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We consider a class of models of nonequilibrium electronic Mach-Zehnder interferometers built on integer
quantum Hall edges states. The models are characterized by the electron-electron interaction being restricted to the
inner part of the interferometer and transmission coefficients of the quantum quantum point contacts, defining the
interferometer, which may take arbitrary values from zero to one. We establish an exact solution of these models
in terms of single-particle quantities, determinants and resolvents of Fredholm integral operators. In the general
situation, the results can be obtained numerically. In the case of strong charging interaction, the operators acquire
the block Toeplitz form. Analyzing the corresponding Riemann-Hilbert problem, we reduce the result to certain
singular single-channel determinants (which are a generalization of Toeplitz determinants with Fisher-Hartwig
singularities) and obtain an analytic result for the interference current (and, in particular, for the visibility of
Aharonov-Bohm oscillations). Our results, which are in good agreement with experimental observations, show
an intimate connection between the observed “lobe” structure in the visibility of Aharonov-Bohm oscillations
and multiple branches in the asymptotics of singular integral determinants.
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I. INTRODUCTION

Electronic Mach-Zehnder interferometers (MZIs) realized
with edge states in the integer quantum Hall (QH) regime
have attracted a lot of attention recently because of a striking
interplay between the quantum coherence and effects of
electron-electron interaction observed in these mesoscopic
devices.1–14 By analogy to the optical interferometer, the chiral
edge states in the electronic MZI, playing the role of light
beams, are coupled by quantum point contacts (QPCs), which
act as electron beam splitters (see Fig. 1). The differential
conductance measured in the above experiments shows strong
Aharonov-Bohm (AB) oscillations. They are a manifestation
of quantum coherence of electrons, propagating through
different arms of interferometer, and are quantified in terms
of visibility. The most remarkable experimental observation
is that the out-of-equilibrium visibility does not decrease
monotonically with voltage but rather demonstrates a se-
quence of decaying oscillations (“lobes”). Such a dependence
cannot be explained within an assumption of noninteracting
electrons.

Investigation of quantum interference and decoherence in
AB rings and interferometers has a long history.15 In particular,
much attention has been paid to sources of dephasing that
may arise from the external noise16–21 or are the result of
the intrinsic electron-electron interaction.22–26 The advent of
QH interferometers has renewed the interest in this problem,
with a considerable number of recent theoretical works27–36

aiming at a resolution of the “visibility puzzle” in MZIs. These
recent theories can be subdivided into the approaches assuming
contact31,32,36 and long-range27,28,33–35 Coulomb interaction.
Despite the fact that the model of contact e-e interaction
may successfully describe the related experiments on the
energy relaxation in the QH edge states at filling factor
ν = 2,37–41 results of Refs. 35 and 36 indicate that the account

of the long-range character of Coulomb interaction is of
central importance for a full understanding of nonequilibrium
phenomena in MZIs.

The natural choice of a theoretical approach to one-
dimensional (1D) interacting electrons in the QH edge states
is that of bosonization.42 However, in the case of interest,
one faces serious complications when trying to apply this
approach. First, already in the single-channel problem, the
bosonized action of the theory ceases to be Gaussian under
nonequilibrium conditions43–45 (see also a related earlier
work46 on the nonequilibrium Fermi-edge singularity). This
difficulty has been solved by development of the nonequi-
librium bosonization formalism yielding results for physical
observables in terms of single-particle Fredholm determinants
which are of Toeplitz type for a short-range interaction
model.44,45 Second, an even more severe obstacle arises
when one describes electron scattering at QPCs. Specifically,
electron tunneling between two edge channels yields the
cos-like term in the bosonized Hamiltonian (an the action),
impeding a solution to the problem. For this reason, almost all
recent theories of MZIs consider the limit of weakly coupled
edge states where the perturbative treatment of electron
tunneling at QPCs is justified. This is rather unfortunate since
in the experiment transmission coefficients of both QPCs
are usually close to one half. While in a very restricted
set of models exact solutions via the Bethe ansatz are
available,47–49 the systems we are interested in do not belong
to this class. On the other hand, it would be clearly highly
advantageous to have an analytically treatable mode for integer
QH MZI for an arbitrary number of edge channels, arbitrary
interaction range and strength, and arbitrary transmissions
at QPC.

In this paper we consider the model of the MZI operating
at integer filling factor ν, where electrons interact only when

195433-11098-0121/2013/87(19)/195433(26) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.195433


NGO DINH, BAGRETS, AND MIRLIN PHYSICAL REVIEW B 87, 195433 (2013)

FIG. 1. (Color online) Layout of an electronic Mach-Zehnder
interferometer built on quantum Hall edge states at filling factor
ν = 2. Quantum point contact (QPC1 and QPC2) characterized by
transparencies T1(2) are used to partially mix the outer edge channels.
All Ohmic contacts are grounded, except for the source terminal S3

which is kept at voltage V . The current is measured in the drain
terminal D1. The QPC0 can be used to dilute the incoming current in
the outer channel by changing the transparency T0.

they are inside the interferometer. The model is specified by
two single-particle scattering matrices of the QPCs defining the
interferometer and by the model of Coulomb interaction inside
the interferometer. We focus on the model of “maximally
long-range” interaction when the interaction energy depends
only on total charges collected within each of the arms and
is characterized by an electrostatic charging energy Ec. Let
us emphasize that this restriction is not crucial: Within this
approach one can, in principle, consider any interaction within
the interior region of MZI.

For the case ν = 1, such a model was introduced in
Refs. 29 and 30. In Ref. 34 an exact solution to it at ν = 1
was obtained by using a combination of bosonization and
refermionization techniques and was expressed in terms of
single-particle determinant and resolvent that were evaluated
numerically. Our way to treat the problem is different in many
aspects. We consider a MZI with an arbitrary number of
edge states and use the nonequilibrium functional bosonization
approach developed by us previously.50 Within this framework
we demonstrate that an interfering current can be expressed
in terms of a Fredholm functional determinant of the single-
particle “counting” operator which bears resemblance to
the problem of electron full counting statistics (FCS) of
mesoscopic transport.51 In general, this determinant should
be evaluated numerically. In the limit of strong interaction,
Ec � 1/τ , where τ is the electron flight time through the
MZI, the “counting” operator takes the block Toeplitz form.
Under this condition, a fully analytical treatment turns out
to be possible. By solving the Riemann-Hilbert problem, we
get rid of the matrix structure and express the result in terms
of a determinant of a single-channel singular integral oper-
ator generalizing Toeplitz determinants with Fisher-Hartwig
singularities. Determinants of this type have been studied in
Ref. 52, where a conjecture on their asymptotic behavior was
formulated and supported by a large body of analytical and
numerical arguments. This allows us to obtain the result in a
closed analytic form.

Our analytical result demonstrates that the lobe pattern in
visibility is a many-body interference effect resulting from

the quantum superposition of (at least) two many-particle
scattering amplitudes with the mutual phase difference which
is linear in voltage. In the limit of strong interaction we find the
scaling exponents which describe power-law dependencies of
these amplitudes on voltage and obtain the nonequilibrium
dephasing rate governing the exponential suppression of
visibility with bias (or, equivalently, with the length of
the arms of the MZI). The power-law exponents as well
as the dephasing rate depend on the transmission coefficient
of the first QPC and on the filling factor ν.

Our analytical findings are corroborated and complemented
by numerical evaluations of the Fredholm determinants
determining the exact solution for arbitrary Ec ∼ 1/τ . At
Ec � 1/τ our numerical results provide further support to the
aforementioned conjecture of Ref. 52. At moderate charging
energy Ec � 1/τ and ν = 2 the obtained results match very
well experimental observations.

The remainder of the paper is organized as follows.
Section II is devoted to the exposition of our main results and
their physical interpretation. In Sec. III we present the nonequi-
librium functional bosonization approach. We demonstrate
that the MZI problem defined above is exactly solvable by
means of the instanton method. In the limit of strong interaction
(Sec. IV), the full analytical treatment becomes possible. It is
based upon the asymptotic results for the generalized Toeplitz
determinants. We show the relation of the MZI problem to the
latter theory and evaluate analytically the AB conductance. In
Sec. V we consider the influence of an additional quantum
point contact (QPC0) diluting the incoming current in one
of the channels and develop a numerically exact approach to
solve the problem in the case of a moderate charging energy.
Finally, in Sec. VI we summarize the findings of this work and
discuss prospects for future research.

II. RESULTS AND QUALITATIVE DISCUSSION

In this section we set the stage by defining the theoretical
model of the MZI and then present our results and give their
physical interpretation. This part of the paper is self-contained
and can be read independently of other sections, where we
provide technical details of the calculations.

A. Model of the MZI

We consider the MZI realized with edge states in the QH
regime at integer filling factor ν. The experimental layout (in
case of ν = 2) and the scheme of the MZI are shown in Figs. 1
and 2, respectively. In this setup the outer chiral channels,
propagating along different arms of the MZI (we denote them
by the index ±), are coupled by means of two QPCs, located
at points x

1(2)
± . An additional QPC, QPC0, is used to bias the

incoming outer channel at the upper edge by voltage V (and in
general also to dilute the incoming current if the transmission
coefficient of the QPC0 is tuned to a value T0 > 0). We further
assume that all inner chiral channels are fully reflected from
each QPC and, in particular, the incoming inner channels are
grounded. This layout of the MZI and the bias scheme are
realized in most of the experiments (an exception is Ref. 12,
where the MZI setup at ν = 2 did not contain additional
QPC0).
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FIG. 2. Scheme of an MZI at filling factor ν. Two quantum point
contacts are characterized by the scattering matrices s1 and s2, which
connect the outer channels. Inner channels are fully reflected.

A theoretical model considered throughout the paper is
specified by the action S = S0 + Sint of interacting 1D
fermions,

S0 =
∑
�=±

∫
dt dx ψ̄�(x) (i∂t + iv∂x) ψ�(x), (1)

Sint = 1

2
Ec

∑
�=±

∫
dt N 2

� , (2)

which are described by the Grassmann fields ψ� in the
arm � = ±. In the case ν � 2 the fermionic fields have the
vector structure ψ� = (ψ1�, . . . ,ψν�)T due to multiple edge
channels. The Coulomb interaction is taken into account by
the electrostatic model with a charging energy Ec = e2/C,
such that electrons interact only when they are inside the
interferometer. Thus, in Eq. (2)

N� =
ν∑

k=1

∫ x2
�

x1
�

ψ̄k�(x + 0)ψk�(x) (3)

is the total number of electrons in the upper/lower arm of
the MZI. The action Aint describes intra- and interchannel
Coulomb interaction which is maximally nonlocal (or long-
range) in space. At the same time the interedge interaction
is disregarded in our model, which is motivated by the fact
that different edges are spatially well separated. At the QPCs
outgoing fermion fields (with channel index k = 1) are related
to the incoming ones by the scattering matrices

ψ1�

(
xj

� + 0
) = sj

�μψ1μ

(
xj

μ − 0
)
, (4)

ŝj =
(

iR
1/2
j T

1/2
j

T
1/2
j iR

1/2
j

)
, (5)

where Tj and Rj are reflection and transmission coefficients
at the j th QPC.

The model of the MZI with the above action A is
exactly solvable for any value of the charging energy Ec

and transmission coefficients Tj , as we show in Secs. III, IV,
and V. For simplicity, we consider an interferometer with equal
arms, x

(2)
+ − x

(1)
+ = x

(2)
− − x

(1)
− = L, which is predominantly

the experimental situation. In the limit Ecτ � 1, where τ =
L/v is the electron dwell time in the MZI, fully analytical
treatment is possible. In the more general case Ecτ ∼ 1
we have developed a numerically exact scheme to evaluate
the visibility in the MZI as a function of voltage (Sec. V).

Before going into details of the calculations (Sec. III), we
summarize our main results.

B. Limit of strong interaction

First, we discuss the results in the limit Ecτ � 1. In
the case of not-too-low voltages, namely at eV τ � 1, our
model predicts the asymptotic expansion for the differential
conductance dI/dV of the MZI in the form

G(V ) = e2

2πh̄

(
T1R2 + T2R1

+ 2(T1R1T2R2)1/2Re

[
ei� ∂I0

∂(eV τ )

])
, (6)

where � is the magnetic flux and I0 is the amplitude of the
interference AB contribution to the current,

I0 = eieV τ (β1+1/ν)[C1(eV τ )λ1 + C2(eV τ )λ2e±ieV τ ]. (7)

The choice of the sign ± in the exponent of the last term
is explained below Eq. (13). Equation (7) contains the two
leading terms of a series (in general, infinite). The dependence
of each term of this series on eV τ is characterized by a certain
power-law exponent λi and by a certain oscillating factor.

Interpretation of the different ingredients in this expression
is as follows. The coefficient

β1 = 1

2πi
ln(R1e

−4πi/ν + T1) (8)

describes the nonequilibrium dephasing of the AB oscillations
induced by a combined effect of inelastic e-e scattering and the
quantum shot noise generated at the first QPC. If ν � 3, then
Imβ1 > 0 and, by defining the out-of-equilibrium dephasing
rate as

τ−1
φ = eV Im β1, (9)

we see that AB oscillations are suppressed by the factor e−τ/τφ

in the high-bias limit eV � 1/τ .
Let us point out that τ−1

φ , as given by Eqs. (8) and (9),
vanishes for ν = 1,2, reaches its maximum at ν = 4, and
then decreases again towards zero with further increase of
ν. This is a rather general manifestation of the oscillatory
dependence of the nonequilibrium dephasing rate on the
interaction strength, which is also typical for Luttinger liquid
models.45 In the present model the strength of the screened
RPA e-e interaction is proportional 1/ν; thus, the dephasing
rate becomes a nonmonotonic function of the filling fraction.

It is worth stressing that the exponential suppression of the
interference current is directly related to the FCS of electrons
passing through the QPC1 at the time interval τ . Indeed,
defining the FCS cumulant generating function (CGF) of the
backscattering current as

χτ (λ) = [1 + R1(eiλ − 1)]eV τ/2π , (10)

where λ is the so-called “counting field,”51 we see that the
damping factor is equal to

eiβ1eV τ = χτ (−4π/ν). (11)
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FIG. 3. (Color online) Power-law exponents shown as the function of transmission coefficient T1. Solid lines show Re λ1, dashed lines
show Re λ2 in the case of ν = 3 and (−Re λ2) in the case of ν = 4,5.

The exponents λ1,2, which set the power-law dependence
of the interference current on bias, belong to the class of
nonequilibrium quantum critical exponents. Physically, they
can be understood as being due to the Anderson orthogonality
catastrophe which happens each time an electron enters or
leaves the interior part of the MZI where it strongly interacts
with all other electrons. It is worth mentioning that in the
considered simplified model, where the e-e interaction is
present only inside MZI, the orthogonality catastrophe is
absent for the incoherent contribution to the current, which
stays linear in voltage as in the case of noninteracting fermions.

The exponents λ1,2 are functions of both the filling factor
ν and the transparency T1 of the first QPC and are shown in
Fig. 3. The explicit expressions read

λ1,2 = −2

(
1

ν
− 1

2
+ β1 ± 1

2

)2

+ 1 − 2

ν
+ 2

ν2
,

2 � ν < 4, (12)

for low filling factors and

λ1 = −2

(
1

ν
+ β1

)2

+ 1 − 2

ν
+ 2

ν2
,

(13)

λ2 = −2

(
1

ν
+ β1 ± 1

2

)2

− 1

2
+ 2

ν2
, ν � 4,

in the case of higher ν. In the case 2 � ν < 4 the voltage-
dependent phase factor in Eq. (7) has to be taken with the sign
( + ). For ν � 4 the ± sign corresponds to the case T1 > 1/2
and T1 < 1/2, respectively. The coefficients C1,2 in Eq. (7) are
some bias-independent complex numbers which depend solely
on ν and T1 and can be found from the fit of this asymptotic
expansion to its numerically exact counterpart. In the limit
of strong interaction, Ecτ � 1, the case ν = 1 is very special.
Specifically, one has then I0 = (eV τ ) and the MZI behavior is
the same as in the absence of e-e interaction. Technically, this
is related to the fact that the counting phase is −4π/ν = −4π ,
which implies that expression (7) contains only one dominant
contribution with exponent λ1 = 0.

Experimentally, one usually quantifies the coherence of the
interferometer in terms of the visibility V and the phase αAB

of the AB oscillations of the conductance. The visibility is
defined as the ratio of the amplitude of the AB oscillations to

the mean value of the conductance. In our model,

V = V0

∣∣∣∣ ∂ I0

∂(eV τ )

∣∣∣∣ , V0 = 2(T1R1T2R2)1/2

T1R2 + T2R1
, (14)

where V0 is the noninteracting value of V , and

αAB = arg [∂ I0/∂(eV τ )] . (15)

In terms of the above quantities the conductance G(V ) takes
the form

G(V ) = e2

2πh̄
(R1T2 + R2T1){1 + V(V ) cos[� + αAB(V )]}.

(16)

In Fig. 4 we show the visibility V (normalized to its noninter-
acting value V0) and the phase αAB of the AB oscillations as
functions of bias for different filling factors ν = 2,3,4,5 and
for different transmissions T1.

In each plot we have fitted the exact visibility (obtained
numerically) by its analytic form based on Eq. (7) with two free
parameters C1 and C2. Although Eq. (7) is, strictly speaking,
an asymptotic formula valid in the high voltage limit eV τ �
1, we see in Fig. 4 that the analytical result is an excellent
approximation already starting from very modest values of
voltages, eV τ/π � 0.5. For still smaller voltages, the visibility
saturates at its noninteracting value V0.

The most spectacular feature of Fig. 4 are oscillations of
visibility which become particularly strong, yielding a lobe
structure with the visibility reaching zero at minima for ν = 2
(for any value of T1) and for T1 = 0.5 (for any ν). In these
cases, the cusps in the visibility at its minima are accompanied
by π jumps in the phase αAB. As we explain below, the special
role of ν = 2 is a characteristic feature of the strong-interaction
limit. On the other hand, the point T1 = 0.5 remains special
for a generic interaction.

At ν = 2 we have λ1 = λ2 = 0 and C1 = −C2. This
gives the oscillatory visibility V = V0 cos(eV τ/2) which is
independent of the transparency T1 and does not decay with
bias. The behavior of the MZI in this case is analogous to
that in a model with short-range electron interaction which
is also exactly solvable at ν = 2 by means of the method of
refermionization, as has been recently shown in Ref. 36. On
a technical level, the absence of dephasing and independence
of visibility on T1 at ν = 2 in the limit Ecτ � 1 comes from
the fact that the counting phase becomes −4π/ν = −2π in
this case. At a moderate charging energy Ecτ ∼ 1 both the
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FIG. 4. (Color online) The voltage dependence of the visibility (normalized to its noninteracting value; left) and of the phase (right) of
AB oscillations for ν = 2,3,4,5 in the strong-interaction limit, Ecτ � 1. Solid lines show numerically exact results; dashed lines represent
analytical results. The latter are, strictly speaking, valid in the asymptotic high-voltage limit eV τ � 1 but turn out to work almost perfectly
already at very modest values of voltages, eV τ/π � 0.5.

dephasing and the dependence on T1 in the visibility of ν = 2
MZI are restored; see Sec. II C.

In the case ν = 3 an infinite number of lobes is observed.
As discussed above, the visibility reaches zero at minima when
(and only when) the transmission is T1 = 1/2. The reason for
this special role of the point T = 1/2 is as follows: In this
case the real parts of the two exponents are equal, Re λ1 =
Re λ2.

For ν � 4 our model predicts only one central and one side
lobe. Note that at ν = 4 the exponents λ1,2 logarithmically
diverge at T1 → 1/2. This is the reason why at ν = 4 we have

chosen to plot V(V ) and αAB(V ) for a slightly different value
T1 = 0.45 (see Fig. 4).

We turn now to the effect of a dilution of the impinging cur-
rent due to the electron scattering at an additional QPC, QPC0,
which is put outside of the interferometer. At R0 < 1 the
QPC0 generates the double-step distribution function f+(ε) =
T0θ (−ε) + R0θ (eV − ε) for incoming electrons, which affects
the power-law exponent and serves as an additional source
of dephasing. The effect of QPC0 is particularly noticeable
in the strong-interaction model with ν = 2, since in this
situation no dephasing and no power-law decay of oscillations
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FIG. 5. (Color online) Visibility of AB oscillation at ν = 2, T1 =
0.5, and strong interaction, Ecτ � 1, in the presence of an additional
quantum point contact, QPC0. The curves from top to bottom were
evaluated numerically for the reflection coefficient of QPC0 equal to
R0 = 0.9, 0.7, 0.5 and 0.3.

is found in the absence of QPC0 (see above). In Fig. 5 we
show the visibility in this situation, with half-transmitting
QPC1, T1 = 1/2, and for different values of the reflection
coefficient R0 of QPC0. In the case R0 > 1/2 the suppression
of visibility with voltage can be roughly characterized by the
dephasing rate 1/τφ = (eV/2π ) ln(2R0 − 1), which diverges
logarithmically at R0 → 1/2. At this value of R0 the behavior
of the MZI visibility changes from the regime with multiple
side lobes, characterized by periodic oscillations in V(V ) with
a typical period ∼2π/τ , to the regime with only one node.
Such a transition in the behavior of visibility under variation
of R0 has been first found in Ref. 32 in the weak-tunneling
regime T1 � 1 for the short-range e-e interaction model.
Recently, such an effect of QPC0 on the visibility was observed
experimentally.14 We believe that the experimental conditions
of long-range interaction and T1 ≈ 1/2 are closer to the ones
studied within our model.

As discussed in more detail in Sec. IV C3 the appearance of
the visibility fringes in our model stems from the superposition
of two multiparticle amplitudes having the relative phase shift
eV τ . These amplitudes correspond to processes with different

number of particle-hole excitations between two Fermi edges.
In other words, the lobe pattern in the visibility is a many-body
effect linked to e-e interaction.

C. The case of moderate strength of interaction

In this section we discuss the results for visibility in the case
of not too strong e-e interaction, Ecτ ∼ 1. We mainly consider
here the case ν = 2 for the following two reasons. First, the
majority of experimental data for MZIs has been collected for
this filling factor. Second, contrary to higher filling factors,
at ν = 2 a finite (rather than infinite) value of Ecτ changes
the result qualitatively, since there is no dephasing and no T1

dependence at Ecτ → ∞.
The numerically calculated plots of visibility for trans-

parencies T1 = 0.5 and T1 = 0.2 are shown in Fig. 6. It is seen
that the finite charging energy Ec gives rise to the decay of
visibility V(V ) with bias contrary to its behavior at Ecτ → ∞
discussed in Sec. II B. Note also that nodes (zero-visibility
points) inV(V ) are generally present only in the case T1 = 1/2.
At the transmission coefficient close (but not equal) to one half
the nodes are superseded by deep minima. Further, the period
of oscillations increases with decreasing Ec. However, the
estimate e(�V ) ∼ 2π/τ for the scale of oscillations remains
valid up to the moderate charging energy Ec ∼ 1/τ . As an
example, Fig. 6 shows that at Ecτ = π the period is larger
than its strong-interaction limiting value e(�V ) = 2π/τ by a
factor �1.5.

The dephasing rate 1/τφ describing the exponential sup-
pression (∝e−τ/τφ ) of the visibility with bias is found to be

τ−1
φ = − eV

2πτ

∫ τ+t̄

−∞
Re{ln[1 + R1(e4iθ+(t) − 1)]} dt, (17)

where t̄ is the time when the electron enters the interferometer
and θ+(t) is the time-dependent “counting” phase given by

θ+(t) = −1

ν
Im[J>(t̄ − t) − J>(τ − t + t̄)], (18)

with the function J>(t) defined below in Eq. (52). The phase
θ+(t) is shown in Fig. 7 for ωcτ = 2 and ωcτ = 10. In the
limit Ecτ � 1 the time dependence of θ+(t) approaches the
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FIG. 6. (Color online) Bias dependence of visibility of MZI with ν = 2 for the moderate interaction strength (ωcτ = 2, solid blue curve)
in comparison to the limit of strong interaction (ωcτ → ∞, dashed red line), where ωc = νEc/π is the charge relaxation frequency. Note that
at finite ωc the nodes in visibility are present only at T1 = 1/2.
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FIG. 7. (Color online) Time-dependent “counting” phase for ν = 2 and two strengths of Coulomb interaction, ωcτ = 2 and ωcτ = 10,
where ωc = νEc/π is the charge relaxation frequency. The phase approaches the “window” function, Eq. (19), in the strong-interaction limit
Ec → ∞.

“window” function,

θ+(t) =
{−π/ν, t ∈ [t̄ ,t̄ + τ ],

0, t /∈ [t̄ ,t̄ + τ ],
(19)

causing the dephasing rate to vanish at ν = 1,2. If one
introduces the effective charge e∗(t)/e = θ+(t)/π , then it can
be physically interpreted as the optimal charge fluctuation on
the upper arm of the MZI which promotes scattering of the
transport (“trial”) electron from one arm of the interferometer
into the other.53 Loosely speaking, if such scattering event
starts at a time instant t̄ , then it finishes no later than t̄ + τ [cf.
the upper bound of the time integral in Eq. (17)]. It means that
an electron entering the MZI at time t̄ cannot be influenced
by those electrons which enter at times larger than t̄ + τ ,
since by the latter time the trial electron leaves the interior
interacting region of the system through the second QPC. On
the other hand, and perhaps somewhat counterintuitively, a
typical arm-to-arm electron scattering is generally preceded
by a rearrangement of the charge e∗(t) on the MZI at all times
t < t̄ . We thus see that the single electron transfer through
the MZI in the presence of e-e interaction is a collective
many-body process involving many electrons.

For completeness we also studied the influence of inequiva-
lent arms which differ either in lengths L+ �= L− or in charging
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FIG. 8. (Color online) Visibility of AB oscillations at ν = 2, T1 =
0.5 for different charging energies Ec+/Ec− inside the upper and
lower arm, respectively. Both arms are of equal length. Asymmetric
coupling (solid red line) does not enhance dephasing as compared
to the symmetric case (dashed blue line), but prevents the visibility
from dipping to zero.

energies Ec+ �= Ec−. We found that an asymmetry in charging
energy leads merely to a small modification of the lobe energy
scale (see Fig. 8 where Ec−/Ec+ = 3/2). A moderate (∼10%)
asymmetry in the arm lengths also leaves the visibility almost
unaffected, see Fig. 9. On the other hand, a stronger (∼50%)
asymmetry in the lengths substantially suppresses the visibility
and spoils the lobe pattern, as also shown in Fig. 9.

Finally, we considered the effect of moderate interaction
strength at filling ν = 1; see Fig. 10. While for ν = 1 the
visibility does not oscillate at all in the strong-interaction
limit, the oscillations start to develop when the interaction
strength is made finite, since the counting phase deviates
from the value −4π/ν = −4π . For not-too-strong interaction,
ωcτ � 1, the oscillations acquire the familiar lobe shape; see
Fig. 10. The lobe energy scale e�V is again of the order
2π/τ for ωcτ ∼ 1. The results are in good agreement with
those obtained by Refs. 33 and 34 within the same MZI model
with ν = 1.

Our results match well experimental observations in many
designs of MZIs at filling factor ν = 2, which happen to be
rather universal. Namely, at T1 close to 1/2 the experimentally
observed dependence of the visibility on voltage shows a
number of lobes whose amplitude gets suppressed with the
increase of bias. At the same time, the voltage dependence
of the AB phase is close to a piecewise constant function
with jumps of a magnitude π at minima of the visibility.
Further, we estimate the period of oscillations. As follows from
Fig. 6, the characteristic energy scale corresponding to the
first minimum in the visibility is e(�V ) ∼ 2π/τ = 2πv/L.
An estimate for the drift velocity in our phenomenological
model, v ∼ νe2/επh̄, can be obtained following Ref. 54,
where the excitation spectrum of the compressible Hall liquid
has been studied (see Sec. IV C of our previous work, Ref. 35,
for a more detailed discussion). Taking ε = 12.5 for the
dielectric constant of the GaAs heterostructure, one obtains
v ∼ 1.1 × 105 m/s. Note, that this estimate agrees well with an
effective velocity veff = 6.5 × 104 m/s found in Ref. 40 from
the analysis of data on energy relaxation in QH edge states at
ν = 2. For a typical size of the interferometer L ∼ 10 μm
we then get �V ∼ 40 μV, which is of the same order as
the experimentally observed energy scale of the visibility
oscillations.

Having completed a presentation and discussion of our key
results, we now turn to the exposition of the method and of
technical aspects of the derivation.
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FIG. 9. (Color online) Visibility of AB oscillations for different arm lengths, but equal charging energies in both arms. Dashed blue lines
represent equal arm lengths. A strong mismatch in flight times naturally suppresses the visibility and eventually destroys its lobe pattern.
Varying τ− at fixed τ+ changes the lobe energy scale, set by the inverse of τ+ + τ−.

III. NONEQUILIBRIUM FUNCTIONAL BOSONIZATION
FOR MACH-ZEHNDER INTERFEROMETER

In this section we show how the method of the nonequilib-
rium functional bosonization can be used to solve the model
of the MZI defined in Sec. II A. First, we present the Keldysh
action of the problem and derive the expression for the direct
and interference current (Sec. III A). Then we give details of
the real-time nonequilibrium instanton approach (Sec. III B).
Using the special structure of the Keldysh action, we show that
this method becomes exact in the case of the simplified model
of the Coulomb interaction (considered in the present paper)
in which electrons interact only in the interior region of the
MZI. Finally, we specify the form of the instanton for the case
of the constant interaction model.

A. Keldysh action and current

The theoretical model of the MZI, which we consider
throughout the paper, is defined by Eqs. (1) and (2). To make
our discussion more general, we first assume the arbitrary
interaction potential U±(x − x ′) between two electrons in the
same edge, which, however, is nonzero only if x,x ′ ∈ [x±

1 ,x±
2 ].

Because of the nonequilibrium character of the problem, we
proceed within the Keldysh-type framework.55,56 We decouple
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FIG. 10. (Color online) Visibility of AB oscillations at ν = 1,
T1 = 0.5, and moderate charging energies. The lobe energy scale
decreases with increase of the charging energy.

the interaction term Sint using the Hubbard-Stratonovich
transformation with fields ϕ�(x,t), where the index � = ±
labels two arms of the interferometer. Following the logic
of the Keldysh formalism, we then double the number of
Grassmann fields, ψ� = (ψf

� ,ψb
� ), as well as of the bosonic

fields ϕ� = (ϕf
� ,ϕb

�), where indices f and b denote the fields
residing on the forward and backward branches of the Keldysh
contour C, respectively. These steps lead us to the MZI action
in the form

S =
∑
�=±

∫
C

dtdx ψ̄�(i∂t + iv∂x − ϕ�)ψ�

+ 1

2

∫
C
dtdxdx ′ ϕ�(x)U�

−1(x − x ′)ϕ�(x ′). (20)

Integration along C is to be understood as
∫
C dt ′A(t ′) =∫

dt ′ [Af (t ′) − Ab(t ′)].
In terms of fermion fields ψ� the action S is quadratic; thus,

they can be integrated out. In this way we obtain the Keldysh
action A[ϕ] of the MZI, which depends on the electrostatic
potentials ϕ±(x,t) on two arms. The outlined method is
known as the functional bosonization. The integration over
the Grassmann fields ψ� should to be performed taking into
account the relation (4) at QPCs; this relation has to be satisfied
independently on each branch of the Keldysh contour. The
action A[φ] in the case of a generic nonequilibrium setup
formed by 1D electronic channels coupled by a number of local
scatters and by electron-electron interaction (“quantum wire
network”) has been found in our previous work.50 In particular,
the Keldysh action A[φ] describing the MZI can be expressed
in terms of the time-dependent single-particle scattering matrix
of the interferometer in the given configuration of the fields
ϕ

f/b
� , which we denote as Sf/b = S[ϕf/b](t,t ′). This S matrix

describes electron scattering at both QPCs and the propagation
of electrons along the arms of the MZI. The bosonized action
A[φ] has the form A = Aint + Aferm + δA. Explicitly,

Aint = 2
∑

�

∫
dξdξ ′ ϕc

�(ξ )

× [U−1
� (x,x ′)δ(t − t ′) − �A

� (ξ,ξ ′)
]
ϕq

� (ξ ′), (21)
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where we have denoted ξ = (x,t), and

Aferm + δA = −i Tr ln[1 − f̂ + S
†
be

iχSf f̂ ]

− 2
∑

�

Tr ϑ
q

0�f0. (22)

Let us explain notations and comment on different terms in the
action, Eqs. (21) and (22). In the above expression for Aint we
have used the Keldysh basis ϕ� = (ϕc

�,ϕ
q
� ), with “classical” and

“quantum” components being defined as ϕ
c,q
� = (ϕf

� ± ϕb
�)/2.

The advanced component �A of the 1D polarization operator,
when written in the frequency-coordinate representation, has
the explicit form

�A(ω,x,x ′)

= ν

2πv

[
−δ(x − x ′) + iω

v
e−iω(x−x ′)/v × θ (x − x ′)

]
. (23)

The combination of the polarization operator and the bare
interaction potential entering Eq. (21) determines the RPA
screened interaction potential,

V −1,A
� (ξ,ξ ′) = U−1

� (x,x ′)δ(t − t ′) − �A
� (ξ,ξ ′). (24)

The action Aferm has the form of the fermion determinant
and bears a close connection with the problem of electron
FCS.51 We have introduced the distribution functions of the
source reservoirs, f̂ = diag(f̂+,f̂−), where f̂± are diagonal
matrices in the channel space. Without QPC0, T0 = 0, their
components are f̂ n

±(t,t ′) = e−ieV n
±(t−t ′)f0(t − t ′). Here V n

± is
the voltage applied to the nth channel in the upper/lower arm
and

f0(t − t ′) = i

2π

1

t − t ′ + i0
(25)

is the time representation of the equilibrium Fermi distribution
function. For instance, for the MZI presented in Fig. 1 in
the case of vanishing transparency T0 = 0, the only nonzero
voltage is V 1

+ = V . At T0 > 0, when QPC0 is used to dilute
the impinging current, the function f 1

+ is the double-step
distribution in the energy domain and is given by

f 1
+(t − t ′) = [R0 e−ieV (t−t ′) + T0]f0(t − t ′) (26)

in the time representation. We have also introduced the
auxiliary “counting fields” χ̂ = diag(χ+,χ−) in the drains,
which enable us to find the number of electrons transferred
through the MZI. The determinant in Eq. (22) is evaluated
with respect to time, channel, and arm indices.

Next, we specify the S matrices Sf/b of the MZI which enter
Eq. (21) and encode all information about electron scattering.
We introduce the phases ϑ

f/b
� (t) accumulated between QPCs

1 and 2 due to interaction,

ϑf/b
� (t) = −v−1

∫
dx ′ ϕf/b

�

[
x ′,t + (x ′ − x1

�

)/
v
]
. (27)

Let now xS
� and xD

� be the coordinates of the source and drain
reservoirs. We also define the “time-delay” operator �lk =
diag(�lk

+,�lk
−), where

�lk
� (t,t ′) = δ

[
t − t ′ − (xl

� − xk
�

)/
v
]
, (28)

with indices k,l ∈ {S,1,2,D}. It coincides with a transfer
matrix from xk

� to xl
� along the arm � of the MZI in the

noninteracting limit. Assuming the absence of interaction
outside of the interferometer, we obtain the total S matrices

Sf/b = �D2Ŝ2�
21ei�̂eiϑ̂f/b

Ŝ1�
1S. (29)

Here Ŝ1 and Ŝ2 are the local scattering matrices of the first
and second QPCs. Further, �̂ is the diagonal flux matrix �̂ =
diag(�/2,−�/2) ⊕ 12ν−2, where � denotes the AB phase and
the sign ± distinguishes between the upper and the lower arms.
The direct sum (⊕) refers to the channel space and 1n is the
n × n-unity matrix. The matrix ϑ̂f/b = diag(ϑ̂f/b

+ ,ϑ̂
f/b
− ) has

an analogous structure. For the MZI scheme shown in Fig. 2,
only the outer channels are mixed by scattering. In this case,
Ŝj = ŝj ⊕ 12ν−2, with ŝj given by Eq. (5).

Finally, the counterterm δA in the action (22) is included
to cancel the equilibrium Fermi-sea contribution which does
not affect the nonequilibrium electron transport. The quantum
phase ϑ

q

0� entering δA is defined as ϑ
q

0�(t) ≡ ϑ
f
� [t + (xD

� −
x1

�)/v] − ϑb
� [t + (xD

� − x1
�)/v]; the trace (Tr) is taken over

channel and arm indices and also includes integration over
time.

The bosonized action A[ϕ,χ ] enables us to find the
generating function of the interferometer’s FCS as a functional
integral over ϕ,

Z( �χ) =
∫

Dϕ
f/b
± (x,t) exp {iA( ϕ, �χ )} . (30)

Then the number of electrons transferred to, say, the lower
drain during a long observation time t0 � max{h̄/eV,h̄v/L}
is obtained as

N− = −i∂χ− lnZ|χ=0 = 〈∂χ−Aferm|χ=0〉ϕ. (31)

The quantum mechanical average 〈· · ·〉ϕ here is understood
as the path integral over ϕ with the weight eiA, see Eq. (30),
but with “counting fields” χ put to zero. Since the Coulomb
interaction is assumed to be absent outside the interferometer
cell, Aferm simplifies considerably (in the rest we will not
explicitly state χ = 0 any longer):

Aferm = −i ln DetD, D ≡ 1 − f̂ + Ŝ
†
1e

2iϑ̂q

Ŝ1f̂ . (32)

The same action can be represented in the equivalent form as
Aferm = −i ln Det D̃, with

D̃ ≡ Ŝ1DŜ
†
1 = 1 − f̃ + e2iϑ̂q

f̃ , (33)

where f̃ plays a role of the nonequilibrium density matrix
of the interferometer. If the voltage is applied to the outer
channels only, then f̃ = f̃ 1 ⊕ (12ν−2 · f0), with

f̃ 1 ≡ ŝ1f̂
1ŝ

†
1

=
(

R1f
1
+ + T1f

1
− i

√
R1T1(f 1

+ − f 1
−)

−i
√

R1T1(f 1
+ − f 1

−) T1f
1
+ + R1f

1
−

)
. (34)

Note, that Aferm at χ = 0 depends on the scattering matrix s1

only. It also depends solely on the quantum field ϕq , but not on
the classical one. These special features stem from the chiral
nature of the MZI. The independence of Aferm on the classical
component of the field will play a crucial role in the sequel, as
it will allow us to find an exact solution of the problem.
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Using the definition (31) and the full χ -dependent fermion
action (22), one obtains the following intermediate expression
for N−:

N− = 〈
TrD−1s

†
1e

−iϑ̂b

e−i�̂�21†s†2|−〉
× 〈−|s2�

21eiϑ̂f

ei�̂s1f̂
〉
ϕ
. (35)

To derive this result we have taken into account that only outer
channels with a nonequilibrium distribution matrix f̂ 1 may
contribute to the transport of electrons and have introduced
the basis |±〉 in this linear subspace. Taking the trace over the
channels and using the explicit form of �12, given by Eq. (28),
we find N− =∑μκ Nμκ , where

Nμκ = 〈−|s2|μ〉〈κ|s†2|−〉
〈 ∫

dt̄ eiϑ
f
μ (t̄)−iϑb

κ (t̄+τμ−τκ ) ei�μ−i�κ

×〈μ|s1(f̂ ◦ D−1)(t̄ ,t̄ + τμ − τκ ) s
†
1|κ〉

〉
ϕ

. (36)

In this expression we have introduced �± = ±�/2, which are
just the AB phases accumulated at each arm of the MZI, and
defined τ± = (x2

± − x1
±)/v, the flight time of electrons along

the upper/lower arm. The sign “◦” denotes the convolution in
the time and channel space. Clearly, the diagonal (Nμμ) and
off-diagonal (Nμ,−μ) elements give, respectively, the direct
and interference contributions to the total current.

B. Exact solution: From many-body to single-particle problem

In general, the functional integral for interacting electrons
in a quantum wire network cannot be evaluated exactly. In
Refs. 35, 50, and 57 an instanton approach has been developed
which yields a controllable approximation to the problem for
the case of weak tunneling between the channels. It turns
out that for the problem considered here this method becomes
exact (for any tunneling strength). Specifically, we show below
that the functional integral can be exactly evaluated in a fashion
similar to the exact solution of the problem of nonequilibrium
Luttinger liquids in Refs. 44, 45, and 58. In fact, we will
see later that there is a deep connection between the two
problems.

We have shown above that the number of electrons trans-
ferred through the MZI is given by Eq. (36). This expression
implies the path integral over all realization of the fields
ϕ

f/b
± (x,t). As we reveal below, this functional integral can be

performed exactly. What crucially simplifies the calculation
of the quantum mechanical average is the fact that D and
hence the μκ-matrix elements in Eq. (36) together with Aferm

do not contain ϕc or, equivalently, ϑc. The classical fields
enter the RPA action Aint and the phases ϑ

f/b
� = ϑc

� ± ϑ
q
� ,

and appear there only linearly. Therefore, ϕc can be exactly
integrated over. To this end let us introduce sources J

so that

AJ ;μκ ≡ ϑc
μ(t̄) − ϑc

κ (t̄ + τμ − τκ )

=
∑

�

∫
dξ J q

�;μκ (t̄ ; ξ )ϕc
�(ξ ). (37)

We see that for μ = κ the source vanishes. On the contrary, at
μ = −κ the explicit expression for J reads

J q
μ;μκ (t̄ ,ξ ) = −v−1δ

[
t̄ + (x − x1

μ

)/
v − t

]
,

(38)
J q

κ;μκ (t̄ ,ξ ) = v−1δ
[
t̄ + τμ − τκ + (x − x1

μ

)/
v − t

]
.

The physical meaning of the source terms in the action is rather
obvious. They describe an electron transfer between two Hall
edges of the MZI, thereby creating a hole in the arm κ and
adding an extra electron into the arm μ.

Decomposing ϑf/b in Eq. (36) into the classical and
quantum parts, we rewrite the formula for the particle numbers
Nμκ in the form

Nμκ = 〈−|s2|μ〉〈κ|s†2|−〉
∫

DϕcDϕq

∫
dt̄ eiAint+iAJ ;μκ

×{eiAferm+iδAAμκ (t̄ ,t̄ + τμ − τκ )}, (39)

where the prefactor Aμκ is defined as

Aμκ (t1,t2) = eiϑ
q
μ(t1)+iϑ

q
κ (t2) ei�μ−i�κ

×〈μ|s1(f̂ ◦ D−1)(t1,t2) s
†
1|κ〉. (40)

As has been emphasized previously, the fermion action
Aferm + δA and the matrix D are functionals of ϕq only; see
Eq. (32). Hence, one can first perform the integration over
the classical field ϕc. Taking into account that Aint + AJ ;μκ is
linear in ϕc, we obtain∫

Dϕc exp[iAint + iAJ ;μκ ]

=
∫

Dϕc exp[2iϕc(V A)−1ϕq + iϕcJ q] ∝ δ(ϕq − ϕq
∗ ),

(41)

where the δ function fixes the quantum component ϕq to be
equal to the saddle-point trajectory

ϕq
∗�(ξ ) = −1

2

∑
σ

∫
dξ ′ V A

�σ (ξ,ξ ′)J q
σ ;μκ (t̄ ,ξ ′). (42)

The δ-function constraint renders trivial the subsequent
integration over ϕq . Taking quantum-mechanical average
〈· · ·〉ϕ is therefore reduced to the evaluation of the integrand
eiAferm+iδAAμκ on the optimal trajectory ϕq = ϕ

q
∗ . The particle

numbers are then simplified to

Nμκ = 〈−|s2|μ〉〈κ|s†2|−〉
∫

dt̄ eiAferm+iδA

×Aμκ (t̄ ,t̄ + τμ − τκ )|ϑq=ϑ
q
∗ , (43)

with the “quantum” saddle-point phase (or “instanton”)

ϑq
∗�(t) = −v−1

∫
dx ′ ϕq

∗�

[
x ′,t + (x ′ − x1

�

)/
v�

]
. (44)

In what follows we frequently refer to ϑ
q
∗ as the “counting

phase” in view of an analogy between the action Aferm and the
theory of the FCS.

To reiterate the logic, we have reduced the path integration
over ϕ to the evaluation of the integrand for the numbers
Nμ,−μ on the quantum saddle-point trajectory ϕ

q
∗ . This is the

main result of the present subsection. The optimal quantum
electrostatic field is related via the RPA interaction potential
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to the source terms J which describe the electron transfer
between two edges of the MZI; see Eq. (42). The bare
interaction potential enters the result through the RPA kernel
V A(ξ,ξ ′); thus, the outlined method is very general, provided
the e-e interaction can be disregarded outside of the MZI
cell. The result is expressed in terms of determinants and
resolvents that are of single-particle complexity; thus, we have
achieved a dramatic simplification as compared to the original
many-body problem. Needless to say, the obtained apparently
single-particle quantities carry all the physical information
about the many-body physics of the problem, including, in par-
ticular, nonequilibrium orthogonality-catastrophe exponents
and nonequilibrium dephasing.

Let us now discuss the direct (incoherent) contribution to
the current which arises from the diagonal numbers (N++
and N−−). Within our model, they are not affected by e-e
interaction. Indeed, in this case the sources vanish, J q

σ ;μμ = 0.
Hence, the instanton trajectory is trivial, ϑq

∗ = 0. One thus gets
D = 1, Aferm + δA = 0, and Aμμ = R1f

1
μ + T1f

1
−μ, which

yields

N++ = T2Tr[R1f+ + T1f−], N−− = R2Tr[R1f− + T1f+].

(45)

Taking the Tr in the time space, we have

N++ + N−− = eV t0

2πh̄
(T2R1 + R2T1) . (46)

Thus, the direct current is linear in bias; it is the same as in the
noninteracting limit.

C. Constant interaction model

In this section we specify the counting phase for the constant
interaction model with the charging energy Ec, as it is defined
by Eq. (2). Allowing for different strengths of coupling on
different arms, the bare interaction potential U±(x,x ′) = Ec±
if both x,x ′ ∈ [x1

±,x2
±] on the same arm and U±(x,x ′) = 0

otherwise. This form leads to the RPA potential V A
± (ω), which

is nonzero only if x,x ′ ∈ [x1
±,x2

±] and constant inside these
regions,

V A
± (ω) = Ec±

(
1 − Ec±

∫ x2
±

x1±
dxdx ′ �A(ω; x,x ′)

)−1

. (47)

Using Eq. (23) one has∫ x2
±

x1±
dxdx ′ �A(ω; x,x ′) = iν

2π

1 − e−iωτ±

ω
. (48)

Defining the charge relaxation frequency as ωc± = νEc±/(2π )
we obtain

V A
± (ω) = 2πωc±

ν

ω

ω − iωc±(1 − e−iωτ± )
. (49)

We now use this RPA result to find the instanton potential ϕ
q
∗

and the phase ϑ
q
∗ . By virtue of Eq. (42) we have

ϕq
∗η(ξ ) = −1[x1

η ,x2
η ](x)

ηκ

2v

∫ x2
η

x1
η

dx ′ V A
[
t − t̄η − (x ′ − x1

η

)/
v
]
,

(50)

Im Jana
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Im Jnum

Re Jnum
Im J

Re J
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t Τ
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Π

FIG. 11. (Color online) Correlation function J >: comparison of
analytic approximation J >

ana given by Eq. (53) and numerical results
J >

num for ωcτ = 25.

where 1[x1
η ,x2

η ](x) are the projectors on the intervals where e-e
interaction and thus the potentials are present and t̄η = t̄ +
τη − τκ . Taking into account the relation (44) between the
phase and the potential, one finds

ϑq
∗η(t) = ηκ

v2

∫ x2
η

x1
η

dx ′dx ′′
∫

dω

2π
e−iω[t−t̄η+(x ′−x ′′)/v]V A

η (ω)

= κη

ν
Im[J>

η (t̄η − t) − J>
η (τη − t + t̄η)], (51)

where we have introduced the phase-phase correlation function

J>
η (t) =

∫ +∞

0
dω

iωcη(1 − eiωτη )

ω[ω + iωcη(1 − eiωτη )]
(e−iωt − 1). (52)

The function J>
η (t) has appeared and was analyzed in our

previous work (see Sec. 4.3.4 of Ref. 50) in the context of
theory of Fabry-Perot QH interferometer. In the limit of strong
coupling ωcητ � 1 and long time ωcηt � 1 it can be well
approximated by the logarithmic asymptotic

J>(t) � −γ − ln

[
− t + ia

a

]
, a ∼ ω−1

cη , (53)

with a being the short-time cutoff; see Fig. 11. Therefore,
except for times t in a close vicinity of either t̄η or t̄η + τη, the
counting phase simplifies to

ϑq
∗η(t) = ϑ̄ηwt̄η,τη

(t), ϑ̄η = κηπ/ν, (54)

with the κ-dependent constant ϑ̄η and the unit window function

wt̄,τ (t) = θ (t − t̄) − θ (t̄ + τ − t). (55)

In the case of moderate charging energies, ωc±τ ∼ 1, one has
to resort to a numerical evaluation of the (imaginary part of)
the correlation functions J>

± (t). We have ϑ
q
∗η(t) = −κη θ+(t),

where the function θ+(t) is independent of κ and η. Typical
plots of θ+(t) (at ν = 2) are shown in Fig. 7 of Sec. II C. For
brevity we omit the ∗ index when denoting the counting phase
ϑ

q
η (t) = ϑ

q
∗η(t) in the following.

In passing we note that the time-dependent counting phase
ϑ+(t) in our theory is the analog of the kernel Q(x), introduced
in Ref. 34 (cf. Fig. 7 in this work). Similar to the phase ϑ+(t),
this kernel depends on the nature of interaction potential and
is used to describe the phase, which an electron, passing the
MZI, accumulates due to interaction with other electrons.
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IV. STRONG INTERACTION: ANALYTICAL SOLUTION

As shown in Sec. III, the considered model of a MZI
with inside-only interaction can be exactly solved by the
nonequilibrium functional bosonization method. The result
is expressed in terms of single-particle objects: determinants
and resolvents of Fredholm operators. While it is not too
difficult to evaluate such quantities numerically, it would be
highly advantageous to have a fully analytical solution of the
problem. Such a solution is obtained in the present section for
the regime of strong interaction, Ecτ � 1, in arms of equal
lengths, x

1,2
+ = x

1,2
− , τ+ = τ− = τ . This solution allows us to

understand much better the physics of the problem, including
the formation of the visibility oscillations (taking a form of
lobes in certain situations as discussed above) and their decay
with voltage. Further, while determining the exact solution, we
establish a deep connection of the present problem with that
of nonequilibrium Luttinger liquid and, more generally, with
a broader class of nonequilibrium many-body problems.

As we have demonstrated in Sec. III, the counting phase
in the strong-interaction regime, Ecτ � 1, is reduced to
the window function on the interval [t̄ ,t̄ + τ ]. We show in
Sec. IV A that under this condition the interference current
can be represented in terms of singular Fredholm determinants
generalizing Toeplitz determinants with Fisher-Hartwig sin-
gularities. Using asymptotic properties of such determinants
(Sec. IV B), we further derive the high-voltage form of the AB
contribution to the current (Sec. IV C). The result is Eq. (7),
which has been already discussed in detail in Sec. II B.

A. Reduction to a single-channel problem

In Sec. III B we have expressed the interference current
in terms of the operator D and the nonequilibrium density
matrix f̃ which, in addition to being the matrices in the
time space, have also a nontrivial channel structure: For
given times t1,t2 they are matrices from C2×2. (Since all the
relevant nonequilibrium physics arising due to scattering at
QPCs concerns only the outer channels, we focus on these
two channels. In what follows we consider projections of all
operators, such as ϑ̂q , f̂ , onto the two outer channels; thus, they
retain the smaller 2 × 2-channel structure.) The double index
structure (times and channels) very seriously complicates the
computation of the determinant and finding the inverse ofD. In
this section, using the Riemann-Hilbert technique, we reduce
the matrix determinant and resolvent to a product of certain
single-channel determinants. We show that the corresponding
operators belong to the class of singular Fredholm operators
that may be considered as a generalization of Toeplitz matrices
with Fisher-Hartwig singularities. The reduction to a single
channel problem allows us to calculate analytically the current
in MZI; see Secs. IV B and IV C below.

1. Heuristic argument: Relation to full counting statistics

Before presenting a rigorous derivation of the reduction
formula, we put forward a more heuristic argument in its favor.
This argument is based on a connection between the fermion
action Aferm and the theory of the FCS. Consider the CGF for
the statistics of N±, the numbers of noninteracting electrons
which tunnel through the QPC1 during the time interval

[t̄ ,t̄ + τ ] into the upper/lower arm, respectively,

χτ (λ+,λ−) = 〈eiλ+N̂++iλ−N̂−〉, (56)

with corresponding “counting fields” λ±. The brackets here
mean a quantum-statistical average. It is known51 that this
CGF can be represented as a functional determinant,

χτ (λ+,λ−) = Det[1 − f̂ + s
†
1e

iλ̂s1f̂ ], (57)

where f̂ = diag(f+,f−) is the incoming distribution matrix of
the first (outer) channel of the MZI. The counting fields here
are assumed to have a time dependence given by the window
function (55). In this way the measuring time is encoded in
the above formula. Let f 1

− be set to the equilibrium Fermi
distribution and f 1

+ be the Fermi distribution with the chemical
potential eV . Asymptotically, at eV τ � 1, and dropping the
equilibrium contribution i(λ+ + λ−)(τ/2π )

∫ 0
−∞ dε (which is

infinite because of the chirality), we obtain

ln[χτ (λ+,λ−)] � eV τ

2π
ln[R1e

iλ+ + T1e
iλ− ]. (58)

By comparing the Eqs. (57) and (32) we conclude that in the
limit Ecτ � 1

eiAferm = DetD = χτ (2ϑ̄+,2ϑ̄−). (59)

Because of this relation to the theory of FCS we frequently
refer to the matrixD as the “counting operator.” In the presence
of scattering at QPC1 this operator possesses a 2 × 2-matrix
structure in the channel space. Consider further a single chiral
channel with some (in general, nonequilibrium) distribution
function f and the phase δ(t) = wt̄,τ (t)δ. Then the generating
function �τ [δ,f ] = 〈eiδN̂ 〉 of the number N of electrons
passing by some observation point during the time interval
[t̄ ,t̄ + τ ] is given by the determinant of a “scalar” counting
operator of the kind

�τ [δ,f ] = Det[1 + (eiδ − 1)f ]. (60)

We now argue that the determinant of the matrix counting
operator D, evaluated on the Fermi-like distribution functions
(which is the case of reflectionless QPC0 with R0 = 1) can
be factorized into a product of “scalar” determinants of the
type (60).

Let us take a closer look on the random numbers N̂± in
the CGF given by Eq. (56). In the strongly nonequilibrium
situation which we consider, i.e., when voltage dominates
over the temperature, they should be significantly negatively
correlated (due to partition at QPC1), while their sum, N̂ =
N̂+ + N̂− should be much less sensitive to scattering and
will only weakly fluctuate around 〈N̂〉 = eV τ/(2π ) + N0 with
N0 being some equilibrium contribution. (At the strictly zero
temperature and long time limit N̂ does not fluctuate at all.)
We thus expect that N̂ and N̂+ are only weakly correlated.
Taking further into account that ϑ̄+ = −ϑ̄−, we obtain

χτ (2ϑ̄+,2ϑ̄−) = 〈
e2iϑ

q
+N̂++2iϑ

q
−N̂−
〉

= 〈
e4iϑ

q
+N̂+−2iϑ

q
+N̂
〉 � 〈e4iϑ

q
+N̂+
〉〈
e−2iϑ

q
+N̂
〉
. (61)

This representation maps our two-channel problem to three
single-channel ones. The term 〈e4iϑ̄+N̂+〉 requires us to count
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the charge in a single channel of the upper arm. It is
characterized by the distribution function

f++(ε) = R1θ (eV − ε) + T1θ (−ε)

established by the QPC1; thus, we conclude that

〈e4iϑ̄+N̂+〉 = �τ [4ϑ̄+,f++]. (62)

The second term, 〈e−2iϑ̄+N̂ 〉 = 〈e−2iϑ̄+(N̂++N̂−)〉, counts the total
charge in both arms. In view of charge conservation, this total
charge can be also measured in the incoming channels, the
contributions of which are uncorrelated. The corresponding
distribution functions are f+(ε) = θ (eV − ε) and f−(ε) =
θ (−ε). Therefore, we get

〈e−2iϑ̄+N̂ 〉 = �τ [−2ϑ̄+,f+] �τ [−2ϑ̄+,f−]. (63)

Combining the relations (61)–(63) we arrive at the following
result:

χτ (2ϑ̄+, − 2ϑ̄+)

= �τ [4ϑ̄+,f++]�τ [−2ϑ̄+,f+] �τ [−2ϑ̄+,f−]. (64)

Finally, we complete the argument by using Eq. (59), which
yields the desired decomposition of the matrix determinant
DetD into a product of scalar determinants:

DetD = �τ [4ϑ̄+,f++]�τ [−2ϑ̄+,f+] �τ [−2ϑ̄+,f−]. (65)

The following remark is in order here. The equalities
between the determinants arising in our context and in the
context of the counting statistics are, strictly speaking, valid for
not-too-large values of the counting phase. For larger phases
the counting statistics determinants show singularities and
switch to another Riemannian sheet, while our determinants
behave analytically; see Refs. 45 and 58 for an extended
discussion. Physically, this is due to the fact that the counting
statistics “knows” about the charge quantization, whereas for
our problem the charge quantization is of no relevance. This
remark does not affect the validity of the final result (65), since
both sides of this equation are analytic functions of the phases.

2. Rigorous proof: Riemann-Hilbert method

We are now going to prove Eq. (65) rigorously by analyzing
the associated Riemann-Hilbert (RH) problem. We consider
the function

Y (t) = exp

[
ϑ̄+
π

ln
t − t̄

t − t̄ − τ

]
, (66)

which is analytic and nonzero in the complex plane t ∈ C,
except for the interval of real times [t̄ ,t̄ + τ ]. It has the property
Y (t) → 1 at |t | → ∞. Next we define the functions Y±(t) =
Y (t ± i0) on the real axis, t ∈ R. They solve the (scalar) RH
problem Y−1

− (t)Y+(t) = e−2iϑ
q
+(t), where ϑ

q
+(t) = ϑ̄+wt̄,τ (t).

The functions Y±(t) obey important identities,

f <
0 Y− f <

0 = f <
0 Y−, f >

0 Y− f >
0 = Y− f >

0 ,
(67)

f <
0 Y+ f <

0 = Y+ f <
0 , f >

0 Y+ f >
0 = f >

0 Y+,

where the convolution in time on the left-hand side of these
relations is implied and we set f <

0 (t) ≡ f0(t) and f >
0 (t) =

δ(t) − f0(t) = f0(−t). As an example, the first relation in

Eq. (67) reads in explicit notations as follows:∫
dt

i/2π

t1 − t + i0
Y−(t)

i/2π

t − t2 + i0
= i/2π

t1 − t2 + i0
Y−(t2).

(68)

Due to analytical properties of Y−(t) this integral is defined
by the residue at t = t2 − i0 in the lower half plane. We also
note that in the energy domain at zero temperature, f <

0 is the
projector on occupied states, whereas f >

0 projects on unoc-
cupied states. Therefore, we have (f >

0 )2 = f >
0 , (f <

0 )2 = f <
0 ,

f >
0 f <

0 = 0 = f <
0 f >

0 , and f <
0 + f >

0 = 1. The same relations
hold in the time domain as well, where the product of two
operators is understood in the sense of convolution. Using the
basic identities (67) one derives another two useful relations,

f <
0 Y− f >

0 = 0, f >
0 Y+ f <

0 = 0. (69)

Let us now turn to the analysis of the counting operator
D defined by Eq. (32). We introduce the gauge matrix � =
diag(e−ieV+t ,e−ieV−t ) comprising voltages V± applied to the
outer channel in the upper/lower arms. By using these gauge
factors one rewrites D as

D = �
(
f >

0 + �−1s
†
1e

2iϑ̂q

s1�f <
0

)
�−1. (70)

With the use of solution to the RH problem we have the identity
(ϑq

+ = −ϑ
q
−)

�−1s
†
1

(
e2iϑ

q
+ 0

0 e2iϑ
q
−

)
s1� = �−1s

†
1

(
e4iϑ

q
+ 0

0 1

)
s1� Y−1

− Y+.

(71)

Bearing in mind that Y−1
− is a local in time operator without

matrix structure in the channel space, one can commute it to
the left of Eq. (71). In this way we find

D = �Y−1
−

[
Y−f >

0 + �−1s
†
1

(
e4iϑ

q
+ 0

0 1

)
s1�Y+f <

0

]
�−1.

(72)

To proceed further we apply the unitary transformation, D̃ =
s1Ds

†
1, and factorize the operator D̃ into a product of scalar

counting operators. This is possible by virtue of the identity

(f >
0 + Af <

0 ) (Y−f >
0 + Y+f <

0 ) = Y−f >
0 + AY+f <

0 , (73)

which is valid for a local in time 2 × 2 matrix A(t). As one can
check, the above relation follows directly from the projector
properties, given by Eqs. (67) and (69). By setting

A = �−1s
†
1

(
e4iϑ

q
+ 0

0 1

)
s1�, (74)

we obtain

D̃ = Y−1
− s1�

[
f >

0 + �−1s
†
1

(
e4iϑ

q
+ 0

0 1

)
s1�f <

0

]
�−1s

†
1

× s1�[Y−f >
0 + Y+f <

0 ]�−1s
†
1. (75)
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If one further introduces operators,

D∗ ≡ 1 +
(

e4iϑ
q
+ − 1 0

0 0

)
f̃ , (76)

D0 ≡ 1 + (e−2iϑ
q
+ − 1

)
f̂ , (77)

where

f̃ = s1f̂ s
†
1 =

(
f++ f+−
f−+ f−−

)

is the nonequilibrium density matrix in the MZI cell. Explicitly,
we have f++ = R1f

1
+ + T1f

1
− and f+− = i(R1T1)1/2(f 1

+ −
f 1

−). Then D̃ is equivalently rewritten as

D̃ = Y−1
− D∗s1Y−D0s

†
1. (78)

To obtain the operator D0 we have used here once again the
solution of the RH problem. We hence conclude that

Det D̃ = DetD∗ DetD0. (79)

It is now straightforward to evaluate two determinants appear-
ing on the right-hand side of this relation. In the case of matrix
D∗ we obtain

D∗ =
(
D∗∗

(
e4iϑ

q
+ − 1

)
f+−

0 1

)
, (80)

where the scalar (in the channel space) counting operator

D∗∗ ≡ 1 + (e4iϑ
q
+ − 1

)
f++ (81)

is expressed solely in terms of the upper diagonal block of the
density matrix f++, which, obviously, has the meaning of the
nonequilibrium distribution function in the upper arm of
the MZI. As a result,

DetD∗ = �τ [4ϑ̄+,f++]. (82)

In the case of matrix D0 the incoming density matrix f̂ is
diagonal in the channel basis, which yields

DetD0 = �τ [−2ϑ̄+,f+] �τ [−2ϑ̄+,f−]. (83)

Combining together Eqs. (79), (82), and (83), we obtain the
relation (65). The proof of this formula is thus completed.

3. Inversion of the matrix counting operator

In the preceding section we have proven that the determi-
nant Det D̃ (or, equivalently, the fermion action Aferm) can be
expressed in terms of determinants of single-channel (scalar)
operators. For the evaluation of the interference current one
also needs to consider off-diagonal matrix elements (μ = −κ)
〈μ|f̃ D̃−1(t̄ ,t̄)|κ〉; see Eq. (40). The goal of this section is to
show that, similar to the action, the above matrix elements can
be also expressed via the scalar counting operator D∗∗, given
by Eq. (81).

According to Eq. (78), the inverse of D̃ can be written as

D̃−1 = s1D−1
0 Y−1

− s
†
1D−1

∗ Y−. (84)

Making use of the solution to the RH problem we then
represent the counting operator (77) in the form

D0 = �Y−1
− (Y−f >

0 + Y+f <
0 )�−1. (85)

The basic relation of the RH method,

(Y−f >
0 + Y+f <

0 )−1 = Y−1
− f >

0 + Y−1
+ f <

0 , (86)

easily gives the inverse of D0 [one can check the former iden-
tity by multiplying two operators to get the unity, employing
for that relations (67) and (69)]. The inverse of D̃ then reads

D̃−1 = s1�̂[Y−1
− f >

0 + Y−1
+ f <

0 ]�̂−1s
†
1D−1

∗ Y−, (87)

and the subsequent convolution with the MZI’s density matrix
f̃ yields

f̃ D̃−1 = s1�̂f0�̂
−1s

†
1D̃−1 = Y−1

+ f̃D−1
∗ Y−. (88)

The required (μt̄,κt̄) matrix element of this operator then takes
the form

〈μ|f̃ D̃−1(t̄ ,t̄)|κ〉 = (Y−1
+ Y−)(t̄)〈μ|f̃D−1

∗ (t̄ ,t̄)|κ〉
= e2iϑ̄+〈μ|f̃D−1

∗ (t̄ ,t̄)|κ〉. (89)

The inversion of the operator D∗ appearing here is not
exactly trivial, but it is simplified a lot due to its triangular
structure (80) in the channel space. Note that the relation
D∗∗(t1,t2) = δ(t1 − t2) for t1 /∈ [t̄ ,t̄ + τ ] implies the same for
the inverse, D−1

∗∗ (t1,t2) = δ(t1 − t2) for t1 /∈ [t̄ ,t̄ + τ ] (this can
be seen by employing the block matrix representation or using
the reformulation in terms of the RH problem). One therefore
obtains

〈−|f̃D−1
∗ (t̄ ,t̄)|+〉 = f−+D−1

∗∗ (t̄ ,t̄) = f−+wt̄,τ D−1
∗∗ (t̄ ,t̄)

(90)

and the analogous relation for the conjugated matrix element,

〈+|f̃D−1
∗ (t̄ ,t̄)|−〉 = [

f+− − f++D−1
∗∗
(
e4iϑ

q
+ − 1

)
f+−

]
t̄ ,t̄

= D−1
∗∗ wt̄,τ f+−(t̄ ,t̄). (91)

It is worth pointing out that the instanton phases ϑ̄η = ±ηπ/ν

in Eqs. (90) and (91) have opposite signs (and hence D∗ and
D∗∗ differ between these two equations). Since under complex
conjugation fη(t)∗ = fη(−t), these two matrix elements are
indeed complex conjugates of each other. Relations (90)
and (91) are the final result of this section and are used below
in Secs. IV and V for evaluation of the interference current.

B. Toeplitz matrices and their generalizations

In this section we relate the current and the action to the
theory of Toeplitz matrices. We review key results on the large-
N asymptotic behavior of Toeplitz determinants with “Fisher-
Hartwig singularities” and of a more general class of singular
Fredholm determinants. These results sre then used to calculate
the determinant and the inverse of the operator D∗∗, which
serves as the basis for the calculation of the AB conductance
made in Sec. IV C.

1. From integral operators to Toeplitz matrices

We relate first the fermion action Aferm to the theory of
Toeplitz matrices. As we have shown in the previous section,
the action is expressed in terms of single-particle counting
operators; see Eq. (65).

The linearized single-particle spectrum used in our 1D
model lacks upper and lower band edges. Thus, a definition
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of the determinant of such operators requires an ultraviolet
(UV) regularization. One possible way to implement the
regularization is a discretization of the time coordinate t in
steps �t = π/�, which amounts to the introduction of an
UV cutoff � and restriction of energies to the range [−�,�].
In this regularization procedure operators with kernels such
as D∗∗(t1,t2), cf. (81), are turned into (in general, infinite)
matrices with discrete time indices.

In the limit of strong interaction the phase ϑ
q
η = ϑ̄ηwt̄,τ

is a piecewise constant function which vanishes outside the
interval [t̄ ,t̄ + τ ]. Introducing the projector P which acts on
functions φ(t) by multiplication with a window function in
time, Pφ = φwt̄,τ , and thus satisfies P 2 = P , we can write

DetD∗∗ = Det [1 + P (e4iϑ̄+ − 1)f++]

= Det [1 + P (e4iϑ̄+ − 1)f++P ]. (92)

The operator g∗∗ ≡ 1 + P (e4iϑ̄+ − 1)f++P has a block struc-
ture, namely

g∗∗(t1,t2) =
{

g(t1 − t2), t1,t2 ∈ [t̄ ,t̄ + τ ],

δ(t1 − t2), otherwise,
(93)

where

g(t1 − t2) ≡ δ(t1 − t2) + (e4iϑ̄+ − 1)f++(t1 − t2). (94)

The kernel of the operator g∗∗ is nontrivial only if both t1 and
t2 lie in the interval [t̄ ,t̄ + τ ], in which case it depends solely
on the difference t1 − t2. The determinant of g∗∗ will be given
by the nontrivial block g(t1 − t2). The UV regularization of
g as described above will give rise to a large N × N matrix
(gjk)1�j,k�N , N = τ/�t = �τ/π , whose elements depend on
index differences, gjk = gj−k . The matrix (gjk) of such type
is known as a Toeplitz matrix.

Matrices of Toeplitz form are ubiquitous in mathematics
and physics, where they appear in a variety of contexts (see,
e.g., Refs. 59 and 60 for summaries of applications). It was
shown in Refs. 45, 58, and 61 that observables in a vast range
of problems of 1D nonequilibrium interacting fermions (and
bosons) can be expressed in terms of Toeplitz determinants
�N = det(gi−j )1�i,j�N .

The behavior of determinants of such matrices becomes
particularly nontrivial when the corresponding symbol (es-
sentially the Fourier transform of gj−k; see Sec. IV B for
more detail) has singular points known as Fisher-Hartwig
singularities. In our case such singularities arise in view of

discontinuities of the double-step distribution function f++. In
Refs. 61 and 62 the large-N behavior of Toeplitz determinants
with Fisher-Hartwig singularities has been established ana-
lytically and verified numerically. These results (“generalized
Fisher-Hartwig conjecture”) go beyond the “standard” Fisher-
Hartwig conjecture (proven in Ref. 63) as they contain not only
the leading term but also subleading power-law contributions
that have different oscillatory factors. We see below that taking
into account such contributions will be crucial for obtaining
the oscillatory dependence of visibility of MZI on voltage. A
further generalization was achieved recently in Ref. 52, where
a broader class of singular Fredholm determinants (determined
by two symbol functions that show multiple singularities in
energy and coordinate spaces, respectively) was explored and
corresponding asymptotics were found. Such determinants
arise below when we invert the operator D∗∗.

2. Asymptotics of Toeplitz determinants

For the benefit of the reader we summarize here the relevant
results on Toeplitz determinants.

A Toeplitz matrix gjk with j,k = 1,2, . . . ,N is defined by
its symbol g(z) as follows:

gjk = gj−k =
∫ π

−π

dϕ

2π
g(eiϕ)e−iϕ(j−k). (95)

The determinant of such a matrix is called Toeplitz determi-
nant. An important class of Toeplitz matrices (which is of
relevance for our work and for various other nonequilibrium
many-body problems) is generated by symbols with Fisher-
Hartwig (FH) singularities,

g(z) = eV (z)
m∏

j=0

|z − zj |2αj γj (z)(z/zj )βj , (96)

where V (z) is a smooth function, m + 1 is a positive integer
(number of singular points), zj ≡ eiϕj , Re αj > − 1

2 , βj ∈ C,
and

γj (z) =
{
eiπβj , −π < arg z < ϕj ,

e−iπβj , ϕj < arg z < π.
(97)

In the context of our work, only the case αj = 0 [when
the singularities of f (z) are discontinuities] will be rele-
vant, so we consider it henceforth. The large-N asymptotic
behavior of the corresponding Toeplitz determinant �N

reads61,62

�N = eNV0
∑

n0+···+nm=0

m∏
j=0

z
nj N

j

⎡
⎣N−∑m

j=0 β2
j

∏
0�j<k�m

|zj − zk|2βj βk

m∏
j=0

G(1 + βj )G(1 − βj )

⎤
⎦

βj →βj +nj

(1 + · · ·), (98)

where V0 = ∫ π

−π

dϕ

2π
V (eiϕ) and G is the Barnes G function.

The summation in Eq. (98) goes over a set of integers n0,
n1, . . . ,nm (whose sum is zero); we see below that they can
be understood as labeling branches of ln g(z) in the intervals
of continuity of the symbol. Each of these sets (“branches”) is

characterized by a distinct factor
∏m

j=0 z
nj N

j that in our context
will give rise to a distinct oscillatory exponent. Equation (98)
presents explicitly the leading asymptotic behavior for each
of the branches. There exist also subleading power-law
corrections within each of the branches (i.e., corresponding to
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the same oscillatory exponent); they are abbreviated by + · · ·
in the last bracket. Such corrections are of no importance for
our consideration, and we discard them below.

We return now to determinants of the type (60) that arise
in the course of the study of MZI. Here f is some distribution
function and δ(t) = δw[0,τ ](t) is a constant in the window
of the duration τ and zero otherwise. We are interested in
the large-τ asymptotic behavior of �τ [δ,f ]. As discussed in
Sec. IV B1, the UV regularization is implemented by using a
high-energy cutoff �, so that the energy is restricted to the
range [−�,�] and the time is discretized, tj = j�t = jπ/�.
In energy representation, the operator of interest reads [cf.
Eq. (94)]

g̃(ε) = 1 + (eiδ − 1)f (ε). (99)

This can be identified with a symbol g(z) of a Toeplitz
matrix, provided energy ε ∈ [−�,�] and angle ϕ ∈ [−π,π ]
are related by rescaling: ϕ = επ/�. The introduction of a
hard cutoff ±� and the above compactification of the energy
axis will give rise to unphysical effects at this energy scale
(since it will generate an unphysical discontinuity at ϕ = ±π ).
These unphysical effects are eliminated by imposing “periodic
boundary conditions” in energy domain,61 which amounts to
the following modification of the symbol: limε→−� g(ε) =
limε→� g(ε):

g(ε) = eiδε/(2�)[1 + (eiδ − 1)f (ε)]. (100)

Here we have taken into account that limε→−� f (ε) = 1 and
limε→� f (ε) = 0.

To be specific, let us consider explicitly two examples
corresponding to two lowest values m = 0,1 (i.e., one and
two FH singularities). First, we consider the equilibrium
distribution function f (ε) = θ (μ − ε). The symbol is

g(eiϕ) =
{
eiδϕ/(2π)eiδ, −π < ϕ < πμ/�,

eiδϕ/(2π), πμ/� < ϕ < π,
(101)

which is of the form (96) with m = 0, α0 = 0, β0 = δ/(2π ),
z0 = eiπμ/�, and V0 = iδ(1 + μ/�)/2. According to Eq. (98)
in the large-N limit the det(gj−k) asymptotically behaves as

�[δ,fsingle] = exp

[
i

δ

2π
(� + μ)τ

](
�τ

π

)−( δ
2π

)2

×G

(
1 − δ

2π

)
G

(
1 + δ

2π

)
. (102)

Next, we consider a double-step distribution function
f (ε) = (1 − a) θ (μ0 − ε) + a θ (μ1 − ε), where we assumed
that μ0 < μ1. In this case the symbol reads

g(eiϕ) =

⎧⎪⎨
⎪⎩

eiδϕ/(2π)eiδ, −π < ϕ <
πμ0

�
,

eiδϕ/(2π)[1 + (eiδ − 1)a], πμ0

�
< ϕ <

πμ1

�
,

eiδϕ/(2π),
πμ1

�
< ϕ < π.

(103)

Hence, the symbol has two FH singularities, zj = eiπμj /�,
j = 0,1, with

e−2πiβ0 = 1 + (eiδ − 1)a

eiδ
, e−2πiβ1 = 1

1 + (eiδ − 1)a
.

(104)

We choose

β1 = − i

2π
ln[1 + (eiδ − 1)a], β0 = δ

2π
− β1. (105)

It is easy to see that the symbol has the form (96) with m = 1,
αj = 0, and

V (z) = V0 = iδ/2 + iδ
μ0

2�
+ ieV

π

�
β1, (106)

where we introduced eV = μ1 − μ0. According to Eq. (98)
the asymptotic behavior of the Toeplitz determinant det(gj−k)
is given by

�[δ,fdouble]

= exp

{
i

δ

2π
(� + μ0)τ + eV τ

2π
ln[1 + (eiδ − 1)a]

}

×
∞∑

n=−∞
e−ieV τn

(
�τ

π

)−(β0+n)2−(β1−n)2

×
(

πeV

�

)2(β0+n)(β1−n)

G(1 + β0 + n)G(1 − β0 − n)

×G(1 + β1 − n)G(1 − β1 + n). (107)

In order to identify in the sum over n the leading contributions
in the long-τ regime, we consider the exponent

Re[−(β0 + n)2 − (β1 − n)2] = −2(n − n∗)2 + const, (108)

where

n∗ = 1

2
Re(β1 − β0) = 1

2π
Im ln[(1 − a) + aeiδ] − δ

4π
.

(109)

Note also that the sum of voltage and time exponents, [−(β0 +
n)2 − (β1 − n)2] − [2(β0 + n)(β1 − n)] = −(β0 + β1)2, is
independent of n. Thus, terms dominant for �τ � 1 are also
leading for large voltages, eV τ � 1. For the analysis of the
optimal value n∗, we make the decomposition δ = 2πM + δ′
with M ∈ Z and |δ′| < π . One can show that the phase

δ′′ ≡ Im ln[(1 − a) + aeiδ] (110)

has the same sign as δ′ and satisfies |δ′′| � |δ′|. Then the
optimal n∗ becomes

n∗ = −M

2
− δ′ − 2δ′′

4π
, |n∗ + M/2| � 1/4. (111)

We see that in the case of even M there is a single contribution
with n = −M/2 giving the most significant contribution to
the asymptotic series; other contributions have substantially
smaller (by real part) exponents. On the other hand, for odd
M one has to take into account two contributions with n =
−(M ± 1)/2. Indeed, if a = 1/2 (and thus δ′′ = δ′/2), then
these two contributions come with equal exponents. When a

deviates from 1/2, the exponents become different but still
may be very close.

It was shown in Ref. 52 that these results can be gener-
alized to a broader class of singular Fredholm determinants.
Specifically, consider a matrix

gj,k =
∫ �

−�

dε

2�
e−iεπ/�[j−k−δ(tj )/(2π)]g̃(tj ,ε), (112)
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with the symbol

g̃(t,ε) ≡ 1 + (eiδ(t) − 1)f (ε). (113)

Here the notion of symbol has been generalized to include
both time and energy dependence [through the function δ(t)
and f (ε), respectively]. Let us focus on the case when both
the phase δ(t) and the distribution function f (ε) are piecewise
constant functions with jumps at times τ1 < τ2 < · · · < τNτ

and energies μ1 < μ2 < · · · < μNμ
, respectively. They satisfy

the boundary conditions δ(t) = 0 for t /∈ [τ1,τNτ
], f (ε) = 1

for ε < μ1, and f (ε) = 0 for ε > μNμ
. The UV cutoff and

the periodic boundary conditions in energy domain can be
implemented as before. The discontinuity points define a
grid which subdivides the time-energy plane in domains
with different values of the symbol. The domains can be
labeled by the time indices j ∈ {0, . . . ,Nτ }, and energy indices
k ∈ {0, . . . ,Nμ}. One associates with this set of domains a set
of number cjk ,

cjk ≡ 1

2πi
ln g̃(τj + 0,μk + 0) + njk, (114)

cj0 ≡ δ(tj + 0)/(2π ), c0k = cNτ ,k = cj,Nμ
= 0, (115)

where {njk} is an arbitrary set of integers. Further, a matrix
βjk with a time index j ∈ {1, . . . ,Nτ } and energy index k ∈
{1, . . . ,Nμ} is introduced according to

βjk ≡ cj,k−1 − cj,k + cj−1,k − cj−1,k−1. (116)

Physically, each entry of this matrix corresponds to a crossing
point of one energy-space and one time-space singularity. In
terms of this matrix, a set of time (pjl) and energy (qkm)
exponents is defined as follows:

pjl ≡
Nμ∑

m′=1

βjm′βlm′ , qkm ≡
Nt∑

l′=1

βl′kβl′m. (117)

One should keep in mind that cjk and thus βjk , pjl , and
qkm depend on the set of integers njk . In Eq. (114) the
logarithm ln g̃ is understood as evaluated at its principal
branch, Im ln g̃ ∈ (−π,π ]. The summation over integers njk

hence amounts to summing over different branches of the
logarithms.

We are now ready to state the result. For large time and
energy differences, |(τj − τl)(μk − μm)| � 1 (j �= l, k �= m),
the asymptotic behavior of det(gj,k) is given by52

�[δ(t),f (ε)] =
∑
{njk}

�{njk} exp

⎡
⎣i

∑
1�j<Nt

⎛
⎝cj0(� + μ1) +

∑
1�k<Nμ

cjk (μk+1 − μk)

⎞
⎠ (τj+1 − τj )

⎤
⎦

×
∏

1�j<l<Nt

∏
1�k<m<Nμ

∣∣∣∣�(τj − τl)

π

∣∣∣∣
pjl
∣∣∣∣π (μk − μm)

�

∣∣∣∣
qkm

, (118)

with coefficients �{njk} that are independent on τj and μk . It
is not difficult to check that for the phase δ(t) proportional
to a window function this formula agrees with the asymp-
totics (107) of the Toeplitz determinant. While a rigorous
mathematical proof of the asymptotic formula (118) is still
lacking, Ref. 52 presented powerful analytical arguments in
favor of its validity supported by strong evidence based on
numerical evaluation of such determinants. We use Eq. (118)
below to get analytical results for the current through the MZI.

3. Inversion of the single-channel counting matrix D∗∗

As we have shown in Sec. IV B, the interference current
can be expressed in terms of the inverse of the single-channel
counting operator D∗∗. We show here that it is related to a
generalized Toeplitz determinant, whose asymptotic behavior
can be estimated on the basis of results presented above. To
this end we consider the time discretized expression for the
operator D∗∗, given by Eq. (81), which has the symbol

g(ε) = e2iϑ̄+ε/�[1 + (e4iϑ̄+ − 1)f++(ε)], (119)

corresponding to the Toeplitz matrix,

gj−k = i

2π

1

j − k − 2ϑ̄+/π
(e4iϑ̄+ − 1)

× [R1e
−iπU/�[j−k−2ϑ̄+/π] + T1]. (120)

The inverse of matrix g reads

(g−1)jk = (−1)j+k det g�(k,j )

det(g)
, (121)

where g�(k,j ) is the (N − 1) × (N − 1) matrix derived from
g by removing the kth row and j th column.

Since our primary interest is the matrix element D−1
∗∗ (t̄ ,t)

with t̄ < t < t̄ + τ , see Eq. (91), we concentrate specifically
on the element (g−1)1k; i.e., we put j = 1. In this case one has

(g�(k,1))lm =
{
gl,m+1, 1 � l < k,

gl,m, k � l � N − 1,
(122)

= i

2π

1

l − m − 2
π
ϑ+(tl ; tk)

(e4iϑ+(tl ;tk ) − 1)

× [R1e
−iπU/�[j−k− 2

π
ϑ+(tl ;tk )] + T1

]
, (123)

where we have introduced the time-dependent phase (see
Fig. 12),

ϑ+(tl ; tk) =
{

ϑ̄+ + π/2, t̄ � tl < tk,

ϑ̄+, tk � tl < τ + t̄ ,
(124)

with tl = t̄ + (l − 1)�t . In the continuous representation the
phase ϑ+(t,tk) is the piecewise function of time t . Taking
into account Eqs. (120) and (123) and the definition (112)
one observes that the matrix (g�(k,1))lm is the generalized
Toeplitz matrix with the symbol (113) where the phase
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FIG. 12. (Color online) Phase δ(t) = 4ϑ+(t ; tk): On top of the
“background phase” 4ϑ

q
+(t) the 2π -pulse accounts for the additional

electron during the time interval 0 < t < tk .

δ(t) = 4ϑ+(t,tk). Its determinant can be dealt with by the use
of results presented in the end of the previous section. Hence,

(g−1)1k = (−1)1+k �[4ϑ+(•; tk),f++]

�[4ϑ̄+,f++]
. (125)

It is instructive to apply first the asymptotic relations (107)
and (118) to invert the matrix gj−k in the limit T1 → 0, when
the alternative evaluation can be done via the RH method.
Under this condition the operator D∗∗ has the form

[D∗∗]T1→0 = �+
[
f >

0 + e4iϑ
q
+f <

0

]
�−1

+ , (126)

with �+(t) = e−iV+t . Therefore, [D∗∗]−1
T1→0 can be evaluated in

the similar fashion as we have found the inverse of the counting
operator D0 in Sec. IV A2. By introducing the function

Ỹ (t) =
(

t − t̄

t − t̄ − τ

)2ϑ̄+/π

, (127)

which solves the RH problem Ỹ−1
− Ỹ+ = e−4iϑ

q
+ , one further

represents D∗∗ in the equivalent form,

[D∗∗]T1→0 = �+Ỹ−[Ỹ−1
− f >

0 + Ỹ−1
+ f <

0 ]�−1
+ . (128)

Using now the relation (86), we obtain

[D∗∗]−1
T1→0(t̄ ,t) = Ỹ−(t̄)

[
1 + (e−4iϑ

q
+ − 1

)
f+
]
t̄ ,t

Ỹ−1
− (t).

(129)

Taking into account the explicit form of the solution of the RH
problem (127), for times t ∈ [t̄ ,t̄ + τ ] we eventually arrive at

[D∗∗]−1
T1→0(t̄ ,t) = −�

π
e−2iϑ̄+ sin(2ϑ̄+) e−ieV (t̄−t)

× |t − t̄ |−2ϑ̄+/π−1|t̄ + τ − t |2ϑ̄+/π

× τ−2ϑ̄+/π�−2ϑ̄+/π−1, (130)

where the regularization Ỹ−(t̄) = Ỹ−(t̄ + �−1) was chosen.
Let us now demonstrate that the same result can be derived

using the properties of the Toeplitz determinants. ForD−1
∗∗ (t̄ ,tk)

and thus (g−1)1k one needs to consider the generalized Toeplitz
problem with three jumps in time domain, τ1 = t̄ , τ2 = tk ,
τ3 = t̄ + τ , and just one jump in energy domain μ1 = eV .
Further, it is c10 = 2ϑ̄+/π + 1 and c20 = 2ϑ̄+/π and, hence,
p12 = −2ϑ̄+/π − 1, p13 = −(2ϑ̄+/π + 1)2ϑ̄+/π , and p23 =
2ϑ̄+/π . The asymptotic behavior of det(g) = �[4ϑ

q
+,f+] is

given by Eq. (102) with μ = eV and δ = 2ϑ̄+/π . As the result,

one obtains

[(g−1)1k]T1→0 = �e−ieV (t̄−tk )

∣∣∣∣�(tk − t̄)

π

∣∣∣∣
−2ϑ̄+/π−1

×
∣∣∣∣�(t̄ + τ − tk)

π

∣∣∣∣
2ϑ̄+/π ∣∣∣∣�τ

π

∣∣∣∣
−2ϑ̄+/π

. (131)

Except for the dimensionless unknown factor � and the pref-
actor �/π = (�t)−1 which arises due to time discretization,
the above asymptotics agrees in all power-laws with the exact
result (130).

We now turn to the general situation of arbitrary T1. The
distribution function in this case is given by f++ instead of
f+, which adds a discontinuity at μ1 = 0 (the one at eV

is now denoted by μ2). The asymptotics of the determinant
�[4ϑ+(•; tk)] is determined by Eq. (118) with

c10 = α1 + 1, c20 = α1, ck1 = β1 + nk (k = 1,2),

(132)

where we have abbreviated

α1 ≡ 2ϑ̄+/π, β1 ≡ 1

2πi
ln[R1e

4iϑ̄+ + T1], (133)

and the exponents

p12 = (1 + α1 − β1 − n1)(n1 − n2 − 1)

+ (β1 + n1)(n2 − n1),

p23 = (n1 − n2 − 1)(β1 + n2 − α1) − (n2 − n1)(β1 + n2),

p13 = (1 + α1 − β1 − n1)(β1 + n2 − α1)

− (β1 + n1)(β1 + n2),

q12 = (1 + α1 − β1 − n1)(β + n1) + (n1 − n2 − 1)(n2 − n1)

− (β1 − α1 + n2)(β1 + n2). (134)

One then has

(−1)1+k�[4ϑ+(•; tk),f++]

=
∑
n1,n2

�(n1,n2)e
iα1�τ+iβ1eV τ eieV [n1(tk−t̄)+n2(t̄+τ−tk )]

×
∣∣∣∣�(tk − t̄)

π

∣∣∣∣
p12
∣∣∣∣�(t̄ + τ − tk)

π

∣∣∣∣
p23
∣∣∣∣�τ

π

∣∣∣∣
p13
∣∣∣∣πeV

�

∣∣∣∣
q12

.

(135)

When deriving this asymptotics, we took into account that
the phase factor ei�(tk−t̄) = (−1)1+k , since tk = t̄ + (k − 1)�t

with the infinitesimal time increment �t = π/�; cf. Eq. (124).
The above relation is one of the main results of the section.
It yields the asymptotic value for (g−1)1k , expressed through
Eq. (125). The determinant �[4ϑ̄+,f++] appearing in the latter
relation can be found exactly via Eq. (107), where one has to
set δ = 4ϑ̄+ and a = R1.

The following remark must be made concerning the
above calculations. The result (135) has been derived with
the use of the asymptotic formula (118). It is valid under
the assumption |(τj − τl)(μk − μm)| � 1, which defines the
range of applicability to Eq. (135), namely tk − t̄ � 1/eV and
t̄ + τ − tk � 1/eV . Below we examine another limit, when
the time tk is close to either of two boundaries, t̄ or t̄ + τ .

To this end we represent the (normalized) determinant
�̄[δ(t),f (ε)] = �[δ(t),f (ε)]/�[δ(t),T = 0] in the equivalent
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form52

�̄[δ(t),f (ε)]

=
∑
{njk}

�̄{njk} exp

[
i
∑

1�j�Nt

∑
1�k�Nμ

τjβjkμk

]

×
∏

1�j<l�Nt

∏
1�k<m�Nμ

[(τl − τj )(μk − μm)]γjl,km , (136)

where

γjl,km = −cjkclm − cjmclk. (137)

The normalized determinant is cutoff (�) independent. All
dependence on � comes from the zero-temperature
determinant, which up to a constant prefactor reads

�[δ,T = 0] = exp

[
−i

∑
1�j�Nt

�τj

(δj − δj−1)

2π

]

×
∏

1�j<l�Nt

∣∣∣∣�(τj − τl)

π

∣∣∣∣
(δj −δj−1)(δl−δl−1)/4π2

,

(138)

where we have defined the phases δj ≡ δ(tj + 0). Equa-
tion (138) is the particular case of the asymptotics (118) when
the generalized Toeplitz problem has Nt jumps of the phase
δ(t) in the time domain and the single (Fermi) edge at ε = 0.
The summation over branches of logarithms is not required
here. The equivalence between two forms of the asymptotic
expansion, Eqs. (138) and (118), follows from the sum rules,

Nμ∑
k=1

βjk = δj − δj−1

2π
,

Nt∑
j=1

βjk = 0. (139)

As before, representation (118) holds provided (τl − τj )(μm −
μk) � 1 for all j > l and m > k. However, it enables a
natural generalization to the situation, when this condition
is not satisfied. Namely, if for some set (l,j,m,k) the opposite
inequality is fulfilled, the corresponding factor has to be
omitted from the product in Eq. (118). This is the advantage
of the normalized representation in comparison to Eq. (136).
In this way one can find the asymptotic form of (D−1

∗∗ )(t̄ ,t) if
t is close to t̄ or t̄ + τ .

If tk − t̄ � 1/eV , we obtain

(−1)1+k�[4ϑ+(•; tk),f++]

=
∑
n2

�′
n2

eiα1�τ+i(β1+n2)eV τ

∣∣∣∣�(tk − t̄)

π

∣∣∣∣
p′

12
∣∣∣∣�τ

π

∣∣∣∣
p′

13
∣∣∣∣πeV

�

∣∣∣∣
q ′

12

,

(140)

where we have introduced the exponents

p′
12 = −(1 + α1), p′

13 = −(α1 − β1 − n2)2 − (β1 + n2)2,

q ′
12 = 2(α1 − β1 − n2)(β1 + n2). (141)

t t
tk

eV 1 eV 1

II III

I

FIG. 13. (Color online) Sketch of the singular Fredholm deter-
minant �[4ϑ+(•; tk),f++] as a function of time tk . In region I, the
asymptotic expansion (135) is valid. In regions II and III, power-law
exponents are different, and � is given by Eqs. (140) and (142),
respectively.

In the other limit, t̄ + τ − tk � 1/eV , the asymptotic expan-
sion yields

(−1)1+k�[4ϑ+(•; tk),f++]

=
∑
n1

�′′
n1

eiα1�τ+i(β1+n1)eV τ

∣∣∣∣�(t̄ + τ − tk)

π

∣∣∣∣
p′′

23

×
∣∣∣∣�τ

π

∣∣∣∣
p′′

13
∣∣∣∣πeV

�

∣∣∣∣
q ′′

12

, (142)

with the exponents

p′′
23 = α1, p′′

13 = −(1 + α1 − β1 − n1)2 − (β1 + n1)2,

q ′′
12 = 2(1 + α1 − β1 − n1)(β1 + n1). (143)

We notice that Eqs. (140), (142), and (135) represent the
asymptotic expansion of the generalized Toeplitz determinant
�[4ϑ+(•; tk),f++] in the different domains of the variable tk .
It is straightforward to check, that asymptotic formulas (140)
and (135) match each other at the scale tk − t̄ � 1/eV because
of the mutual relations

p′
13 = p13 + p23, q ′

12 − p′
12 = q12 − p12, (144)

between the power-law exponents. Similarly, the expan-
sion (142) matches Eq. (135) at the time scale (t̄ + τ − tk) �
1/eV due to analogous relations,

p′′
13 = p13 + p12, q ′′

12 − p′′
23 = q12 − p23. (145)

The sketch of the determinant �[4ϑ+(•; tk),f++] as the
function of the time tk is shown in Fig. 13.

To summarize this section, we have found the discretized
representation (g−1)1k for the inverse of the single-channel
counting operator D∗∗(t̄ ,tk); see Eq. (125). The generalized
Toeplitz determinant �[4ϑ+(•; tk),f++] appearing in this for-
mula, is given by the asymptotic Eqs. (135), (140), and (142).
Accordingly, the denominator �[4ϑ̄+,f++] can be found with
the use of Eq. (107).

C. Interference current in the strong coupling limit

In Sec. IV B we have discussed the asymptotic properties
of singular Fredholm determinants and have found the inverse
kernel D−1

∗∗ (t̄ ,t) of the single-channel counting operator. We
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are now going to use these results to evaluate the AB
conductance in the strong-coupling limit.

We start by considering the particle number N+−, which
is given by Eq. (43) of Sec. III B. Making use of the relation
Aferm = −i ln DetD together with Eq. (40), we can represent
N+− = N∗

−+ in the form

N+− = −i(R2T2)1/2 ei�

∫
dt̄ eiA(0) DetD̃

DetD̃(0)
〈+|f̃ D̃−1(t̄ ,t̄)|−〉,

(146)

where we have defined the action A(0) = Aferm|T1=0 + δA and
the operator D̃(0) = D̃|T1=0 in the absence of edge-to-edge
tunneling. Equation (146) is evaluated at the optimal phases
ϑ

q
∗η(t) = ϑ̄ηwt̄,τ (t) with ϑ̄η = −ηπ/ν, which have different

sign for upper and lower arms of the MZI. It turns out that
the integrand is, in fact, independent of time t̄ and thus the
integral is formally divergent. This amounts to an infinite
number of electrons counted during an infinite measuring time
in a stationary situation. The stationary current its obtained by
dropping the t̄ integral and putting, say, t̄ = 0. Using Eqs. (89)
and (91) one arrives at

e−1I+− = −i(R2T2)1/2 ei�+2iϑ̄+ DetD̃
DetD̃(0)

eiA(0)

×
∫ t̄+τ

t̄

dt ′ D−1
∗∗ (t̄ ,t ′)f+−(t ′ − t̄). (147)

Let us now use the result of Sec. IV A where the evaluation
of the matrix determinant DetD has been reduced to the
product of single-channel determinants. For the scalar operator
D∗∗ we introduce D(0)

∗∗ = D∗∗|T1=0. Taking into account the
factorization formula (79) and the block structure of the matrix
D∗, given by Eq. (80), one can write

DetD̃
DetD̃(0)

= DetD̃∗∗
DetD̃(0)

∗∗
= �[4ϑ̄+,f++]

�[4ϑ̄+,f+]
(148)

(to derive this relation we have made use of the fact that the
operator D̃0 is T1–independent). The dimensionful operator
kernelD−1

∗∗ (t1,t2) and its discretized dimensionless counterpart
g−1

ij are related by the energy factor

W = D(0)−1
∗∗ (t̄ ,tk)/(g−1)(0)

1k ∝ �,

where the label “(0)” denotes the T1 → 0 limit. With the help
of Eq. (125) for the matrix element g−1

1k the expression for the
current I+− is then reduced to the form

e−1I+− = (R1T1R2T2)1/2 ei�+2iϑ̄+eiA(0)
∫ τ

0
dtk × W

× (−1)1+k�[4ϑ+(•; tk),f++]

�[4ϑ+,f+]
[f+(tk) − f−(tk)].

(149)

Here we have substituted the off-diagonal density matrix
element f+− = i(R1T1)1/2(f+ − f−). In the formula above,
one needs to perform further the integration over time tk and
to evaluate the action A(0) in the absence of tunneling between
two edges of the MZI. These steps of calculations are discussed
below.

1. The time integral over tk

To perform the time integration let us consider the tk-
dependent part in Eq. (149),

J (tk) ≡ (−1)1+k�[4ϑ+(•; tk),f++][f+(tk) − f−(tk)]. (150)

According to the asymptotic analysis of the previous Sec. IV B,
this integrand has the power-law singularities which give the
dominant contribution to the integral (149) around tk ∼ 0
and tk ∼ τ , provided the real part of the corresponding
power-law exponents is negative. In general, for any time
tk ∈ (0,τ ) the integrand is a superposition of power-law
terms,

J (tk) ∼
∑
{n}

t
p̃12
k (τ − tk)p̃23τ p̃13 (eV )q̃12�γ̃+1, (151)

where the exponent γ̃ ≡ p̃12 + p̃23 + p̃13 − q̃12 ensures the
correct dimensionality (which is inverse time). As discussed
previously, the sum here runs over integers n1, n2, or both
depending on whether the time tk lies in region II, III, or
I, respectively (see Fig. 13). For instance, in region I the
function J , in accordance with Eq. (135), has the above
scaling behavior with p̃12 = p12 − 1, p̃23 = p23, p̃13 = p13,
and q̃12 = q12. Equation (134) shows that by choosing |n1|
and |n2| sufficiently large, Re p12 and Re p23, respectively,
can be easily made negative. Therefore the integral over tk
will be determined by a vicinity of the end points of the time
interval (0,τ ).

First, let us examine the limit of short times tk � τ . One has
to consider two asymptotic regions. For �−1 � tk � (eV )−1

(region II) we can use the short time expansion

f+(tk) − f−(tk) = i

2π

e−ieV tk − 1

tk
� eV

2π
, (152)

which gives the powers p̃12 = p′
12, p̃23 = 0, p̃13 = p′

13, and
q̃12 = q ′

12 + 1. Evaluating the tk integral over region II for
some given integer n2, we find∫ 1/eV

1/�

dtk J (tk) ∼ (eV τ )p
′
13 (eV/�)q

′
12+1−p′

13 (�tk)p
′
12+1|1/�

1/eV

∼ (eV τ )p
′
13 (eV/�)1+α2

1+α1 , (153)

where we kept only the dominant contribution. Here α1 =
−2/ν and, cf. Eq. (141),

p′
13 = −2

(
n2 − α1 − 2β1

2

)2

− α2
1

2
. (154)

The term which gives the leading contribution to the current
from region II is then found by maximizing Re p′

13 with respect
to n2. The fact that the exponent � is independent on n2

is not a coincidence. It encodes renormalization effects due
to high-energy virtual excitations. In contrast, the arbitrary
integers which encode different branches of ln g̃ are relevant
for intermediate energies 0 < ε < eV only and thus do not
affect the high energy scale �.

Let us further look onto longer times, (eV )−1 � tk � τ

from region I, where we can approximate f+(tk) − f−(tk) ∼
1/tk . Hence, the powers are p̃12 = p12 − 1, p̃23 = p23, p̃13 =
p13, and q̃12 = q12. By choosing some intermediate time scale
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(eV )−1 � t � τ as the upper cutoff, the integral reads

∫ t

1/eV

dtk J (tk) ∼ (eV τ )p13+p23 (eV/�)q12−p13−p23 (�tk)p12 |t1/eV .

Under the assumption Re p12 < 0, the upper boundary t is
irrelevant. Using relations (141) and (144), we obtain exactly
the same asymptotics as in Eq. (153),

∫ t

1/eV

dtk J (tk) ∼ (eV τ )p
′
13 (eV/�)1+α2

1+α1 . (155)

We turn now to the analysis of the integral (149) around
the second singularity tk ∼ τ . Close to this end point one has
f+(tk) − f−(tk) ∼ τ−1. Following the same line of reasoning
as above, we consider two asymptotic regions (I and III). The
time integral over region III for a given integer n1 yields (we
recall that we consider the case ν � 2)

∫ τ−�−1

τ−(eV )−1
dtk J (tk) ∼ (eV τ )p

′′
13−1(eV/�)2+α2

1+2α1

× (�(τ − tk))1+α1 |τ−�−1

τ−(eV )−1

∼ (eV τ )p
′′
13−1(eV/�)1+α2

1+α1 . (156)

The exponent p′′
13 − 1 can be read from the definition (143). It

is convenient to rewrite it in the form analogous to Eq. (154),

p′′
13 − 1 = −2

(
n1 − α1 + 1 − 2β1

2

)2

− (α1 + 1)2

2
− 1,

(157)

which explicitly shows that Re p′′
13 − 1 can be maximized with

respect to n1.
It remains to estimate the time integral when tk lies in

region I. Introducing as above some intermediate time scale
t satisfying (eV )−1 � t < τ − (eV )−1 (which in case of
Re p23 < −1 will be irrelevant as an integral boundary) one
obtains

∫ τ−(eV )−1

t

dtk J (tk) ∼ (eV τ )p
′′
13−1(eV/�)1+α2

1+α1 . (158)

In the following we are interested in the integers n2 and
n1 which maximize the exponents, Re p′

13 and Re p′′
13 − 1.

To this end we write α1 = M + m with M ∈ Z and |m| �
1/2. Then for even M leading contributions come from n2 =
M/2 and n1 = (M + 1)/2 ± 1/2, and for odd M they come
from n2 = M/2 ± 1/2 and n1 = (M + 1)/2. Straightforward
analysis shows that for integer filling fractions ν � 2 in all
optimal contributions we have Re p′

13 � Re p′′
13 − 1.

These observations lead us to the conclusion that, with all
oscillatory terms eieV τn2eiα1�τ and tk-independent contribu-
tions,

�[4ϑ̄+,f+]−1 ∝ e−iα1(�+eV )τ

(
�τ

π

)α2
1

, (159)

taken into account, the leading terms of the tk integral for
ν � 2 are∫ τ−1/�

1/�

dtk J (tk)/�[4ϑ̄+,f+]

= �

π
e−iα1eV τ+iβ1eV τ (eV/�)1+α1

×
(∑

n2

�′
n2

eieV τn2 (eV τ )p
′
13+α2

1

+
∑
n1

�′′
n1

(e−ieV τ − 1)eieV τn1 (eV τ )p
′′
13−1+α2

1

)
, (160)

where �′
n2

and �′′
n1

are some unknown dimensionless constants.
This expansion contains all terms in leading order of (eV/�)
[also those subleading in (eV τ )].

2. Action A(0) in the absence of tunneling

Let us now evaluate the action of the system when interedge
tunneling is absent,

iA(0) = TrLn
[
1 − f̂ + e2iϑ̂q

f̂
]− 2iTrϑ̂qf0. (161)

In this section the traces extend over all ν upper and ν lower
inner channels. We combined all 2ν distribution functions fλ

and phases ϑ
q

λ into 2ν × 2ν matrices f̂ and ϑ̂q . Due to the
Dzyaloshinskii-Larkin theorem we anticipate that only first-
and-second-order-in-ϑ terms are nonvanishing for the action
above (it is worth reminding the reader here that throughout
this section the distribution functions were assumed to be the
Fermi-like). Hence, we expand

iA(0) = Tr[Ln [1 + (2iϑ̂q − 2ϑ̂q2)f̂ ] − 2iϑ̂qf0]

= 2iTr ϑ̂q(f̂ − f0) − 2Tr ϑ̂q(1 − f̂ )ϑ̂q f̂ . (162)

Consider now three local operators A, B, C, where by defini-
tion A(t1,t2) = A(t1)δ(t1 − t2), etc. Evaluating the following
trace (one should carefully take into account here the nonlocal
in time structure of the Fermi-distribution function), one
obtains

Tr tA[B,f0]C

=
∫

dt2 lim
t1→t2

A(t1)
i

2π

B(t1) − B(t2)

t1 − t2 + i0
C(t2)

= i

2π

∫
dt A(t)Ḃ(t)C(t). (163)

For Fermi-like nonequilibrium distribution functions, f1(t) =
e−ieV1t f0(t), the above relation implies

TrtA(f1 − f0)C = eV1

2π

∫
dt A(t)C(t). (164)

Let us assume that among the channels belonging to the upper
edge of the MZI, the outer channel is biased by V and all the
rest by V0. At the same time, all channels on the lower edge
are grounded. This gives the first, “zero mode” contribution to
the action,

2iTrϑ̂q(f̂ − f0) = i
e[V + (ν − 1)V0]τ

2π
2ϑ̄+. (165)
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The quadratic contribution to the action iA(0) is UV divergent
and needs to be cutoff by at the scale � ∼ ωc, yielding

−2Trϑq(1 − f̂ )ϑqf̂ = −2νϑ̄2
+

π2
ln ωcτ = −2

ν
ln ωcτ. (166)

In passing we note that, since A(0) is a purely Gaussian
contribution, it can be equivalently evaluated by averaging
the phase eiA(0) = 〈eiϑ

f
+ (0)−iϑb

−(0)〉0 over the Gaussian action of
the MZI in the limit T1 → 0.

3. Current, conductivity, and visibility

The results of previous sections enable us to evaluate the
AB current in the MZI. Setting the voltage of all outer channels
to zero, V = 0, and defining the exponents

p′(n2) ≡ −2

(
n2 − α1 − 2β1

2

)2

+ 1 + α2
1

2
+ α1, (167)

p′′(n1) ≡ −2

(
n1 − α1 + 1 − 2β1

2

)2

− 1

2
+ α2

1

2
, (168)

one can represent the coherent current contribution in the form

Icoh = 2Re I+− = e

2πτ
(R1T1R2T2)1/22 Re ei� I0, (169)

where I0 is the normalized amplitude of the AB current.
Collecting Eqs. (147), (160), (165), and (166) together, we
finally arrive at

I0 = 2e−2πi/νei(β1+1/ν)eV τ ×
[∑

n2

�′
n2

ein2eV τ (eV τ )p
′(n2)

+
∑
n1

�′′
n1

ein1eV τ (e−ieV τ − 1)(eV τ )p
′′(n1)

]
. (170)

The following table shows the power-law exponents corre-
sponding to the terms which give the dominant contribution to
the series (170) at each filling factor ν:

ν Leading powers

2 p′(0) = p′(−1) = 0 = p′′(0)
3 p′(−1) and p′(0)

� 4 p′(0) and p′′(0) if T1 < 1/2 or p′′(1) if T1 > 1/2.

Taking these leading terms into account we obtain the results
presented in Sec. II B, namely Eq. (7) with the exponents (12)
and (13). We have also checked the validity of analytical
asymptotics (170) by straightforward numerical evaluation of
Eq. (149) for the AB current. The perfect agreement between
the analytical and numerical approaches, demonstrated in
Fig. 4, provides additional support towards the conjecture of
Ref. 52.

We close this section by providing the reader with a
qualitative physical picture, underlying the result (170). We
begin with inspection of the phase pulse δ(t) = 4ϑ+(t ; tk),
which, according to our discussion in Sec. IV B, determines
the resolvent (D−1) of the counting operator (see Fig. 12).
First, we note that in our model of the maximally long-ranged
Coulomb interaction the counting phase 4ϑ+(t) = (4π/ν)q(t),
with q(t) being the “background” charge on the upper arm
of the MZI. The phase δ(t) is different from 4ϑ+(t) by the
2π -pulse of the duration tk , which describes injection of

the interfering “transport” electron at time t̄ = 0 into the
interferometer via the QPC1 and its annihilation at time tk
(the electrons leave the MZI through the QPC2). As we see
it from the calculations of the Sec. IV C1, in the high-voltage
limit eV τ � 1, the critical exponents p′ are associated with
many-particle scattering processes with short tk , tk � h̄/eV .
We can interpret it as the event when one electron enters the
MZI through the QPC1 and another electron leaves the MZI
shortly afterward on a time scale ∼h̄/eV via the QPC2. The
possibility for an electron to propagate through the system
in a time tk � τ is due to the long-range nature of Coulomb
interaction in our model (a similar situation will occur in a
model with a strong short-ranged interaction, where such a
process can be mediated by the exchange of plasmons, which
have a velocity exceeding by far the bare velocity of electrons).
On the contrary, the second critical exponent p′′ is due to
many-body scattering events with time tk � τ . In this case the
MZI is excited into a state with an extra electron for a long time
τ � h̄/eV (it will be, e.g., the only possibility in the limit of
weak short-ranged interaction when the behavior of the MZI
is very close to the one with noninteracting electrons).

Next, we associate the integers n1 and n2 with the number
of inelastically excited electron-hole pairs on the MZI in the
corresponding time intervals (at 0 < t < tk and tk < t < τ ,
respectively). More precisely, one can interpret each term in
the asymptotic expansion for the current J (tk) as the product
of forward (electronlike) and backward (holelike) many-
particle scattering amplitudes, Ab({n−}; tk) × Af ({n+}; tk). An
electron, propagating through the upper arm of the MZI, leaves
a trace in the bath of particle-hole excitations, which is encoded
in the numbers n+

1 and n+
2 of the excited electron-hole pairs

after the electron’s injection and annihilation. The dominant
e-h pairs correspond to excitations from one Fermi edge to
the other, so that the typical energy of an electron-hole pair is
h̄ω � eV . The corresponding many-particle amplitude should
behave as

Af ({n+}; tk) ∼ e−in+
1 eV tk−in+

2 eV (τ−tk).

Similarly, the backward amplitude is characterized by numbers
n−

1 and n−
2 . In the case when the relative numbers n1 = n+

1 −
n−

1 and n2 = n+
2 − n−

2 between the forward and backward
scattering amplitudes are nonzero one obtains an interference
term in the current with a phase which is linear in voltage.
The two dominant terms with inequivalent phases in the series
for the current I+− produce the lobe pattern in the visibility
of the AB oscillations. For example, at ν = 3 such two terms
are those corresponding to scattering processes characterized
by the short time tk ∼ h̄/eV but having different numbers
n2 = −1 and n2 = 0, respectively.

V. NUMERICAL APPROACH

In this section we present a numerical evaluation scheme for
the interference current. Results, obtained within this scheme,
corroborate and complement the analytical study of Sec. IV
based on the particular form of the Fredholm counting operator
D. After making a few introductory remarks regarding the
numerical formula for the AB current, which is suitable for a
practical implementation, we consider two cases when we did
not succeed to obtain the analytical asymptotics and had to
evaluate the Fredholm determinants numerically. This is, first,

195433-22



ANALYTICALLY SOLVABLE MODEL OF AN ELECTRONIC . . . PHYSICAL REVIEW B 87, 195433 (2013)

the case of nonequilibrium incoming distribution (Sec. V A)
and, second, the regime of intermediate interaction strength
Ecτ ∼ 1 (Sec. V B). Note that within the numerical approach,
we do not have to rely on the assumption of equivalent
charging energies and lengths of the two arms made in the
previous Sec. IV.

As argued in Sec. IV C, the interference current is obtained
from Eq. (43) by dropping the divergent t̄ integral and putting
t̄ = 0. For the purpose of the present section we rewrite this
formula in the equivalent form,

I+− = I
(eq)
+− [Det D̃]norm[〈+|f̃ D̃−1(0,�τ )|−〉]norm, (171)

with �τ = τ+ − τ−. Here,

I
(eq)
+− = −i(R2T2)1/2ei�eiAferm+iδA〈+|f̃ D̃−1(0,�τ )|−〉|eV =ε0

denotes the near-to-equilibrium current, evaluated at very
small voltages ε0τ± � 1, while the label “norm” refers to
quantities which are normalized with respect to near-to-
equilibrium values, i.e.,

[Det D̃]norm = Det D̃/Det D̃|eV =ε0 .

The density matrix f̃ can be removed from the matrix element
appearing in Eq. (171) by using a relation

1 − D̃−1 = (e2iϑ̂q − 1
)
f̃ D̃−1,

which leads to

[〈+|f̃ D̃−1(0,�τ )|−〉]norm = 〈+|D̃−1(0,�τ )|−〉
〈+|D̃−1(0,�τ )|−〉|eV =ε0

.

By solving an appropriate RH problem we were able to show
that close to equilibrium all effects of nonequilibrium and
interaction, like dephasing and renormalization, are absent for
the AB current. In agreement with the Landauer-Büttiker result
it depends linearly on voltage; thus,

I
(eq)
+− = (R1T1R2T2)1/2 ei� eε0

2π
.

Corrections to this equilibrium expression are encoded in the
normalized terms in Eq. (171). By discretizing the integral

operator D the latter become amenable to numerical evalua-
tion. Below we discuss two different discretization schemes.
In practice, the choice between two depends mainly on the
strength of Coulomb interaction.

A. Nonequilibrium incoming distribution

We consider the situation when the incoming electron
beam is diluted and is driven out of equilibrium even before
scattering at the first QPC. More specifically, we focus on the
setup (that has been realized experimentally) with an additional
QPCO with a transparency 0 < R < 1 placed outside of the
interferometer and diluting the incoming beam. The incoming
then distribution function acquires the double-step form,
f+(ε) = T0θ (−ε) + R0θ (eV − ε).

As in Sec. IV, we focus here on equivalent arms, τ± =
τ , Ec± = EC , in the limit of strong interaction Ecτ � 1,
where the counting phase (55) is a window function and
the counting operator D is of block Toeplitz form with
a two-channel structure. Note that its decomposition into
single-channel operators that was performed in Sec. IV A
requires trivial incoming distribution functions f+, f−, i.e.,
zero-temperature Fermi distributions, possibly with different
chemical potentials. Thus, the nonequilibrium form of f+
constitutes an obstacle for a further analytical evaluation. At
this stage, we do not know whether there is an analytical
way to overcome this problem. We thus resort to a numerical
evaluation of the determinants.

To proceed numerically we use the same discretiza-
tion procedure as in Sec. IV B, where the energy cut-
off � is introduced and the symbol ĝ(ε) of D̃ is re-
quired to satisfy periodic boundary conditions in the energy
domain,

ĝ(ε) = ei ˆ̄ϑε/�[1 + (e2i ˆ̄ϑ − 1)f̃ (ε)].

Now the symbol ĝ(ε) ∈ C2×2 has an additional 2 × 2-channel
structure; the same holds for the diagonal matrix ˆ̄ϑ with
diagonal entries ϑ̄+, ϑ̄−. In the discretized representation the
counting operator D̃ then reads

D̃j−k =
∫ �

−�

dε

2�
e−iε π

�
[j−k] ĝ(ε)

= i

2π

e2i ˆ̄ϑ − 1

j − k − ˆ̄ϑ/π

(
R1R0e

−iπ eV
�

[j−k−ϑ̄+/π] + T0 + T1R0 i(R1T1)1/2R0
(
e−iπ eV

�
[j−k−ϑ̄+/π] − 1

)
− i(R1T1)1/2R0

(
e−iπ eV

�
[j−k+ϑ̄+/π] − 1

)
T1R0e

−iπ eV
�

[j−k+ϑ̄+/π] + R1 + T1T0

)
. (172)

The resulting visibility which follows from the above
approach is shown and discussed in Sec. II B; see Fig. 5. A good
convergence was already achieved for moderate matrix sizes
with N = �τ/π ∼ 100. While we do not have a complete
analytical form of the AB current in this case, the dephasing
rate can be deduced from the leading large-τ asymptotic
behavior of Det D̃ ∼ e−τ/τφ . Making use of the results for the
block Toeplitz determinants,64 we arrive at

τ−1
φ = −

∫
dε

2π
Re ln det[1 − f̂ + s

†
1e

2i ˆ̄ϑs1f̂ ]

= −eV

2π
Re ln[T0 + R0(R1e

−i2π/ν + T1e
i2π/ν)]. (173)

In the case ν = 2 the dephasing rate is simplified to τ−1
φ =

−(eV /2π ) ln |2R0 − 1|, as was mentioned in Sec. II B.

B. Intermediate interaction strength

We now consider the discretization scheme applicable in
the case of a moderate charging energy, Ecτ ∼ 1. In this
general case the correlation function (52) has to be evaluated
numerically (see, e.g., Fig. 11 in Sec. III B which shows the
result for ωcτ = 25). Owing to finite Ec, the counting phase
ϑ+(t) is not a piecewise constant function of time anymore, but
rather acquires oscillations in time. As an illustration, the phase
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θ+(t) is plotted in Fig. 7 for two different charging energies.
Thus, the situation is different from that in the previous section,
since the counting operator is no longer of Toeplitz form.
Despite this complication, a numerical treatment based on
Eq. (171) is nevertheless possible, but a time discretization
of the kernel D(t,t ′) has to be performed directly in the
time domain without any reference to the conjugate energy
representation. To this end, we rely on the approach similar
to the one used in Ref. 65 (see Supplemental Material of that
work) and interpret the zero-temperature Fermi distribution
function f0 in terms of the Cauchy principal value and the
Dirac δ distribution,

f0(t) = i

2π

1

t + i0
= i

2π
P 1

t
+ 1

2
δ(t).

Consequently, the discretization of the nonequilibrium single-
particle density matrix, f̃jk = ŝ1f̂

1(ti ,tj )ŝ†1�t , with tj =
(j − 1)�t and �t = π/� yields

f̃jk = (1 − δjk)
i

2π

1

j − k
+ 1

2
δjk

+
(

R1 (R1T1)1/2

−i (R1T1)1/2 T1

)

×
[

(1 − δjk)
i

2π

e−iπ eV
�

(j−k) − 1

j − k
+ δjk

eV

2�

]
,

with � � Ec being a high-energy cutoff. Making use of above
expression one can further construct the discretized matrix of
the counting operator

D̃jk = δjk12 − (e2iϑ̂q (tj ) − 12
) ◦ f̃jk, (174)

where “◦” denotes matrix multiplication with respect to
channel indices.

The discretized form outlined above is very general, since
it allows for arbitrary time-dependent phases. Note, however,
that for the case of window-function time dependence of
the “counting” phase (i.e., Toeplitz case) this regularization
yields a result which is manifestly 2π periodic in 2ϑq , with
nonanalyticity at points (2n + 1)π . This should be contrasted
to the analytic and nonperiodic behavior of the Toeplitz
determinant within the proper regularization discussed above.
The corresponding difference between the present problem
and that of FCS is mentioned at the end of Sec. IV A1. We
have checked that for |2ϑq | < π both regularization schemes,
Eqs. (172) and (174) produce identical results, although the
convergence of the second scheme is generally worse.

In the case of a finite charging energy the phase changes
continuously with time, and there is no more problem with
the regularization (174), independently of how large the
values acquired by the phase are. We used the matrix size
N = �τ/π ∼ 500, which was sufficient to obtain numerical
results for the visibility at Ec ∼ 1/τ with good precision. The
results are presented and discussed in Sec. II C.

Finally, we have calculated analytically the long-τ asymp-
totics of the action Aferm = −i ln DetD, which gives the
out-of-equilibrium dephasing rate (17) of the AB oscillations.

VI. SUMMARY

In this paper, we have discussed an exactly solvable model
of a QH electronic MZI for arbitrary integer filling factor
ν. The model is specified by a form of e-e interaction
restricted to the inner part of the interferometer and two
single-particle scattering matrices of QPCs. Our main results
can be summarized as follows.

(i) Making use of the nonequilibrium functional bosoniza-
tion approach, we have established the exact solution of the
above model in terms of the resolvent of the Fredholm integral
operator, single-particle counting operator D, which is related
to the problem of electron FCS. The time-dependent scattering
phase ϑ+(t) of the operatorD encodes all information about the
interaction in the system. The link between the initial many-
body problem with Coulomb interaction and single-particle
quantities is established by virtue of the real-time instanton
technique, which becomes exact for the specific type of the
Keldysh action describing the MZI.

(ii) The focus of our study was on the model with
“maximally long-range” Coulomb interaction characterized
by the electrostatic charging energy Ec. In the limit of
strong interaction Ec � 1/τ (here τ is the electron flight
time through the MZI) the scattering phase ϑ+(t) becomes
a piecewise constant “window” function and the operator
D simplifies to the block Toeplitz form. In the absence of
external dephasing, we were able to get rid of the matrix
structure ofD and have expressed the result in terms of singular
Fredholm determinants that may be viewed as a generalization
of Toeplitz determinants with Fisher-Hartwig singularities.
This has allowed us to evaluate the AB conductance in a closed
analytical form. At a moderate charging energy Ec ∼ 1/τ

and/or in the situation when the incoming distribution is made
nonequilibrium by an additional QPC placed outside of MZI,
we have obtained the results for the visibility by evaluating the
determinants numerically.
(iii) Results of our theory at Ec ∼ 1/τ match in all principal

aspects the experimental observation in many designs of MZIs
at filling factor ν = 2. If the transmission coefficient T1 of the
QPC1 is close to 1/2 the visibility dependence on external bias
shows a number of lobes, their amplitude is being suppressed
with the increase of voltage. The AB-phase dependence is
close to a piecewise constant function with jumps equal to π

at minima of the visibility. The visibility is further suppressed
when the MZI is subjected to an out-of-equilibrium shot noise,
generated by the QPC0 placed outside the interferometer. We
have quantified the dephasing rate 1/τφ which governs the
decay of AB oscillations with bias in terms of the transmission
of QPCs, filling factor ν and the strength of e-e interaction Ecτ .

(iv) Our analytical results in the limit of strong interaction
Ecτ � 1 show an intimate connection between the observed
lobe structure in the visibility on one hand and multiple
branches in the asymptotics of singular integral determinants
on the other hand. In more physical terms, this is the
many-body interference effect resulting from the quantum
superposition of many-particle scattering amplitudes with the
mutual phase differences which are linear in external bias. We
derived the nonequilibrium quantum critical exponents, which
depend both on the transmission T1 and the filling factor ν.
They are attributed to the Anderson orthogonality catastrophe
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under out-of-equilibrium conditions and describe the power-
law dependence of the above many-particle amplitudes on
voltage.

Before closing, we mention some future research direc-
tions. First, our approach can be generalized to a broader
class of setups, including, in particular, time-dependent
nonequilibrium phenomena and coupled MZIs that have been
discussed in the context of quantum information.66–68 An
extension of the presented approach to the fractional QH
edge states devices, comprising two (or more) QPCs which
couple the copropagating edge modes, would be of great
interest. Another important research direction is the analysis
of the asymptotic behavior of block Toeplitz determinants

with Fisher-Hartwig singularities (and, more generally, block
determinants, with symbols that have multiple energy and
time singularities). This would not only make it possible to
obtain closed analytical results in the model with moderate
interaction strength but would likely have multiple further
applications.
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