential I (Q,∞) + Iinel e

−t/τ (full lines). The inset
shows the temperature evolution of Iinel for Q = 0.72 Å−1 in the para
configuration, fitted with a constant characteristic time τ = 53 ps.
(b) Evolution of the quasielastic intensity Iinel (in both para and ortho
configurations) and of the characteristic time τpara as a function of Q

at 485 K. The additional intensity in the parallel configuration around
Q = Q2 
 1.3 Å−1 confirms that the observed dynamics concerns
longitudinal motions along the C60 chains.

intensity of Iinel(Q), associated with the constant evolution of
the susceptibility and the presence of an elastic contribution
in S(ω) reveal (i) the crystalline behavior of the chains and
(ii) the harmonic nature of the longitudinal excitations mea-
sured, which we associate to the longitudinal-acoustic phonons
of the C60 chains. In this temperature range, the confined C60

chain can therefore be completely described by a classical 1D
harmonic model of finite length, which is accounted for by
the Hamiltonian Eq. (1). In particular, no sign of any slow
diffusion process is detected. Such processes could originate
from C60 cluster (or void) diffusion along the tube.

Figure 6(b) shows that the polymer susceptibility at 320 K
superposes to that of the monomer after applying a scaling
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FIG. 6. (Color online) (a) Dynamical structure factor S(ω) at
373 K as measured on TOFTOF with incoming wavelength of
8 Å. These are the data after full treatment, data subtraction, and
Q integration over the range [0.5,0.8] Å−1. Data are fitted using a
Dirac function convoluted with experimental resolution (elastic) and
a Lorentzian function (inelastic). The inset shows the temperature
evolution of 〈u2(T )〉 − 〈u2(290 K)〉 and its linear fit (see text).
(b) Temperature evolution of the susceptibility χ ′′(ω)/ω of the
quasielastic signal between 260 and 420 K as measured on IN5 for
monomer peapods, and susceptibility from the polymer C60 peapod
at 320 K (empty stars), normalized to the C60 masses ratio within the
two samples, to the η coefficient, and multiplied by 1.7. The dashed
line corresponds to a simulation for a sound velocity of 3.5 km s−1

and an angular off-plane distribution of ±30 ◦. Error bars are not
represented for the sake of clarity.

factor ηv = 1.7 [the data are already corrected for the factor η

in Eq. (11)]. The large difference in the attractive strength
between covalent bonds and van der Waals interactions is
such that it is reasonable to expect that the speed of sound
in polymerized peapods is similar to that in orthorhombic bulk
C60, where the fullerenes form 1D polymerized chains. The
speed of sound along these polymer chains was determined
to be46 vpoly = 6.0 km s−1. Using Eq. (11), this enables
determination of the speed of sound in the C60 chains present in
the monomer peapods: we obtain vmono 
 3.5 ± 0.25 km s−1.
This value is found to be close to the 〈110〉 direction speed
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of sound in bulk C60, which was measured to be46 v〈110〉 =
3.35 km s−1.

Taking this value for the speed of sound, it is further
possible to extrapolate the mean chain size of the monomer
C60 chain from the temperature evolution of the Debye-Waller
factor. The latter quantity is derived from the evolution of the
elastic intensity given by Eq. (6). The inset of Fig. 6(a) shows
the evolution of 〈u2(T )〉 − 〈u2(290 K)〉, with 〈u2(T )〉 given
by Eq. (2). The slope of the linear fit of these data allows
extracting the quantity Nd2kB/2π2mv2, from which we can
evaluate N 
 2700. This rather long chain size is perfectly
compatible with the high filling ratio (97%) deduced from
our x-ray scattering characterizations21 and with the average
size of the nanotubes estimated by TEM, i.e., between 1 and
5 μm.23

Knowing v and N and injecting them into Eq. (2), the value
of 〈u2(T )〉 is found to be 3.7 Å2 at 290 K and 7.7 Å2 at 600 K.
Therefore, taking a Lindemann threshold of 30% of the lattice
parameter, one anticipates that the chains should fully behave
as a liquid around the temperature of ∼700 K.

C. Melting and liquid phase

Figure 7(b) represents the temperature evolution of the
proportion of the elastic intensity with respect to the total
intensity as well as the evolution of the inelastic intensity,
as derived from the TOF experiments for monomer peapods
[intensities are obtained from the integration of the different
contributions of the fitted data; see Fig. 6(a)]. One observes a
progressive disappearance of the elastic line with increasing
temperature, with total disappearance for T � 850 K. The
inelastic part of the scattered intensity is linear with T up to
∼600 K where it progressively evolves to a constant value.
Even though no discontinuity is observed in the evolutions,
the behaviors at the extreme opposite sides of the temperature
range are very different. As already discussed, the dynamics
below ∼550 K is well understood using a harmonic crystal
picture. The absence of elastic intensity above T � 850 K
translates the disappearance of structural correlations at long
time, e.g., a liquid behavior, the scattered intensity becoming
purely dynamic in nature, as discussed in Sec. III D2. The
intensity of the inelastic signal is found to be temperature inde-
pendent in this range. If we invoke the quasiharmonic approx-
imation, the liquid phase at high temperature can be modelled
using the harmonic Hamiltonian (1) in the high-temperature
limit. The dynamical structure factor takes the form (13), and
the speed of sound in the liquid phase vl is related to the
FWHM of the Lorentzian line shape of the inelastic signal.
We find a value of vl ∼ 1.8 km s−1 at 1040 K. This value is
51% smaller than in the crystalline phase, and is observed to be
almost constant in the T range [823,1043] K. This important
change in the sound velocity translates the softening of the
elastic constants when the 1D solid melts, and is found to be
equivalent—in amplitude—to the melting transition between
ice and water. The transformation occurs gradually in a T

range of ∼150 K centered around 600 K [Fig. 7(b)]. In a
previous study,21 we also observed an important change in
the linear thermal-expansion coefficient at this temperature.
The transformation of the chain’s physical nature is clearly
revealed by the dynamics, the 1D order becoming unstable

-0.4 -0.3 -0.2 -0

(a)

(b)
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 373 K
 523 K
 673 K
 823 K
 973 K
 1043 K

S
(ω

)

Energy Transfer (meV)

FIG. 7. (Color online) (a) Temperature evolution of the dynamical
structure factor S(ω) between 373 and 1043 K as measured on
TOFTOF after full treatment of the data. (b) Temperature evolution
of the ratio Ielastic/Itotal = Ielastic/(Ielastic + Iinelastic) (full triangles) and
of the inelastic intensity (empty triangles) as measured on TOFTOF
(intensities are integration of fitted function Fig. 6(a)). Dotted and
dashed lines are guides to the eye.

under the fluctuations of the lattice parameter. Moreover, the
strong difference between the sound velocities emphasizes
that the driving force of the melting has to account for the
anharmonicity of the potential, e.g., that the actual scenario
is different from what occurs in a very long harmonic chain,
as discussed in Sec. III C, for which there is no change in
the elastic properties of the chain between the solid and the
liquid phase. In our system, at sufficiently high temperatures,
the harmonic approximation becomes less and less valid as
the full C60-C60 interaction potential is felt, and the melting
process accelerates. The nuance is somewhat subtle, since in
both cases it is the large increase of the thermal vibrations and
their propagation that lead to a complete loss of the correlations
above approximatively 600 K, the resulting structure having
the characteristics of a 1D liquid.

These results—obtained by probing directly the trans-
lational dynamics of the confined C60—are coherent with
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those derived by following the temperature dependence of the
structure using x-ray diffraction and by its description using
a Takahasi-Gűrsey (TG) model based on a Lennard-Jones
intermolecular potential.21 The transition between the two
limit states of the chain is clearly visible in the temperature
evolution of the expansion coefficient which shows a classical
evolution up to a temperature at which it vanishes. The set
of structural and dynamical data allows us to propose the
following scenario. At low temperature, the amplitude of the
vibrations is small and the potential appears as harmonic.
As the temperature increases, the amplitude of the vibrations
becomes large and the anharmonic terms of the intermolecular
potential become important. This results in a softening of
the vibrations which further accelerates the increase of the
molecular displacements. The strong anharmonicity of the
interaction potential at high temperatures is illustrated by
both the strong asymmetry of the first neighbor distribution
function (Fig. 1 of Ref. 21) and the strong reduction of
the speed of sound observed in this study. At the highest
temperatures, it was suggested that the rigid nanotube host
reduces the linear thermal expansion of the chain by limiting
its extension.21 Limiting the size of the chain while increasing
the temperature creates an internal pressure, which should
result in an increasing sound velocity at higher temperature.
The observation of a constant FWHM of the scattered signal
at 973 and 1043 K is an indication in this direction.

In addition to our previous investigation, the use of INS
has allowed us to emphasize the importance of the limited
size of the system regarding to its dynamical behavior.
This was made possible by discerning elastic from inelastic
contributions to the scattering. It is important to emphasize
that—again—the model developed in this study does not
account for any longitudinal coupling between the fullerenes
and the nanotubes. Still, it provides a rather good description
of the confined C60 chains from a dynamical point of view,
giving quantitative information in very good agreement with
those known for solid C60. It appears reasonable to estimate
that in the temperature range considered in this study, the
presence of the surrounding nanotube has no effect other
than providing a smooth one-dimensional container for the
C60 chains. In other words, one can consider that any term
in Eq. (1) which would eventually couple the longitudinal
displacements of the confined fullerenes with the nanotube is
negligible in the temperature range considered in this study.
We believe that this stands only for some peculiar regions of
the (pressure, temperature, tube diameter) phase space of the
peapod system. In particular, we anticipate that the coupling
between the nanotube and the C60 will become important at
low temperature or high pressure, and that the longitudinal
dynamics will be affected as theoretically predicted and
observed for the rotational state of the confined chain.2,3,19,20

V. CONCLUSION

We have followed the evolution of the longitudinal dy-
namics of the C60 chains confined inside carbon nanotubes,
by taking advantage of the partial orientation of the chains
parallel to the plane of the sample in the form of a pellet. We
find that the behavior of the C60 chains for 260 < T < 600 K
is that of a 1D harmonic crystal, composed of a number

N ∼ 2700 molecules (total length ∼2.7 μm), and with sound
velocity v = 3.5 km s−1. From these physical characteristics,
we understand the solidlike behavior of the chains at ambient
temperature as resulting from the limited number of molecules
per chain. The latter is too small to give the chains a
liquidlike character as observed in harmonic atomic chains
like Hg3−δAsF6, for example. When heated, the crystalline
chain progressively melts into a one-dimensional liquid, which
is characterized by the absence of elastic scattering at Q1 =
2π/d and a softer longitudinal dynamics with a sound velocity
reduced by half the value in the crystalline phase. The melting
process is progressive and takes place in a ∼150-K temperature
range around 600 K. These observations are consistent with the
strong change in the thermal expansion of the chain observed
previously21 using x-ray diffraction in the same temperature
range. The melting is caused by a combination of the linear
increase of thermal fluctuations together with the increasing
anharmonicity of the system.
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APPENDIX: DATA TREATMENT

If obtaining the sole C60 chains signal can a priori be
obtained by a simple subtraction of the para and ortho
data, other correcting factors have to be rigorously taken
care of. Indeed, the sample absorption is not the same in
both configurations, which affects both elastic and inelastic
scattering. Moreover, the elastic intensity differs from one
configuration to the other due to the anisotropy of the sample.29

A simple subtraction of the para and ortho data is therefore not
correct, and we have to account for these intensity variations.

Complete data treatment is done as follows: (i) Raw data
are normalized to the monitor counts, to vanadium (detector
efficiency), subject to the various spectrometer dependent
corrections, and transformed to S(Q,ω). (ii) For each con-
figuration, ortho (⊥) and para (‖), and each Q of the region
of interest, the spectra are fitted using Lorentzian functions
(inelastic contribution Iinel) and a Dirac peak convoluted with
experimental resolution (elastic contribution Iel). (iii) Using
these fitted intensities, one performs the following operation
in order to obtain the sole C60 signal:

IC60 (Q,ω) = I
‖
inel(Q,ω) − α × I⊥

inel(Q,ω)

+ I
‖
el(Q,ω)[1 − c(Q)],

where α is the coefficient that corrects for the difference
of absorption in both configurations, and c(Q) the one that
corrects for the different elastic scattering due to the sample’s
anisotropy. In the Q areas of the region of interest where
the C60 contribution is negligible, i.e., Q < 0.6 Å−1 and
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Q > 0.76 Å−1, we consider that the tubes’ contribution does
not evolve from one configuration to the other, and c(Q) = 1.
For Q ∈ [0.6,0.76] Å−1, we have to account for the elastic
intensity in para configuration that is added to the one of the

ortho configuration (giving the elastic intensity coming from
the tubes), and therefore c(Q) = αI⊥

el (Q)/I ‖
el(Q).

After this treatment, we obtain the sole C60 chains signal,
containing both elastic and inelastic contributions.
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