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Nonlocal transport properties of nanoscale conductor–microwave cavity systems
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Recent experimental progress in coupling nanoscale conductors to superconducting microwave cavities has
opened up for transport investigations of the deep quantum limit of light-matter interactions, with tunneling
electrons strongly coupled to individual cavity photons. We have investigated theoretically the most basic
cavity-conductor system with strong, single photon induced nonlocal transport effects: two spatially separated
double quantum dots (DQDs) resonantly coupled to the fundamental cavity mode. The system, described by a
generalized Tavis-Cummings model, is investigated within a quantum master equation formalism, allowing us
to account for both the electronic transport properties through the DQDs as well as the coherent, nonequilibrium
cavity photon state. We find sizable nonlocally induced current and current cross-correlations mediated by
individual photons. From a full statistical description of the electron transport we further reveal a dynamical
channel blockade in one DQD lifted by photon emission due to tunneling through the other DQD. Moreover,
large entanglement between the orbital states of electrons in the two DQDs is found for small DQD-lead
temperatures.
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I. INTRODUCTION

In circuit quantum electrodynamics (QED), the mesoscopic
analog of cavity QED, solid state qubits are coupled to
superconducting microwave cavities on chip.1,2 Circuit QED
systems combine the appealing properties of high cavity
quality factors and strong vacuum microwave fields with low
qubit decoherence. This has allowed for experiments in the
strong coupling limit with qubit-cavity coupling exceeding
the qubits decoherence rates. The strong cavity-qubit coupling
together with fast, coherent manipulation of the qubits has
lead to an astonishing development in the areas of quantum
information processing3–7 and microwave quantum optics
with superconducting circuits.8–14 Moreover, circuit QED
architectures have a large potential for simulations of strongly
interacting many-body systems15 and tests of fundamental
quantum physical effects.16–18

The rapid development in circuit QED triggered inves-
tigations on nanoscale qubits and conductors coupled to
microwave cavities or resonators.19–42 Particularly interesting
are recent experiments on few-level quantum dots coherently
coupled to microwave cavities.30,31,37,39–43 These experiments
open up for transport investigations of light-matter interac-
tions in the deep quantum regime: single electrons inter-
acting strongly and coherently with individual microwave
photons. The large versatility of microwave photon state
properties,17,44,45 together with the well established control-
lability of quantum dot levels provide a broad scope for
fundamentally important experiments.

A key feature of conductor-cavity systems is the possibility
to coherently couple electrons in conductors separated up
to centimeters.42 This puts in prospect entangling macro-
scopically separated transport electrons, of importance for
nanoscale quantum information processing and Bell inequality
tests.46–49 Moreover, this nonlocal feature can be harnessed for
efficient heat transfer or refrigeration over large distances.50,51

A first step towards these goals would be an experimental
demonstration of nonlocal, few-photon mediated, electronic
transport effects. In the present work we investigate theoreti-

FIG. 1. (Color online) Two DQD-cavity system: Each DQD (pair
of red ovals) is coupled to the central conductor of the transmission
line cavity (middle blue rectangle), two lead electrodes (gold
rectangles) and to two gate electrode potentials (silver rectangles).
Here VL(R)i and VgL(R)i denote the left (right) lead and gate electrode
potential of DQD i, respectively.

cally the simplest possible strongly coupled cavity–quantum
dot system where such nonlocal effects can be observed: two
double quantum dots (DQDs) coupled to the same transmission
line cavity (see Fig. 1). We argue that dot-cavity systems
with single-level or metallic dots will, in comparison, display
suppressed nonlocal effects.

The DQDs are resonantly coupled to the same, fundamental
mode of the microwave cavity. This DQD-cavity system
constitutes a generalized Tavis-Cummings model,52,53 with
strong hybridization of the DQD electron and microwave
photon states. Our investigation is focused on the nonlo-
cal electronic transport properties. For a broad range of
parameters, the current-voltage characteristics provide clear
signatures of transport electrons exchanging photons. Further,
for asymmetric DQD-lead couplings, noise and higher order
current fluctuations reveal a dynamical channel blockade
in one DQD lifted by single photons emitted by electron
tunneling in the second DQD. In addition, we demonstrate
the existence of large orbital entanglement between electrons
in different DQDs.

We emphasize that the predicted nonlocal effects are
direct consequences of the nonequilibrated, transport-induced
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photon state. This makes our investigation qualitatively differ-
ent from earlier transport studies on pairs of two-level systems
coupled via thermalized bosons.54,55 To fully account for the
coherent, nonequilibrium properties of the photon state, as well
as the electron tunneling through the DQDs, our investigation
is carried out within the framework of a quantum master
equation (QME). The approach is similar to the ones used to
investigate transport through single two-level systems coupled
resonantly to a photonic mode in Refs. 24,26, and 36.

The article is organized as follows: In Sec. II A we introduce
the model for the closed DQD-cavity system, present its
Hamiltonian and discuss the eigenstates and eigenenergies.
We further derive, in Sec. II B, a QME for the system when the
DQDs are coupled to lead electrodes. In Sec. III the transport
properties are investigated in the regime where the temperature
of the lead electrodes exceeds the DQD-cavity coupling
strength. Focus is put on the nonlocal transport properties,
calculating the nonlocal current-voltage characteristics, the
current cross-correlations and the full counting statistics. In
Sec. IV we turn to the regime where the lead temperature
is smaller than the DQD-cavity coupling strength. Transport
signatures of coherent electron-photon interaction as well
as entanglement between the electrons in the DQDs are
investigated. The effect of dephasing and approaches to
minimize this effect are discussed in Sec. V.

II. SYSTEM AND METHOD

The system considered is depicted in Fig. 1. Two DQDs,
denoted 1 and 2, are inserted near the endpoints of a
transmission line cavity. The central conductor is capacitively
coupled to the right (left) dot in DQD1(2) (see, e.g., Ref. 39
for a possible experimental realization). One gate and one lead
electrode are further coupled to each dot in the DQDs. The
leads are assumed to be in thermal equilibrium with a common
temperature T and chemical potentials μνi , with ν = L,R and
i = 1,2 denoting to which dot the lead is coupled.

Throughout most of the paper we will consider the strong
coupling limit. This implies that the DQD-cavity coupling is
large compared to the DQD-lead couplings and also dominates
over decoherence due to other types of system-environment in-
teraction. Moreover, we will assume the DQD-lead couplings
to be much stronger than the interaction with the rest of the
system-environment and hence neglect decoherence from the
latter. In the last section will we consider the effect of DQD
dephasing as well as DQD relaxation and photon loss.

A. Model

The DQDs, forming singly occupied two-level systems,
couple linearly to the microwave photons in the cavity.
The system Hamiltonian ĤS , describing the DQD-photon
interaction as well as the orbital degrees freedom of the
DQDs and the direct interaction between the DQD charges,
is derived in Appendix A. Below we will take the DQDs to be
on resonance with the fundamental mode of the transmission
line cavity. Moreover, the cavity characteristic impedance Z0 is
assumed to be much smaller than the resistance quantum RQ =
h/e2, relevant for regular transmission line cavities. Under
these conditions the DQD-cavity system will be described by

a generalized Tavis-Cummings (TC) Hamiltonian52

ĤS = h̄ωâ†â +
∑

i

[
h̄ω

2
(d̂†

ei d̂ei − d̂
†
gi d̂gi)

+ h̄g0(â†d̂†
gi d̂ei + H.c.)

]
. (1)

Here d̂
†
gi and d̂

†
ei (d̂gi and d̂ei) denote the creation (annihilation)

operators of the ground and exited, i.e., of the bonding and
antibonding, states of DQDi. We have further introduced
the photon creation operator â† and the frequency ω of the
fundamental mode, and the DQD-cavity coupling strength
g0, for simplicity taken equal for both DQDs. Note that
since we have assumed single occupancy of the DQDs, the
spin-degree of freedom of the DQDs will only have the effect
of renormalizing tunneling rates and is hence neglected in
Eq. (1) and below.

The generalized TC Hamiltonian in Eq. (1) has the form of
a TC Hamiltonian for both DQDs occupied while it reduces
to a Jaynes-Cummings (JC) and a harmonic oscillator (HO)
Hamiltonian when one or none of the DQDs are occupied,
respectively. It is of key importance for the discussion below
to describe the eigenstates in the HO, JC, and TC subspaces of
ĤS . We first note that ĤS commutes with the operator for the
number of excitations n̂ = â†â + ∑

i d̂
†
ei d̂ei . The eigenstates

can then be characterized by the corresponding quantum
number n. We express the eigenstates in terms of the DQD-
cavity product states |ξ1ξ2p〉, with DQDi in the state |ξi〉, with
ξi = 0, g, e, and p photons in the cavity mode.

For the HO subspace ξ1 = ξ2 = 0 and hence the number
of excitations is equal to the number of photons, giving the
eigenstates |00n〉. In the JC subspace with DQD1(2) occupied
the eigenstate with zero excitations is |S0

1 0〉 = |g00〉 (|S0
2 0〉 =

|0g0〉). For states with a finite number of excitations the
photon state and the state of the occupied DQD hyridizes. The
states, denoted by |S±

i n〉, are superpositions of product states
with n and n − 1 photons in the mode. For DQD1 occupied
they are given by |S±

1 n〉 = [|g0n〉 ± |e0n − 1〉]/√2 and for
DQD2 occupied we have |S±

2 n〉 = [|0gn〉 ± |0en − 1〉]/√2.
The eigenbasis in the TC subspace has a similar structure. The
state with zero excitations is a product state |D00〉 = |gg0〉
and the states with one or more excitations are superpositions
of product states with different number of photons. We denote
the finite-excitation eigenstates by |Dα1〉, with α = 0,±, for
n = 1 and |Dβγ n〉, with and β,γ = ±, for n � 2 and give their
exact forms in Appendix B. The spectra of the HO, JC, and TC
Hamiltonians, also given in Appendix B, are shown in Fig. 2.
Importantly we see in Fig. 2 that a state with n excitations
has an energy nh̄ω + O(h̄g0) relative to the energy of the state
with zero excitations in its subspace. Moreover the TC (HO)
ground state is shifted −h̄ω/2 (h̄ω/2) with respect to the JC
ground states.

B. Quantum master equation

The leads and their tunnel coupling to the DQDs are
described by the Hamiltonians ĤL and ĤT , respectively.
The lead Hamiltonian reads ĤL = ∑

k,ν,i εkĉ
†
kνi ĉkνi , with ĉ

†
kνi

creating an electron in the state with energy εk in the lead

195427-2



NONLOCAL TRANSPORT PROPERTIES OF NANOSCALE . . . PHYSICAL REVIEW B 87, 195427 (2013)

FIG. 2. (Color online) The spectrum of the Hamiltonian in Eq. (1)
with the eigenenergies marked by the horizontal black lines. The
column to the left shows the spectrum of the HO subspace (both
DQDs unoccupied), the middle column shows JC spectrum (DQD1
or DQD2 occupied), and the right column shows the spectrum of the
TC subspace (both DQDs occupied). The diagonal red arrows show
the allowed transitions due to electron tunneling described by Eq. (3).

connected to dot νi. In the ground-excited basis the tunneling
Hamiltonian is given by

ĤT =
∑
k,i

(tLi ĉ
†
kLi[− sin(θi)d̂gi + cos(θi)d̂ei]

+ tRi ĉ
†
kRi[cos(θi)d̂gi + sin(θi)d̂ei] + H.c.), (2)

with tνi denoting the energy independent lead-dot tunneling
amplitude for dot νi. We have further introduced the DQD
mixing angles tan(θi) = ±tLRi/(

√
ω2 − t2

LRi ± ω), where tLRi

denotes the interdot tunneling amplitude of DQDi. The + (−)
sign here refers to the energy difference between orbitals of
the left and right dots of DQDi being positive (negative).

We assume weak tunnel couplings between the dots and the
leads and restrict the investigation to the sequential tunneling
regime. Following the standard Born-Markov approximation
scheme a quantum master equation (QME) is derived for
the time evolution of the reduced density matrix ρ̂ of
the DQD-cavity system.56 We point out that the lead-dot
tunneling rates �νi = 2π |tνi |2

∑
k δ(ε − εk) must be chosen

much smaller than the DQD-cavity coupling strength g0. This
restriction is necessary for the strong coupling condition to
hold. Moreover, it allows us to neglect coherences between
states with an energy difference �ε � h̄g0, i.e., to perform
a secular approximation. Considering for simplicity identical
tunnel couplings to the left and right dots in each DQD, i.e.,
�Li = �Ri = �i , we can write the QME dρ̂

dt
= L[ρ̂], with the

Liouvillian

L[ρ̂] = − i

h̄
[ĤS,ρ̂] −

∑
ν,i

∑
ξ=e,g

∫
dε dε′�̄νξi(θi)

× [fνi(ε)d̂ξ iδ(ε + ε′ − ĤS)d̂†
ξiδ(ε′ − ĤS)ρ̂

+ f̃νi(ε)d̂†
ξiδ(ε + ε′ + ĤS)d̂ξ iδ(ε′ + ĤS)ρ̂

− fνi(ε)δ(ε + ε′ − ĤS)d̂†
ξiδ(ε′ − ĤS)ρ̂d̂ξ i

− f̃νi(ε)δ(ε + ε′ + ĤS)d̂ξ iδ(ε′ + ĤS)ρ̂d̂
†
ξi + H.c.].

(3)

Here fνi(ε) = f (ε − μνi) and f̃νi(ε) = 1 − f (ε − μνi), with
f denoting the Fermi function. We have further introduced
the rates �̄Lei(θi) = �̄Rgi(θi) = �i cos2(θi) and �̄Lgi(θi) =
�̄Rei(θi) = �i sin2(θi).

We point out that electron tunneling into or out of the
DQDs in the sequential secular regime can be associated with
jumps between energy levels in adjacent columns in Fig. 2.
This means that the most compelling physical picture will
emerge when working in the eigenbasis of ĤS (see Sec. II A).
By evaluating the rates for the different tunneling processes,
described by Eq. (3), in this eigenbasis we can draw the
following two important conclusions:

(i) The number of excitations of the system can change
with 0 or −(+)1 when an electron tunnels into (out of) one
of the DQDs, as indicated by the red arrows in Fig. 2. The
system energy can thus increase or decrease by the energy
h̄ω/2 + O(h̄g0) in a tunneling event. Consequently, an electron
tunneling through one of the DQDs, e.g., from the left lead into
the DQD and then out to the right lead, can change the system
energy by 0, ± h̄ω+O(h̄g0). If a tunneling electron changes
the energy with +(−)h̄ω + O(h̄g0) a subsequently tunneling
electron, in the same or the other DQD, can absorb (emit) this
energy. This process, here referred to as the transport electrons
exchanging a photon, is depicted in Fig. 3.

(ii) The rate for processes where the energy is increased or
decreased for an electron tunneling into dot ν in DQDi is pro-
portional to �̄νeifνi[h̄ω/2 + O(h̄g0)] and �̄νgifνi[−h̄ω/2 +
O(h̄g0)], respectively. Similarly, the rates for exciting or
deexciting the system when electrons tunnel out of DQDi

are given by �̄νgi f̃νi[−h̄ω/2 + O(h̄g0)] and �̄νei f̃νi[−h̄ω/2 +
O(h̄g0)]. Note that the rates for tunneling events in which
energy is emitted or absorbed can be controlled by the chemical
potentials μνi and mixing angles θi . Note further that for
g0 = 0 these rates coincide with the corresponding rates for
the DQDs decoupled from the cavity mode, as depicted in
Fig. 3.

Based on an analytical solution to the QME (see
Appendix C), we can further conclude that a well defined
steady-state solution for ρ̂ exists for mixing angles θ1,θ2 >

π/4. For smaller angles and certain bias configurations the
photon number can diverge. In Ref. 33, where a single
DQD-cavity system was considered, it was shown that DQD
mixing angles θ < π/4 can lead to population inversion and
hence a cavity lasing state.57–60 Since the focus on this work is
the few-photon regime, if not otherwise explicitly stated, we
focus on mixing angles θ1,θ2 > π/4 below.

III. NONLOCAL TRANSPORT PROPERTIES

The main purpose of this work is to investigate nonlocal
transport properties due to exchange of photons between
tunneling electrons in different DQDs. This investigation is
carried out in the regime h̄ω � kBT � h̄g0. The experiments
reported in Refs. 30,31, and 39 were performed under these
conditions. Moreover, for kBT � h̄g0 the occupations of
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FIG. 3. (Color online) (a) Elementary process in which two trans-
port electrons exchange a photon. In step I an electron tunnels through
DQD1, i.e., into (blue arrow) and then out of (red arrow) DQD1,
while increasing the system energy by h̄ω. In step II an electron
tunnels through DQD2 and changes the system energy by −h̄ω.
Through steps I and II the two electrons have exchanged a photon
(wiggling line) through the cavity. (b) Tunneling processes into and
out the ground and excited state of DQDi decoupled from the cavity
mode. The rates for the processes 1, 2, 3, and 4 are �̄LeifLi(h̄ω/2),
�̄LgifLi(−h̄ω/2), �̄Rei f̃Ri(h̄ω/2), and �̄Rgi f̃Ri(−h̄ω/2). (c) Bias
configuration of DQD2 considered in Sec. III. The positions of the
chemical potentials of the left leads μL2 and μR2 relative to the
energies at which electrons tunnel into and out of the DQD are shown.
These sets of energies are in an interval ∼h̄g0 denoted by the grey
boxes around the dashed lines.

the leads do not change significantly over the energy scale
h̄g0, i.e., fνi[±h̄ω/2 + O(h̄g0)] ≈ fνi(±h̄ω/2). Then there are
effectively only two energies in the leads at which the electrons
can tunnel into and out of the DQDs. This simplifies the
expressions for the tunneling rates into and out of the DQDs
(see Sec. II B) and allows us to reduce the QME to an ordinary
master equation (ME) (see Appendix C). We write this ME
dP/dt = MP, where P is a vector with the probabilities of
eigenstates of ĤS and M is the matrix with the transition rates
between these eigenstates.

For the system to display nonlocal transport effects it is clear
that two conditions must be fulfilled: First, transport electrons
in different DQDs must exchange photons. Second, for at least
one of the DQDs the effective tunneling rate into the empty
DQD or out of the occupied DQD must be dependent on the
number of excitations in the system or the occupation of the
other DQD. The most clear nonlocal effects will thus occur
for a state dependence such that transport becomes blocked
in one of the DQDs if photons are not emitted by the other.
Here we take the DQD2 to be blocked when there are no
excitations in the system. This is accomplished by choosing
a bias configuration similar to the one depicted in Fig. 3, i.e.,
such that fL2(−h̄ω/2) = 1, fL2(h̄ω/2) = 1, fR2(−h̄ω/2) = 1,
fR2(h̄ω/2) = 0.

A. Current

We first consider the currents in the DQDs as a function
of the bias voltage V1 across DQD1. The current Ii through
DQDi is determined by the populations of the eigenstates of
the system and the effective tunneling rates between the DQD
and its right lead. The currents I1(V1) and I2(V1) are plotted for
symmetric bias, μL1 = −μR1 = eV1/2, and θ1 = θ2 = π/3 in
Fig. 4. The key feature of both current-voltage characteristics is
a thermally broadened onset at eV1 = h̄ω. In DQD1 the onset
occurs when the energies at which the electron can tunnel
into and out of the DQD enter the bias window. The electron
tunneling through DQD1 will further excite the system to
states where tunneling out of DQD2 becomes possible. Hence
the onset of the current I2 occurs at the same bias voltage
V1. In the limits �1/�2 � 1 and �1/�2 � 1 the solution to
the ME, and hence the currents, can be obtained analytically
(see Appendix C). Focusing on the nonlocally induced current
I2(V1), for symmetric bias and eV1 � kBT we obtain

I2 = e�1γ
2

1 + γ
, �1/�2 � 1,

(4)

I2 = e�2γ
2

[1 + 2 cot2(θ2)](1 − 2γ + 2γ 2) + γ 2
, �1/�2 � 1,

where γ = fL1(h̄ω/2) cos2(θ1). From these expressions it is
clear that the magnitude of the induced current can be made
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FIG. 4. (Color online) Upper panel: The nonlocally induced
current I2 as a function of eV1/h̄ω for θ1 = θ2 = π/3, kBT = 0.05h̄ω

and different asymmetry factors �1/�2. The dashed black (green)
curve shows the current for �1/�2 = 1/10 (10) obtained from the
analytical expression for �1 � �2 (�2 � �1) in Eq. (4). The inset
shows I1 as a function of eV1/h̄ω for the same asymmetry factors and
mixing angles. Lower panel: The current I2 above the onset voltage
against the asymmetry factor �1/�2 for different θ = θ1 = θ2.
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∼e�1 and ∼e�2 in the limits �1/�2 � 1 and �1/�2 � 1,
respectively. From the plot of the high-bias current against
the asymmetry factor �1/�2 for θ1 = θ2 in Fig. 4 and from
further investigation for θ1 	= θ2, we find that the nonlocal
effect is maximal for �1 ∼ �2. We can thus conclude that
the nonlocally induced current, qualitatively behaving as
I2 ∼ e�1�2/(�1 + �2), is considerable for a large range of
the parameters �1, �2, θ1, and θ2. Note that the expressions in
Eq. (4) do not depend on g0, a consequence of considering the
strong coupling regime, �i � g0, and the temperature limit
h̄g0 � kBT .

To estimate the magnitude of the nonlocally induced current
we consider recent single DQD-cavity experiments,39,41 where
fundamental frequencies ω/2π ∼ 10 GHz and DQD-cavity
coupling strengths g0/2π ∼ 50 MHz were reported. For these
parameters strong coupling is achieved for tunneling rates
�i � 50 MHz giving nonlocally induced currents of the order
I2 ∼ 0.1 pA. Importantly, currents of this magnitude have been
measured in DQD-cavity systems.39

To further put the magnitude of the nonlocally induced
current in perspective we briefly discuss nonlocal transport
properties for the system with the DQDs replaced by single-
level or metallic dots. As follows from our Ref. 34, the
MEs describing the evolution of these systems are explicitly
dependent on the parameter Z0/RQ, typically much smaller
than unity for regular transmission lines. Importantly, the MEs
show that the effective tunneling rate into an empty dot or out of
an occupied dot is independent on the system state to zero order
in Z0/RQ. It thus follows that the nonlocally induced current
will be proportional to Z0/RQ, to first nonvanishing order.
In a single-level or metallic dot-cavity system the nonlocally
induced current will thus, in comparison with the current in a
DQD-cavity system, be suppressed.

B. Current correlations

We have now established that photon exchange between
transport electrons in the spatially separated DQDs can result
in a nonlocal current. As the next natural step, we investigate
the mechanism behind this exchange. To this aim we consider
the low-frequency correlations Sij between the currents in
DQDi and DQDj . Current correlations are known to provide
information about, e.g., the effective charge, interactions, and
statistical properties of the charge carriers.61 The correlations
Sij can formally be obtained from a number-resolved version
of the ME (see Appendix D). Focusing first on the cross-
correlations S12 we plot in Fig. 5 the cross-correlation Fano
factor F12 = S12/(e

√
I1I2) against the bias voltage V1 for

different asymmetry factors. Similar to the normalized currents
I1 and I2, the cross-correlations have an onset at eV1 = h̄ω.
However, in contrast to the current I2 (but similar to I1) the
cross-correlations have a strong dependence on the asymmetry
factor �1/�2. This can be seen by considering the limits
�1/�2 � 1 and �1/�2 � 1 where analytical expressions can
be obtained. Above the onset voltage we get

F12 = cos(θ1)[1 + cos4(θ1)]

[1 + cos2(θ1)]2
, �1/�2 � 1,

(5)
F12 = O(

√
�2/�1), �2/�1 � 1.
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FIG. 5. (Color online) Upper panel: Cross-correlation Fano factor
F12 = S12/(e

√
I1I2) as a function of eV1 for different asymmetry

factors �1/�2 for mixing angles θ1 = θ2 = π/3 and temperature
kBT = 0.05h̄ω. Middle panel: Cross-correlation Fano factor above
onset as a function of asymmetry parameter �1/�2 for θ1 = θ2 = θ

and kBT � h̄ω. Lower panel: Auto-correlation Fano factors F22 =
S22/I2 above onset as a function of asymmetry parameter for mixing
angles θ1 = θ2 = θ and kBT � h̄ω.

From these expressions we see that the currents in DQD1
and DQD2 are manifestly positively correlated, F12 > 0
[cos(θ1) > 0], for �1/�2 � 1. The correlations are also
strong, F12 ∼ 1. In contrast, for �1/�2 � 1, the currents
are essentially uncorrelated. The crossover between the two
regimes is shown in Fig. 5 for θ1 = θ2. The strong, positive
correlations appearing for �1 � �2 clearly show that tunneling
through DQD2 is triggered by tunneling through DQD1. The
qualitatively different system behavior in the limits �1/�2 �
1 and �1/�2 � 1, respectively is also manifested in the auto-
correlations S22. In Fig. 5 we see that the autocorrelation Fano
factor F22 = S22/(eI2) above onset goes from a sub-Poissonian
value, F22 < 1, to a super-Poissonian value, F22 > 1, as the
asymmetry factor �2/�1 is decreased from infinity to zero.
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FIG. 6. (Color online) (a) Schematic of processes in ME dP/dt =
MP contributing to tranbsport quantities to first order in the asym-
metry parameter �1/�2. The tunneling processes in DQD1 (slow
processes) are marked by blue arrows and the tunneling processes
in DQD2 (fast processes) are marked by red arrows. (b) Tunneling
processes in DQD2. Process (1) and (2) describe the tunneling into
and out of the DQD as the system goes back-and forth between |S0

1 0〉
and {|Dα1〉}. Processes (3) and (4) describe the tunneling processes
where the system relaxed from |S0

1 0〉 to |D00〉.

This describes a transition from antibunching to bunching
behavior of the transport electrons.61

To connect these findings to the properties of the photon
exchange we first perform a careful investigation of the ME
in the limit �1 � �2. The processes contributing to transport
quantities to leading order in the asymmetry parameter �1/�2

are depicted in Fig. 6. From this scheme it is apparent that
the states |D00〉 and |S0

2 0〉 will have occupations O(1), while
the other states have occupation O(�1/�2). The system will
thus spend most of its time in the states |D00〉 and |S0

2 0〉
and will occasionally be excited out of this subspace by a
tunneling event in DQD1, from the state |S0

2 0〉 to any of the
states {|Dα1〉}. The system can from here go back and forth
between {|Dα1〉} and |S0

2 0〉 an arbitrary number of times before
relaxing to |D00〉. This will occur on a time-scale ∼1/�2.
Each tunneling event in DQD1 which excites the system to
{|Dα1〉} will hence be followed by one or more tunneling
events in DQD2 during a short time window ∼1/�2. The
electrons in DQD2 are thus transported in cascades induced by
randomly occurring tunneling events in DQD1 with separation
1/�1 � 1/�2. This mechanism, commonly referred to as
dynamical channel blockade,62,63 explains both the positive
cross-correlations, S12 > 0, and the bunching of electrons
in DQD2, F22 > 1. Importantly, each cascade in DQD2 is
initiated by the emission of a single photon due to an electron
tunneling through DQD1.

To further discuss photon exchange in the opposite limit
�1 � �2 we note that many tunneling events in DQD1 occur
in between each tunneling event in DQD2. As a consequence

the distribution of excitations is entirely determined by the
tunneling in DQD1 (see Appendix C). This means that the
steady-state distribution of excitations is restored in between
each (photon-assisted) tunneling event out of DQD2. The
tunneling events out of DQD2 are thus, in clear contrast to the
case in the opposite limit �1 � �2, not triggered by photon
emission in single tunneling events in DQD1. This explains
the suppression of the current cross-correlations as well as the
sub-Poissonian auto-correlations in DQD2. In conclusion our
investigation supports the physical picture where individual
tunneling electrons in DQD1 and DQD2 exchange single
photons for �1 � �2 (but not for �1 � �2) and that this
process is clearly manifested in the current correlations.

C. Full counting statistics

To obtain a complete picture of the elementary processes of
the charge transport for �1 � �2 we consider the full transport
statistics. The statistics is most clearly visualized via the
cumulant generating function (CGF) F which can be obtained
analytically above onset (see Appendix D) and is given by

F(χ1,χ2)

= −�1

2
(1 + cos2(θ1)

−
√

sin4(θ1) + 4 cos2(θ1)eiχ1 [sin2(θ1) + cos2(θ1)y]),

y = [cos2(θ2) + sin2(θ2)eiχ2 ]
∑
n=0

zn

z0
einχ2 . (6)

Here z = cos2(θ2)/[1 + cos2(θ2)], z0 = 1 + cos2(θ2), and χi

is the counting field for charge transfer in DQDi. To interpret
the CGF we first consider the case when the charge transfer
through DQD2 is not monitored, i.e., χ2 = 0. Then y = 1 and
the CGF reduces to the well known result64 for a single level dot
with tunneling rates �1 and �1 cos2(θ1) into and out of the dot,
respectively. For χ2 	= 0, it is clear from the term sin2(θ1) +
cos2(θ1)y that tunneling events into DQD1 are of two kinds.
First, for events corresponding to the transition |S0

2〉 → |D00〉,
occurring with a rate ∝ sin2(θ1), there is no tunneling in
DQD2. The second type of events, corresponding to transitions
|S0

2 0〉 → {|Dα1〉} and occurring with a rate ∝ cos2(θ1), trigger
tunneling in DQD2. This tunneling takes place as the system
goes back to |D00〉 and is described by the function y = y(χ2).

The different terms in y are given by the probabilities
for all possible processes taking the system from {|Dα1〉} to
|D00〉, weighted with counting field factors describing the
respective charge transfer through DQD2. Common for all
processes is that they start with the transition {|Dα1〉} → |S0

1 0〉
and end with |S0

1 0〉 → |D00〉. These two transitions give rise
to the prefactor cos2(θ2) + sin2(θ2)eiχ2 = eiχ2 [cos2(θ2)e−iχ2 +
sin2(θ2)], with the eiχ2 from the starting transition and
cos2(θ2)e−iχ2 + sin2(θ2) from the ending transition. As shown
in Fig. 6, the ending transition can occur via tunneling from
the left lead of DQD2 [probability sin2(θ1), no counting field
factor] or back from the right lead of DQD2 [probability
cos2(θ1), counting field factor e−iχ2 ]. The sum term in y,
running from zero to infinity, describes all possible back-
and-forth transitions |S0

1 0〉 → {|Dα1〉} → |S0
1 0〉 the system

can perform, between the starting and ending transitions
(see Fig. 6). The nth term in the sum thus corresponds to
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n transitions and hence n electrons being transferred across
DQD2. This interpretation comes naturally when noting that
zn/z0 is the probability of returning to the state |Dα1〉n times.
The structure of the CGF, and in particular y, clearly shows
that that electrons in DQD2 are transported in cascades and
that these cascades are triggered by single photons emitted by
electrons tunneling through DQD1.

IV. SPECTRAL FINE STRUCTURE AND ENTANGLEMENT

It is interesting to investigate what qualitatively new
physical effects come into play in the regime where the thermal
broadening in the leads is much smaller than the DQD-cavity
coupling strength, i.e., kBT � h̄g0. In this regime the ME
description used in the previous section is no longer valid and
we need to consider the full QME of Eq. (3).

A. Transport properties

We first demonstrate that the structure on the scale ∼h̄g0

in the spectrum of the generalized TC Hamiltonian appear in
the transport properties of the system for kBT � h̄g0. This fine
structure, a manifestation of coherent electron-photon interac-
tion, appear already in the average current and we therefore
focus on this quantity. Moreover, we consider the simplest
possible parameter regime by taking DQDs with identical
mixing angles θ1 = θ2 = θ , lead-DQD tunneling rates �1 =
�2 = �, and with left (right) leads having the same chemical
potential, i.e., μν1 = μν2 = μν . This will give the same current
I = I1 = I2 in DQD1 and DQD2. This current I is readily
obtained from a numerical solution of Eq. (3) (see Appendix D
for details). In Fig. 7 we plot I (V ) for symmetric bias voltage
μL = −μR = eV/2 and θ = π/3 for temperatures ranging
from kBT ∼ h̄g0 down to kBT � h̄g0. We clearly see how the
single step onset at eV = h̄ω is split up into several smaller
steps, spaced ∼h̄g0 as the temperature is decreased. These
steps can directly be attributed to the structure of the spectrum
of the generalized TC Hamiltonian. They are a consequence of
eigenstates with energy splittings ∼h̄g0 becoming populated
at different bias voltages. It is here interesting to note that
signatures of the JC spectrum were found in the frequency-
dependent current auto-correlations in the transport through a
system with only one DQD coupled to the cavity mode.25

0.9 1 1.1 1.2 1.3 1.4 1.5
eV/h_ω

0.175

0.2

0.225

I/(
eΓ

)

kBT=0.01h_ g0
kBT=0.05h_ g0
kBT=0.1h_ g0
kBT=0.5h_ g 0

FIG. 7. (Color online) The current I = I1 = I2 through the DQDs
as a function of voltage above onset for θ = π/3, g0 = 0.1ω, and
different temperatures.

B. Transport-induced entanglement

A natural question to ask when considering two coupled,
spatially separated DQDs is to what extent their orbital degrees
of freedom become entangled by the exchange of cavity
photons. The object of interest, describing the properties of the
electronic state with one electron in each DQD, is the reduced
two-particle density matrix ρ̂r . The reduced density matrix, of
dimension 4 × 4, is formally obtained by first projecting the to-
tal system density matrix ρ̂ onto the TC subspace and then trac-
ing out the photonic degrees of freedom. As follows from the
structure of Eq. (3) and the TC eigenstates (Appendix B), the
reduced density matrix can be written as a sum of the four
diagonal components in the singlet-triplet basis,

ρ̂r = ρg|gg〉〈gg| + ρe|ee〉〈ee| + ρS |S〉〈S| + ρT |T 〉〈T |,
(7)

where |S(T )〉 = (|eg〉 − (+) |ge〉)/√2. The entanglement of
ρ̂r is conveniently quantified via the concurrence,65 ranging
from 1 for a maximally entangled state to 0 for a nonentangled,
separable state. For a density matrix of the form in Eq. (7) the
concurrence C(ρ̂r ) takes on the simple form

C = max{|ρS − ρT | − 2
√

ρeρg,0}. (8)

To determine if entanglement can be induced by photon
exchange we first consider the scheme in Fig. 8, displaying
the lowest energy states with the TC subspace well resolved.
By noting that the lowest excited TC states |Dα1〉 are written
|D01〉 = |S0〉 and |D±1〉 = (1/

√
2)(|gg1〉 ± |T 0〉) it is clear

that a selective population of any of the |Dα1〉 states would give
an electronic state with a large singlet (S) or entangled triplet
(T ) component. To demonstrate such a selective population
we choose bias voltages Vi and dot-level positions such that
the chemical potentials μiL and μiR obey the relations

h̄ω

2
−

√
2h̄g0 < μLi <

h̄ω

2
− h̄g0,

(9)

−h̄ω

2
> μRi > −h̄ω

2
− (

√
2 − 1)h̄g0.

For kBT � h̄g0 then only |D−1〉 of the excited TC states
becomes populated.

For the chosen parameters, as seen in Fig. 8, only five
states of the generalized TC model contribute to transport.
For this case the QME can be solved exactly. Importantly,
the steady-state solution gives a reduced two-particle density

FIG. 8. (Color online) Scheme of the lowest energy levels in
the generalized TC Hamiltonian. The red arrows show the active
transitions for kBT � h̄g0 and for a bias configuration such that the
chemical potentials satisfy the conditions in Eq. (9).
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matrix ρ̂r with only ρg and ρT nonzero. As is clear from Eq. (8)
the resulting concurrence is finite. For a symmetric parameter
setting, i.e., for θ1 = θ2 = θ , �1 = �2 = �, and μν1 = μν2 =
μν this concurrence is given by

C = cos4(θ )

2[cos4(θ ) + sin4(θ )]
, (10)

showing that the concurrence can reach up to C = 1/2 for
θ � 1. We stress that for the chosen parameters there is no
bound on θ in order to have a well defined solution to the
QME.

Having confirmed the existence of large entanglement
C � 1/2, we consider the effect of finite temperature and
modified bias voltage V = V1 = V2. Solving numerically the
QME, the resulting concurrence C(V ) is plotted in Fig. 9 for
different temperatures. For low temperatures kBT � h̄g0 the
entanglement has an onset when |D−1〉 is populated, with
the concurrence given by Eq. (10). Increasing the voltage
further, |D01〉 is populated as well, decreasing the concurrence
due to the finite probability for both entangled triplet, ρT

and singlet, ρS , electronic states, clear from Eq. (8). For
even larger bias all TC states |Dα1〉 have finite population
and the entanglement disappears. From Fig. 9 it is also
clear that increasing the temperature smears the C(V ) curve
and successively suppresses the entanglement, reaching a
separable state at kBT ≈ h̄g0/2.

We can thus conclude that both in the high-bias and
high-temperature regimes, where the system can be described
by a ME, the entanglement is zero. To clarify the generality of
this observation we investigated the concurrence in all regimes
where we could solve the ME analytically (see Appendix C). In
these regimes we could formally prove the absence of entan-
glement. Moreover we considered the concurrence obtained
numerically for a broad range of other system parameters in
the ME regime but did not find any entanglement. We thus
conclude that it is highly probable that for �i � g0 electrons
in the two DQDs can only be entangled for temperatures
kBT � h̄g0, in biasing regimes where TC states with the same
number of excitations are selectively populated.

We stress that our investigation mainly aims at demonstrat-
ing the existence of entanglement. We do not analyze how or
even if it can be detected by transport measurements. A detailed
comparison of our results to the ones of existing proposals in
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FIG. 9. (Color online) Concurrence C as a function of bias voltage
for different temperatures for g0 = 0.1ω, μL + μR = −0.12h̄ω, and
θ1 = θ2 = π/6.

various coupled DQD systems, see e.g., Refs. 55 and 66–69,
is also beyond the scope of the present article.

V. DEPHASING AND RELAXATION EFFECTS

So far we have neglected dephasing and relaxation effects
in the DQDs as well as loss of cavity photons. From the recent
single DQD experiments39,41 it is clear that the dephasing rate
�D is much larger than the rates �R and κ for relaxation
and cavity loss, respectively. We thus focus on the effect of
dephasing on the results presented above.

Dephasing can qualitatively be accounted for by adding a
term70

LD[ρ̂] = �D

2

∑
i=1,2

[2L̂i ρ̂L̂
†
i − L̂

†
i L̂i ρ̂ − ρ̂L̂

†
i L̂i] (11)

to the Liouvillian in Eq. (3). Here L̂i = d̂
†
ei d̂ei − d̂

†
gi d̂gi and

the dephasing is taken to be independent, with the same rate
�D , for the two DQDs. An investigation of dephasing in all
parameter regimes is beyond the scope of the present article.
However, we stress that for strong dephasing, �D � g0,
coherent superpositions between excited and ground states in
the DQDs are suppressed. The steady-state solution of Eqs. (3)
and (11) is diagonal in the basis of the DQD-cavity product
states |ξ1ξ2p〉, with ξi = 0, g, e, and p the number of photons.
As a consequence, electrons and photons are decoupled and
the nonlocal transport effects as well as the DQD entanglement
appearing in the regime h̄g0 � kBT are suppressed.

Importantly, in both single DQD experiments39,41 the de-
phasing is found to be strong, with �D ∼ 1 GHz, substantially
larger than the coupling strength g0/2π ∼ 50 MHz. It is thus
necessary to consider ways to increase g0 and/or suppress �D ,
in order to approach the strong coupling limit g0 � �D where
the nonlocal effects discussed above are fully developed. First
and foremost, the coupling g0 can be increased substantially
by increasing the fundamental frequency (g0 ∝ ω), simply
by making a shorter cavity. Importantly, since we consider
an isolated cavity, ω is not limited by requirements of an
external microwave circuitry. The limit is instead set by the
energy gap of the superconducting cavity material, of the order
of hundreds of GHz for large gap superconductors, e.g., Nb
(ω/2π ≈ 10 GHz in Refs. 39 and 41). Second, unconventional
transmission line cavities, with a central conductor consisting
of, e.g., Josephson junctions or superconducting quantum
interference device (SQUIDS),71–73 can have characteristic
impedances Z0 ∼ 1 k�. This gives coupling strengths g0 ∼
0.1ω, one order of magnitude larger than for conventional
transmission lines. Third, since Refs. 39 and 41 are the first
experiments on DQDs in cavities, there is probably room
for optimizing the circuit design, further suppressing the
dephasing. Taken together, the strong coupling limit of our
proposal is arguably within reach experimentally. Moreover,
the relaxation rate in Ref. 39 was estimated to be �R ∼
100 MHz, one order of magnitude smaller than the dephasing
rate. Hence, in the strong coupling limit g0 � �D , relaxation
is expected to be negligible. In addition, the cavity loss rate κ in
Refs. 39 and 41 was already much smaller than g0, suggesting
that cavity loss can safely be neglected.
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VI. CONCLUSION

In conclusion we have theoretically investigated the nonlo-
cal transport properties of a DQD-cavity system. We have
found that the photons emitted by electrons tunneling in
one DQD can assist transport of electrons through the
other DQD, giving a strong nonlocally induced current and
large cross-correlations between currents in the two DQDs.
Moreover, in the low-temperature regime, kBT � h̄g0, we
have demonstrated that signatures of the TC spectrum will
appear in the I -V characterstics and that the orbital degrees of
freedom of electrons in the two DQDs can become entangled.
Importantly, our work provides a theoretical framework for
investigations of nonlocal electronic transport properties in
cavity-coupled nanoscale conductors. The analysis can readily
be modified to study transport through other nanoscopic
two-level systems coupled to cavities, e.g., superconducting
single electron transistors21,24 and spin qubits.22,36,41,74

Note added in proof. Recently, two eprints83,84 on transport
through two DQDs coupled via a cavity mode appeared.
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APPENDIX A

We here derive the Hamiltonian for the DQD-transmission
line cavity system. The first step is to describe the DQDs
within the standard75 constant-interaction model. Then only
the excess dot charges will interact capacitively with the cavity.
This means that the total Hamiltonian of the system, ĤS ,
becomes the sum of the Hamiltonian for the orbital states
of the DQDs, ĤO , and the Hamiltonian for the cavity, the dot
charges, and their interactions, ĤC . For the orbital part ĤO

we consider DQDs formed by two tunnel coupled quantum
dots with a single active spin-degenerate level in each dot. The
orbital part of the Hamiltonian, in the localized basis of the
DQDs, then has the form

ĤO =
∑
i=1,2

�i

2
(d̂†

Li d̂Li − d̂
†
Ri d̂Ri) + tLRi(d̂

†
Li d̂Ri + d̂

†
Ri d̂Li)

(A1)

with �i being the energy difference between the bare energies
of the orbitals in the left and right dots of DQDi. We recall
that tLRi denotes the interdot tunneling amplitude of DQDi

and note that the creations operators d̂
†
Li,d̂

†
Ri are related to the

eigenbasis creation operators creation operators according to

d̂
†
Li = − sin(θi)d̂

†
gi + cos(θi)d̂

†
ei ,

(A2)
d̂
†
Ri = cos(θi)d̂

†
gi + sin(θi)d̂

†
ei .

FIG. 10. Diagram of the circuit describing the transmission line
cavity, the dot charges and their interactions. In DQD1 (DQD2) the
right (left) dot is coupled capacitively to the central conductor of
the transmission line, modeled by an LC circuit and to two gate
electrodes. The nodes νi correspond to the dots while node 1 and 2
correspond to the endpoints of the transmission line.

The Hamiltonian ĤC is derived within the framework
of circuit QED. Following the procedure of Refs. 34,76,
and 77 we start from the classical Lagrangian of a circuit
representation of the system, including the capacitances of the
dots. The transmission line is modeled by a single LC circuit.
This will describe the physics of one finite-frequency mode
(the fundamental mode)78 and the zero-frequency mode. The
circuit diagram is shown in Fig. 10, where CGi , Cgνi , CLRi , Ci ,
and Vgνi denote the capacitances and gate voltages of DQDi,
and L0, C0 are the total inductance and total capacitance to
ground of the central conductor.

The Lagrangian of the circuit is given by

L =
∑
i=1,2

(
Ci(φ̇i − δi1φ̇Ri − δi2φ̇Li)2

2
+ C0φ̇

2
i

4

+ CLRi(φ̇Li − φ̇Ri)2

2
+

∑
ν Cgνi(φ̇νi − Vgνi)2

2

)

+ CG1φ̇
2
L1 + CG2φ̇

2
R2

2
− (φ1 − φ2)2

2L0
, (A3)

where φνi and φi denote the phases of nodes νi and i, respec-
tively (see Fig. 10). The zero- and finite-frequency normal
modes, describing the electrostatics and electrodynamics of
the circuit, respectively, are obtained from the Euler-Lagrange
equations. By rewriting the Lagrangian in terms of these
normal modes, performing a Legendre transformation and a
canonical quantization of the fundamental mode, a quantum
Hamiltonian, ĤC , is obtained. By further writing the excess
charges of the dots as e(d̂†

νi d̂νi − ngνi), where ngνi denotes the
gate-induced charges, we get ĤC = ĤI + ĤDI0 + ĤDI1, with

ĤI = h̄ωâ†â +
∑
νi

[
e2(d̂†

νi d̂νi − ngνi)2

2C̃νi

+ λνi(â
† + â)(d̂†

νi d̂νi − ngνi)

]
,

(A4)
ĤDI0 =

∑
νμ

Uν1μ2(d̂†
ν1d̂ν1 − ngν1)(d̂†

μ2d̂μ2 − ngμ2),

ĤDI1 =
∑
νμ

λν1λμ2

2h̄ω
(d̂†

ν1d̂ν1 − ngν1)(d̂†
μ2d̂μ2 − ngμ2),

In the total Hamiltonian ĤS = ĤC + ĤO , the part ĤO + ĤI

has the standard form for a few-level dot system linearly
coupled to a bosonic mode (see, e.g., Ref. 79), with C̃νi and
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λνi denoting the effective self-capacitances of the dots and the
coupling strengths between the photons of the fundamental
mode and the dot charges, respectively. The part ĤDI0 con-
tains cross terms, ∼ d̂

†
ν1d̂ν1d̂

†
μ2d̂μ2, describing direct nonlocal

coupling between the dot charges. The coupling strengths,
Uν1μ2, depend parametrically only on the capacitances of
the circuit in Fig. 10, i.e., not on the inductance L0, and
would thus remain unchanged if this inductance were short-
circuited. This means that ĤDI0 describes purely electrostatic,
or capacitive, coupling. The part ĤDI1, just as ĤDI0, describes
direct nonlocal coupling between the dot charges. However, in
contrast to ĤDI0 the coupling strengths in ĤDI1, λν1λμ2/h̄ω,
depend parametrically on the inductance L0. This part is
therefore electrodynamic.

As the next step we motivate the approximations leading
from Eqs. (A1) and (A4) to Eq. (1), under the conditions
described in the main text. To do this we use the re-
lations λνi ∝ √

Z0/RQh̄ω (Z0 = √
L0/C0), ω ∼ 1/

√
L0C0,

and Uν1μ2 ∝ e2/C0 for the parameters in ĤC . First, noting
that Z0 � RQ and hence λνi/h̄ω � 1 justifies a rotating-wave
approximation, which amounts to neglecting all terms of
O(λνi/ω) in ĤS , e.g., the counter-rotating terms. Second,
for the DQDs resonant with the cavity mode the direct
capacitive interaction will scale as Uν1μ2/λν(μ)i ∼ √

Z0/RQ

and can thus be neglected. Moreover, had we considered a full
description for the transmission line DQD circuit, including
all of the cavity modes, the higher frequency modes would
be off-resonant with a detuning �E � h̄ω. The corrections
due to this off-resonant interaction would then scale as
λνi/h̄ω and therefore be negligible. It should be noted that
for the resonance condition to hold the tunneling amplitudes
and detunings between the left and right dot orbitals the
DQDs must be chosen such that |�i | = 2

√
(h̄ω)2 − t2

LRi . We
further point out that the DQDi-cavity coupling strengths are
gi = sin(2θi)(λRi − λLi)/2. Thus, for the case of identical
coupling strengths g1 = g2 = g0, considered in the main text,
the mixing angles θ1 and θ2 cannot be tuned independently for
fixed λLi and λRi .

APPENDIX B

We here give the explicit form for the eigenstates with
a finite number of excitations in the TC subspace and all
eigenenergies of ĤS . The former are given by

|D01〉 = |S0〉 , |D±1〉 = |gg1〉 ± |T 0〉√
2

(B1)

and, for n � 2,

|D+−n〉 =
√

n − 1 |ggn〉 − √
n |een − 2〉√

2n − 1
,

|D±±n〉 =
√

n |ggn〉 + √
n − 1 |een − 2〉√

2(2n − 1)
± |T n − 1〉√

2
,

|D−+n〉 = |Sn − 1〉 , (B2)

with |S(T )n〉 = (|egn〉 − (+) |gen〉)/√2. The eigenenergies
are

ε00n = h̄ω(n + 1) (B3)

for the HO subspace,

εS0
i 0 = h̄ω/2, εS±

i n = h̄ω(n + 1/2) ± √
nh̄g0, n � 1

(B4)

for the JC subspaces, and

εD00 = 0, εD01 = h̄ω, εD±1 = h̄ω ±
√

2h̄g0,
(B5)

εD±±n = nh̄ω ±
√

2(2n − 1)h̄g0, εD±∓n = nh̄ω, n � 2

for the TC subspace.

APPENDIX C

In this Appendix we explain how the QME in Eq. (3) can
be reduced to a ME in the limit h̄g0 � kBT , give the explicit
form of the ME, and solve it in three limiting cases. We start
by pointing out that in the secular regime �i � g0, considered
here, only coherences between degenerate states, i.e., |+−n〉
and |−+n〉 need to be taken into account in the QME.
Moreover, only the diagonal elements 〈Sα

i n|ρ̂|Sα
i n〉 couple to

the coherences. As pointed out in the text, for h̄g0 � kBT , the
QME becomes independent of g0. This introduces additional
symmetries in the QME, with two important consequences: (1)
The coherences 〈+ − n|ρ̂|−+n〉 and 〈− + n|ρ̂|+−n〉 couple
with opposite signs to 〈S+

i n|ρ̂|S+
i n〉 and 〈S−

i n|ρ̂|S−
i n〉. (2) For

several pairs of diagonal elements of ρ̂, only the sums of the
elements couple to the other diagonal elements. In particular,
this holds for the sum 〈S+

i n|ρ̂|S+
i n〉 + 〈S−

i n|ρ̂|S−
i n〉, to which

the coherences, according to (1), do not contribute. As a result
of (1) and (2), the coherences decouple from the diagonal
elements of the QME, allowing us to reduce it to a standard
ME.

To write the explicit form of the ME it is convenient to
first introduce a shorthand notation for the diagonal elements
of ρ̂, i.e., the probabilities for the eigenstates of ĤS . The
probabilities, or the sums of probabilities, for states the HO,
JC, and TC subspaces are denoted by

P n
00 = 〈00n|ρ̂|00n〉 ,

(C1)
P n

Si
= δn0

〈
S0

i 0
∣∣ρ̂∣∣S0

i 0
〉 + (1 − δn0)

∑
α=±

〈
Sα

i n
∣∣ρ̂∣∣Sα

i n
〉

and

P n
D = δn0 〈D00|ρ̂|D00〉 + δn1

∑
α=±

〈Dα1|ρ̂|Dα1〉

+ (1 − δn0 − δn1)
∑
α=±

〈Dααn|ρ̂|Dααn〉 ,

(C2)
P 1

D0 = 〈D01|ρ̂|D01〉 ,

P n
D+−(−+) = 〈D+−(−+)n|ρ̂|D+−(−+)n〉 , n � 2,

respectively. By further introducing vectors PX =
(P 0

X P 1
X P 2

X · · · )T , with X = 00,S1,S2, containing
the probabilities for states with one or both DQDs
unoccupied and vectors PD = (P 2

D P 3
D · · · )T and

PD+−(−+) = (P 2
D+−(−+) P 3

D+−(−+) · · · )T containing the
probabilities for states with both DQDs occupied, the
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ME can be written

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00

PS1

PS2

P 0
D

P 1
D0

P 1
D

PD

PD+−

PD−+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M00 M00
S1

M00
S2

0 0 0 0 0 0

M
S1
00 MS1 0 M

S1
D0 M

S1

D01 M
S1
D1 M

S1
D M

S1
D+− M

S1
D−+

M
S2
00 0 MS2 M

S2
D0 M

S2

D01 M
S2
D1 M

S2
D M

S2
D+− M

S2
D−+

0 MD0
S1

MD0
S2

MD0 0 0 0 0 0

0 MD01
S1

MD01
S2

0 MD01 0 0 0 0

0 MD1
S1

MD1
S2

0 0 MD1 0 0 0

0 MD
S1

MD
S2

0 0 0 MD 0 0

0 MD+−
S1

MD+−
S2

0 0 0 0 MD+− 0

0 MD−+
S1

MD−+
S2

0 0 0 0 0 MD−+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00

PS1

PS2

P 0
D

P 1
D0

P 1
D

PD

PD+−

PD−+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C3)

The submatrices in M below and above the diagonal are here given by(
M

Si

00

)
nm

=
∑
j=0,1

δnm+jGj

i ,
(
MY

Si

)
nm

=
∑
j=0,1

δn+1+jmxY
njG

1−j

ī
, xD

nj = 4n + 1 + 2j

4(2n + 1)
, xD+−

nj = n + 1 − j

2(2n + 1)
, xD−+

nj = 1

4(
MD0

Si

)
1m

= δ1mG0
ī
,

(
MD01

Si

)
1m

= δ1mG1
ī

/
2 + δ2mG0

ī

/
4,

(
MD1

Si

)
1m

= δ1mG1
ī

/
2 + 3δ2mG0

ī

/
4, (C4)

and (
M00

Si

)
nm

=
∑
j=0,1

δn+jm

2 − δn1δj0
G̃j

i ,
(
M

Si

Z

)
nm

=
∑
j=0,1

δnm+1+j y
Z
nj G̃

1−j

ī
,

yD
nj = (4n − 3 − 2j )

4(2n − 1 − 2j )
, yD+−

nj = n − 2j

2n − 1 − 2j
, yD−+

nj = 1

2
, (C5)(

M
Si

D0

)
n1 = δn1G̃0

ī
,

(
M

Si

D01

)
n1 = δn1G̃1

ī

/
2 + δn2G̃0

ī

/
2,

(
M

Si

D1

)
n1 = δn1G̃1

ī

/
4 + δn23G̃0

ī

/
4,

respectively. Here G0
i = ∑

ν �̄νgifνi(−h̄ω/2), G1
i =∑

ν �̄νeifνi(h̄ω/2), G̃0
i = ∑

ν �̄νgi f̃νi(−h̄ω/2), and
G̃1

i = ∑
ν �̄νei f̃νi(h̄ω/2), and we use the i-index convention

1̄ = 2 and 2̄ = 1. The submatrices on the diagonal in M are
diagonal with elements such that the sum of every column
in M is zero. This structure ensures that the ME conserves
probability.

We find the steady-state solution to the ME in Eq. (C3)
analytically in three limiting cases:

(i) For θ1 = θ2, symmetric bias voltages eV1,eV2 � h̄ω

applied across both DQD1 and DQD2.
(ii) For the bias condition of Sec. III with �1 � �2 and

symmetric bias voltage across DQD1. Here we calculate the
distribution to zeroth order in �2/�1.
(iii) For the bias condition of Sec. III with �2 � �1 and

symmetric bias voltage across DQD1. The distribution is here
calculated to first order in �1/�2.

The solution for case (i) is used to derive the stability
condition in Sec. II B, while the solutions for the cases
(ii) and (iii) are used to obtain the analytical expression for the
current in DQD2, correct to first order in �2/�1 and �1/�2,
respectively (see Sec. III).

To find the solution of the ME in case (i) we use a general
property of the ME. This property states that P n

S1
and P n

S2

will couple only to the probabilities for states with both
DQDs unoccupied having n or n + 1 excitations and for states
with both DQDs occupied having n or n − 1 excitations (see
Fig. 2). In turn the probabilities for these states will couple to

P n+k
S1

and P n+k
S2

, with k = −1,0,1. Two coupled second-order
difference equations are thus obtained for the probabilities in
PS1 and PS2 . For the special conditions (i) these difference
equations become particularly simply. Introducing the vector
P̃n = (P n

S1
P n

S2
)T , these equation be written

sin4(θ )M0P̃1 = (2 cos4(θ )M0 + [1 + cos2(θ )]B)P̃0,

sin4(θ )M1P̃2 =
[

cos4(θ )M1 + cos4(θ )M0 + 3B

2

]
P̃1

− 2 cos4(θ )M0P̃0,

sin4(θ )MnP̃n+1 =
[

cos4(θ )Mn + sin4(θ )Mn−1 + 3B

2

]
P̃n

− cos4(θ )Mn−1P̃n−1, n � 2, (C6)

with

B = �1�2

(
1 −1

−1 1

)
,

(C7)

Mn =
(

�2
1/2 + �2

2bn �1�2(1/2 + bn)

�1�2(1/2 + bn) �2
2/2 + �2

1bn

)
,

and

bn = (4n + 3)(4n + 1)

4(2n + 1)[4n + 1 + 2 cos2(θ )]
+ 1

4

+ n(n + 1)

2(2n + 1)[n + sin2(θ )]
. (C8)
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Together with the condition P̃n → 0 for n → ∞, Eq. (C6) has
the solution P̃n = cot4n+2(θ )(1 1)T P 0

11, independent of �1

and �2. This solution is then used to find the probabilities
for the states with both DQDs occupied and unoccupied,
respectively. Requiring that the solution to Eq. (C3) be
normalized we get

P n
00 = cot4(n+1)(θ )x0, P 0

Si
= cot2(θ )x0,

P n
Si

= 2 cot4n+2(θ )x0, n � 1,
(C9)

P 0
D = x0, P 1

D = 2P 1
D0 = 2 cot4(θ )x0,

P n
D = 2P n

D+−(−+) = 2 cot4n(θ )x0, n � 2,

with x0 = [1 − cot4(θ )]/[1 + cot2(θ ) + cot4(θ )]2. It is clear
from Eq. (C9) that a well defined solution, or equivalently
a solution with noninfinite mean number of excitations,
exists if θ > π/4. On physical grounds we argue that there
exists a more general stability condition applying also for
mixing angles θ1 	= θ2. We start by considering the case when
θ1 = θ2 > π/4 and one of the mixing angles is increased.
From the discussion below Eq. (3) it is clear that this
will increase absorption relative to emission of photons by
tunneling electrons. The mean number of excitations will
then be decreased and the distribution must therefore still be
convergent. Since all pairs of mixing angles θ1,θ2 > π/4 can
be reached this way it follows that a well defined solution
exists for all of them. The mean number of excitations will
also decrease if the bias voltage is decreased. The stability
condition, θ1,θ2 > π/4, must therefore also hold for finite bias
voltages. This conclusion is further supported by numerical
investigations.

In the limiting case (ii) the relation between probabilities for
states with DQD2 unoccupied, e.g., P n

00 and P m
S1, are entirely

determined by the tunneling in DQD1. Similarly the tunneling
in DQD1 entirely determines the relation between probabilities
for states with DQD2 occupied. The tunneling in DQD2 only
effects the total probability for DQD2 being occupied. The
main steps in the solution of the ME in this limit are most
clearly visualized by rewriting MP = 0 as(

M̄
(0)
00 + �2/�1M̄

(1)
00 �2/�1M̄

(1)
10

�2/�1M̄
(1)
01 M̄

(0)
11 + �2/�1M̄

(1)
11

)
︸ ︷︷ ︸

M̄

(
P̄20

P̄21

)
︸ ︷︷ ︸

P̄

= 0,

(C10)

where the vectors P̄20 and P̄21 contain the probabilities for
states with DQD2 unoccupied and occupied, respectively. The
matrix M̄ further contains the transition rates in M divided
by �1. The starting point of the derivation is to note that
for �2 = 0 the matrix is block-diagonal, with blocks M̄

(0)
ii ,

and that det(M̄ (0)
ii ) = 0. It then follows that the eigenvalue

zero of the matrix M̄ is doubly degenerate for �2 = 0. To
find the solution P̄(0) to Eq. (C10) to zeroth order in �2/�1,
i.e., the limit of P̄ as �2/�1 → 0, we must therefore apply
degenerate perturbation theory generalized to ME matrices.
The first step in this procedure is to find the two linearly
independent solutions to Eq. (C10), i.e., the eigenvectors
corresponding to the eigenvalue zero of M̄ . Setting �2 = 0
in the equation, the two linearly independent eigenvectors

acquire the forms P̄0 = (P̄(0)
20 0)T and P̄1 = (0 P̄(0)

21 )T , where
P̄(0)

20 and P̄(0)
21 fulfill the equations M

(0)
00 P̄(0)

20 = 0 and M
(0)
11 P̄(0)

21 =
0, respectively. Importantly these equations can readily be
solved analytically as they give difference equations similar
to Eq. (C6). The next step is to express P̄(0) as a normalized
linear combination of these vectors, i.e., c0P̄0 + c1P̄1, to which
P̄ tend as �2/�1 → 0. To this aim we define the projectors
P = P̄0(U0 0) + P̄1(0 U1) and Q = 1 − P . Here (U0 0) and
(0 U1), with Ui = (1 1 . . . ), are the left eigenvectors to the
eigenvalue zero in M̄ normalized so that UiP̄2i = 1. Then
by applying the steps presented in Ref. 80 the equation
PM (1)PP̄(0) = 0 for P̄(0) is obtained. In turn this equation
gives

c0U0M̄00P̄(0)
20 + c1U0M̄10P̄(0)

21 = 0, (C11)

which together with the normalization condition c0 + c1 = 1,
determines c0 and c1. The different elements in P̄(0) can then
be written

P n
00 = [γ /(1 − γ )]2n+1c̃0,

P n
S1

= (2 − δn0)[γ /(1 − γ )]2nc̃0,

P n
S2

= (2 − δn0)[γ /(1 − γ )]2n+1c̃1, (C12)

P 0
D = c̃1, P 1

D = 2P 01
D0 = 2[γ /(1 − γ )]2c̃1,

P n
D = 2P n

D+−(−+) = 2[γ /(1 − γ )]2nc̃1, n � 2,

where

c̃0 = ηγ 2

(1 − 2γ + 2γ 2)[1 + 2 cot2(θ2)] + γ 2
,

(C13)

c̃1 = η(1 − γ )2[1 + 2 cot2(θ2)]

(1 − 2γ + 2γ 2)[1 + 2 cot2(θ2)] + γ 2
,

and η = (1 − 2γ )/(1 − γ + γ 2). With the probabilities in
Eq. (C12) and the rates between DQD2 and its right lead
for the corresponding states it is straightforward to derive the
second expression for the current through DQD2 in Eq. (4).

To solve the ME in case (iii) we first recall, from the
main text, that only the state and transitions depicted in
Fig. 6 contribute to the transport quantities to first order in
�1/�2. We then focus on the corresponding effective ME
MePe = 0 for the probabilities Pe for these states, taking only
the additional transitions {|Dα1〉} → |S0

2 〉 into account. To first
order in �1/�2 we get

P 0
D = 1

1 + γ
− �1

�2

2[2 + cos2(θ2)]

sin2(θ2)

γ 2

(1 + γ )2

− �1

�2

[1 + cos2(θ2)]

sin2(θ2)

γ 2(1 − γ )

(1 + γ )2
,

P 0
S2

= γ

1 + γ
− �1

�2

2[2 + cos2(θ2)]

sin2(θ2)

γ 3

(1 + γ )2

+ �1

�2

[1 + cos2(θ2)]

sin2(θ2)

γ 2(1 − γ )

(1 + γ )2
,

P 1
D = 2P 1

D0 = 2�1

�2

1 + cos2(θ2)

sin2(θ2)

γ 2

(1 + γ )
,

P 0
S1

= �1

�2

γ 2

(1 + γ )
.

(C14)
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These probabilities are used to obtain the first expression for
current through DQD2 in Eq. (4).

APPENDIX D

In this Appendix we present the derivation of currents,
current correlations, as well as the full statistics of charge
transfer across the DQDs. Following the procedure of Refs. 81
and 82 we rewrite the QME of Eq. (3) in the n-resolved form
and Fourier transform it with respect to the number of electrons
having tunneled through DQD1 and DQD2. The QME then
transforms to dρ̂/dt = L(χ1,χ2)ρ̂, where the counting fields
χ1 and χ2 are the conjugate variables to the number of
electrons having tunneled through DQD1 and DQD2. The
eigenvalue of L(χ1,χ2) tending to zero as χ1,χ2 → 0 is
the long time limit cumulant generating function F(χ1,χ2).
The currents and the noise are obtained from the first and
second derivatives of F(χ1,χ2), i.e., Ii = e∂iχi

F |χ1=χ2=0 and
Sij = e2∂iχi

∂iχj
F |χ1=χ2=0. These quantities can conveniently

be accessed via the eigenvalue problem L(χ1,χ2)[ρ̂(χ1,χ2)] =
F(χ1,χ2)ρ̂(χ1,χ2). In the present paper this full QME

approach is used only to calculate the current in
Fig. 7.

In the ME limit the eigenvalue problem above reads
M(χ1,χ2)P(χ1,χ2) = F(χ1,χ2)P(χ1,χ2). We use this equa-
tion to calculate the noise plotted in Fig. 5. We also use the
equation to obtain the CGF of Eq. (6), i.e., the CGF to first
order in �1/�2 for the bias condition of DQD2 described in
Sec. III with DQD1 in the high-bias regime. To do this we
write det[M(χ1,χ2) − F(χ1,χ2)] = 0 as

det

(
Me(χ1,χ2) − F Mr→e(χ1,χ2)

Me→r (χ1,χ2) Mr (χ1,χ2) − F

)
= 0. (D1)

Here Me→r , Mr→e, and Mr are matrices describing the
transitions to, from, and within the subspace of states not
included in the Fig. 6. Importantly, (Me→r )nm ∝ O(�1/�2)
and (Mr→e)nm ∝ O(1). This means that

det[Me(χ1,χ2) − F (1)(χ1,χ2)] = 0, (D2)

whereF (1)(χ1,χ2) is the CGF to first order in �1/�2. Dropping
terms of O[(�1/�2)2] in Eq. (D2) and solving for F (1) then
gives Eq. (6).
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