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Plasmons in graphene nanoribbons: Interband transitions and nonlocal effects

Weihua Wang and Jari M. Kinaret*

Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
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We study plasmon excitations in infinitely long graphene nanoribbons using a quasistatic approach, where
one-dimensional coupled equations for electrostatic potential and excited charge density are derived in
the transverse direction. By incorporating a hydrodynamical description of the excited charge density, we
investigate nonlocal effects in plasmon excitations. Moreover, the method presented here provides means to look
into the nonlocal plasmon response in more complex graphene nanostructures such as wedges. We find that the
plasmon frequencies are lowered by interband transitions and raised due to nonlocal effects. The frequency shifts
depend monotonically on the dielectric constant of the surrounding medium. Most importantly, the nonlocal
effects can strongly affect the excited charge density at the edges. Finally, we show that a larger increase of
dipolar plasmon frequencies occurs in smaller graphene nanoribbons as expected.
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I. INTRODUCTION

Graphene, which has been the subject of intense research
since 2004,1 is a one atom thin layer of carbon atoms arranged
in a honeycomb lattice.2 It has been shown that graphene is a
gapless semiconductor, for which the valence and conduction
bands meet at the K and K′ points, and near these points the
charge carriers obey a linear dispersion relation, thus acting as
Dirac particles.3,4 The Fermi level in graphene can be easily
adjusted by either electrostatic gating or chemical doping,5–7

which provides the means to flexibly control most of its
electro-optical properties. Due to these unique characteristics,
graphene is a promising material for a wide range of photonics
and optoelectronics applications.8

Very recently, the rise of graphene plasmonics has attracted
great interest in theoretical and experimental studies.9–12 A key
advantage of graphene plasmonics is gate tunability, which
has been confirmed by recent near-field optical microscopy
experiments.13,14 Similar to metals, the large momentum mis-
match between incident waves and plasmons can be overcome
by engineering graphene nanostructures, such as ribbons15–20

and disks,21–24 which have been studied intensively. Since
they are usually tens of nanometers or more in size, a
local description of the optical conductivity σ (q,ω)|q→0 is
commonly used, where σ (q,ω) is obtained for an infinite
graphene sheet using, e.g., the random phase approximation
(RPA).9,10,25 However, at the nanoscale, significant plasmon
blueshifts are seen due to nonlocal effects,18 and at the
atomic scale nonlocal effects substantially influence plasmon
resonances.26,27 Hence, it is necessary to explore nonlocal
effects in plasmon excitations, in particular in wedges and
sharp tips.

II. HYDRODYNAMIC MODEL AND AN APPROXIMATE
GRAPHENE CONDUCTIVITY

In this article, we investigate plasmon excitations in
graphene nanoribbons by using a quasistatic approach and
study nonlocal effects by a hydrodynamic model for the excited
charge density. The graphene nanoribbons are assumed to lie
in the x-y plane, with infinite length along the longitudinal y

direction and width d in the transverse x direction. Because

of the translational invariance along the y direction, all time
dependent physical quantities have a common factor ei(qy−ωt).
Here q is the momentum along the longitudinal direction and
ω is the angular frequency of the waves.

The hydrodynamic model for graphene structures can
be derived similarly as for other electron systems. It gives
a connection between the in-plane currents J and electric
fields E:28,29

J = σ (ω)E − β2

ω2
∇(∇ · J), (1)

where σ (ω) is the local conductivity of the materials, and the
β2 term arises from the pressure in an inhomogeneous electron
fluid. This equation can be rewritten as an expression for the
in-plane charge density ρ by taking divergence on both sides,
thus yielding

β2

[
∂2

∂x2
− q2

]
ρ(x) + ω2ρ(x) = iωσ (ω)

[
∂2

∂x2
− q2

]
�(x),

(2)

where the continuity equation −iωρ + ∇ · J = 0 and E =
−∇� have been incorporated. The continuities of � and
∂x� = 0 at edges are employed as the boundary conditions.

Equation (2) tells us that the charge density ρ(x) is
produced by the electrostatic potential �. On the other hand,
we know a variation of charge density, say ρ(x)eiqyδ(z),
produces an electrostatic potential according to the
Coulomb law:

�(x,y,z) = 1

4πε

∫ d/2

−d/2
dx ′

∫ ∞

−∞
dy ′dz′ ρ(x ′)eiqy ′

δ(z′)
r

, (3)

where r =
√

(x − x ′)2 + (y − y ′)2 + (z − z′)2, and ε is the
dielectric constant of the surrounding medium. The integration
of the z component is obvious and also can be analytically
performed in the y direction using30

K0(q|x|) =
∫ ∞

−∞

dk

2

eikx√
k2 + q2

, (4)

where K0(x) is the zero-order modified Bessel function. The
integration of Eq. (3) with respect to the argument y ′ − y at
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z = 0 yields

�(x) = 1

2πε

∫ d/2

−d/2
dx ′K0(q|x − x ′|)ρ(x ′). (5)

Combining Eqs. (2) and (5), we can study the local and
nonlocal plasmon excitations in such a self-consistent way.

The nonlocal factor β can be given from hydrodynamics
theory at low frequencies;28,31,32 at higher frequencies, it
should be replaced by a value that is consistent with the
RPA expression for conductivity as suggested by Halevi.32

This approximation has been employed to investigate nonlocal
effects on plasmon excitations in metals,29,33 where the
conductivity of metals can be well described by the Drude
model.

The nonlocal response has been shown to produce sig-
nificant blueshifts of the plasmon frequencies at metal-
lic nanostructures.34 However, for graphene the situation
is somewhat more complicated: it has been demonstrated
that plasmon frequencies exhibit a redshift within RPA.9,10

At highly charged graphene samples and within the long-
wavelength limit, to say q · vF << ω << EF , expanding the
RPA conductivity for graphene σ (q,ω) in powers of q gives

σ (q,ω) = e2EF

πh̄2

i

ω

[
1 − ω2

4v2
F k2

F

+ 3v2
F q2

4ω2

]
. (6)

Here only the terms up to q2 are kept, and we focus on the
conceptually simplest uniform charge-density profile, which
could be easy to achieve at chemically doped graphene, while
at gated graphene, studied by S. Thongrattanasiri et al.35 and
Silvestrov and Efetov,36 the charge densities are extremely
large at the edges. In the brackets, the first term is the classical
Drude intraband contribution from conduction electrons, the
second term is the interband contribution from valence
electrons, and the third term is the nonlocal contribution
from electron-electron Coulomb interaction. The same q2 term
correction has been demonstrated by Shung37 and Hill et al.38

We find that the expression of graphene conductivity has a
similar form as that of a conventional two-dimensional electron
system (2DES) except for the interband term. The interband
term lowers the plasmon frequencies, as shown below, and the
nonlocal term raises them, so that the net effect is a result of a
competition between the two contributing factors. The opened
gap at Dirac points is not considered here,39 which is much
smaller than the Fermi energy studied in this article.

III. NUMERICAL RESULTS AND DISCUSSION

We proceed to study the plasmon excitations in graphene
nanoribbons by solving the coupled equations (2) and (5). The
high-frequency value of β given by Eq. (6) is β = √

3/4vF ,
and the local conductivity σ (ω) in Eq. (1) includes the Drude
and interband terms.

Without the nonlocal term, i.e., β = 0 in Eq. (2), the
coupled equations (2) and (5) can be solved by using the
orthogonal polynomials expansion technique.23,24 Considering
first the classical Drude conductivity only, the solutions of the
eigenfrequencies ωn(q) are a set of functions an(q)ωs , where
the index n corresponds to the number of nodes of each mode
(charge-density distribution), and ωs =

√
e2EF /(2πh̄2εd) is

(a) (b)

(c) (d)

FIG. 1. (Color online) Plasmon dispersions of the first four
modes for EF = 0.5 eV, d = 10 nm, and ε = ε0. The black solid,
blue dashed, and red short dashed curves represent the plasmon
dispersion of the Drude model, local response, and nonlocal response,
respectively.

the surface plasmon frequency at a wave vector equal to 1/d

in infinite graphene sheets. In addition, an(q) only depend
on the momentum q but not on other physical parameters.
This is the electrostatic scaling law addressed by Christensen
et al. in graphene ribbons17 and also by us in graphene disks.24

Including the interband contributions, the plasmon dispersions
become

ωn(q) = an(q)ωs√
1 + a2

n(q)ω2
s /

(
4v2

F k2
F

) . (7)

In this procedure, the interband contributions only influence
the plasmon frequencies. It is seen that the plasmon frequencies
are reduced by an amount that depends on an(q) and the ratio
of h̄ωs/EF . Hence, interband transitions lead to a violation of
the electrostatic scaling law mentioned above. However, the
violation can be very small for a nanoribbon with large εdEF .
As a rough estimate, for EF = 0.5 eV, d = 50 nm, and ε = ε0,
we have ωs ≈ 0.17 eV and ω2

s /(4v2
F k2

F ) ≈ 0.03. Therefore, the
changes of the lower modes are a few percent.

In the general case, taking into account both interband and
nonlocal effects, we solve the coupled equations numerically
using the finite element method (FEM) solver COMSOL. The
results are shown in Fig. 1, where the dispersions of the first
four modes are presented as functions of longitudinal mo-
mentum q. Only the lowest mode shown in Fig. 1(a) depends
strongly on q, and the other three are weakly q dispersive.
The three dispersions of the lowest mode are overlapping for
small q but exhibit deviations with q increasing. Even with
the nonlocal contributions, the plasmon frequencies (red short
dashed curves) are lower than the Drude values (black solid
lines) in the free standing case.

This situation can be changed by the screening effect raising
from the substrate, where ε is larger than ε0. For example,
for graphene on a silicon dioxide substrate, the average
dielectric constant of the surrounding medium is given by
ε = (ε0 + εsub)/2 = 2.5ε0. The reduction of interband effects
due to smaller ωs is evident in Eq. (7), while the nonlocal

195424-2



PLASMONS IN GRAPHENE NANORIBBONS: INTERBAND . . . PHYSICAL REVIEW B 87, 195424 (2013)

(a) (b)

(c) (d)

FIG. 2. (Color online) Plasmon frequencies for the first four
modes as functions of ε at q = 1/d for EF = 0.5 eV and d = 10 nm.
The black solid, blue dashed, and red short dashed curves show
the plasmonics frequencies of the Drude model, local response, and
nonlocal response, respectively.

effects are largely unaffected by the substrate. In principle,
there should be a crossing point, at which the two contributions
are equal but opposite, and after that the nonlocal effects are
larger than interband transitions.

This simple argument can be verified by numerically
solving the coupled equations with varying ε. The solutions are
plotted in Fig. 2. We see that the blue dashed curves approach
the solid black lines as ε increases, which indicates a lower
contribution from interband transitions. The red short dashed
curves (plasmon frequencies within nonlocal responses) are
increasing continuously and have an intersection with that of
the classical one. Moreover, the lower-energy mode can have
the intersection at smaller ε, for instance, in this specific case,
ε = 1.1ε0 for ω0(q) mode and ε = 1.7ε0 for ω1(q) mode.

The transverse charge-density profiles ρ(x) for the first four
modes are shown in Fig. 3. They are clearly distinguished
by the number of nodes, which equals the mode index n.
The total excited charge of any mode equals zero due to the

(a) (b)

(c) (d)

FIG. 3. (Color online) Excited charge density profile ρ(x) for the
first four modes at q = 1/d . The black solid lines and red circled
lines are the charge-density profiles for local and nonlocal plasmon
resonances, respectively.

FIG. 4. (Color online) Plasmon frequencies of the dipolar mode
as a function of width d of the ribbon at q = 0 for EF = 0.5 eV and
ε = ε0. The black solid and red circle curves are plasmon frequencies
of local and nonlocal response, respectively.

sinusoidal variation in the y direction. The lowest mode, with
ω0(q = 0) = 0, is clearly confined to the edges. The other
three modes have nodes in the transverse direction and depend
weakly on the longitudinal momentum q; they are guided
modes in the transverse direction and can be excited also at
q = 0. With the nonlocal term, the general profiles of plasmon
modes do not change, but they become less strongly bound to
the edges. This increases the importance of the bulk electrons
and reduces the local-field enhancement at the edges due to
the decrease of charge density there.

Of the four lowest modes, the second lowest mode [ω1(q),
dipolar mode; see the charge density profile in Fig. 3(b)] is
of particular interest, because it can strongly couple to an
incident light. As mentioned above, it can also be excited
at q = 0. In order to study this special limit, we can use
K0(q|x − x ′|) → − ln(|x − x ′|) in the integral equation (5).
We find that the properties of the guided modes are very similar
as in the q �= 0 case, consistent with the fact that the guided
modes depend only weakly on the longitudinal momentum q.
The nonlocal effects introduce significant size dependency in
plasmonic properties of sufficiently small structures. This is
shown in Fig. 4, where we plot the frequencies of the q = 0
dipolar plasmon mode for graphene ribbons as a function of
the ribbon width. It is clearly seen that the nonlocal corrections
are insignificant for wide ribbons but clearly visible for small
structures. We notice that the nonlocal effects shown here are
slightly larger than those found in Ref. [18], probably because
of the approximations inherent in the hydrodynamic model.
However, the trends and profiles show a good agreement,
demonstrating the value of the simple approximation.

IV. CONCLUSIONS

In this article, we have studied the plasmon properties in
graphene nanoribbons beyond the quasistatic approach. The
nonlocal effects have been investigated using a hydrodynam-
ical description of the excited charge density. We find that
there is a competition between the interband transitions and
nonlocal effects which result in lowering and raising of the
plasmon frequencies, respectively. The relative importance
of two contributions can be changed by the substrate, and
the strong screening can reduce the interband contribution.
Including the nonlocal effects, plasmons show a similar excited
charge-density profile as in the Drude limit, but the charge
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densities are less bound to the edges. The dipolar plasmon
is seen to exhibit substantial blueshifts in narrow graphene
ribbons, demonstrating the importance of nonlocal corrections
in graphene nanostructures.
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