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Theoretical analysis of electronic band structure of 2- to 3-nm Si nanocrystals
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In this paper, we discuss the validity of the band structure concept in silicon nanocrystals a few nanometers
in size. We introduce a general method which allows reconstruction of a fuzzy electronic band structure of
nanocrystals from ordinary real-space electronic structure calculations. A comprehensive study of the fuzzy band
structure of a realistic nanocrystal is given including full geometric and electronic relaxation with the surface
passivating groups. In particular, we combine this method with large-scale density functional theory calculations
to obtain insight into the luminescence properties of silicon nanocrystals up to 3 nm in size depending on the
surface passivation and geometric distortion. We conclude that the band-structure concept is applicable to silicon
nanocrystals with a diameter larger than ≈2 nm with certain limitations. We also show how perturbations due
to polarized surface groups or geometric distortion can lead to considerable moderation of momentum space
selection rules.
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I. INTRODUCTION

Crystalline nanostructures are often viewed as “artificial
atoms” or “zero-dimensional systems” despite being the size
of a smaller protein. This is because when single nanocrystals
(NCs) are experimentally probed, very sharp optical radiative
transitions, implying the existence of discrete energy levels
rather than energy bands, are observed.1 On the other hand,
nanostructures are known to retain some of the band-structure-
related properties of their bulk counterparts, e.g., direct-band-
gap semiconductor NCs such as CdSe are excellent light
emitters. The concept of band structure in NCs is frequently
used, because it allows one to transfer the already thoroughly
studied electronic properties and the whole framework of
solid-state physics of bulk materials to the nanoscale.

This brings about an apparent dichotomy and raises the
question if, and under what circumstances, the band-structure
concept can be applied to NCs and, moreover, if the band-
structure description can overlap with the description based on
discrete energy levels. In this article, we discuss a connection
between the bulk band structure and molecular orbitals (MOs)
of nanoparticles obtained from density functional theory
(DFT) calculation using Fourier transform. Application of this
method shows k dependence of electronic energy levels in Si
NCs, a fuzzy electronic band structure, even though, strictly
speaking, k is a good quantum number only in an ideal infinite
crystal.

In indirect-band-gap semiconductors, the comprehension of
the electronic band-structure behavior allows for efficient band
engineering. A prime example illustrating the usefulness of the
band-structure approach is germanium, an originally indirect-
band-gap material successfully transformed to a direct-band-
gap one by heavy doping and tensile strain.2 This experimental
realization of direct-gap bulk germanium was based on
theoretical band-structure calculations.3 What is important,
however, is that the same concept was experimentally realized
also in germanium NCs.4 This example confirms that the
parallels between bulk and nanocrystalline materials do exist
and that they can be beneficial in material engineering as well
as for the intuitive understanding of the material’s behavior.

Silicon as a material found wide applications in electronics
and it is still the subject of intense research. Nevertheless, the
indirect-band-gap nature of the band structure of bulk silicon
has always been the major obstacle for its employment in
light-emitting devices since momentum conservation requires
additional momentum transfer mechanisms involved in the
light emission processes. The situation changed dramatically
in the last two decades due to the emergence of the possibility
of preparing Si-based structures of nanometer size, where
quantum effects begin to play a dominant role. In particular,
great effort has been devoted to the study of the optical prop-
erties of Si NCs in recent years, with a perspective of potential
for real-life applications such as, e.g., light emitting diodes,
next-generation solar cells, and biomedical devices.5–8 The
discovery of efficient visible photoluminescence9 and optical
gain10 from silicon NCs has demonstrated the possibility of
partially overcoming the limitations of the indirect band gap of
silicon by exploiting the quantum phenomena at the nanoscale.
Despite the large amount of papers published on this subject,
there are still many aspects which are not fully understood and
are the subject of intense dispute.

As already mentioned, the theoretical concept of optical
properties of Si NCs is often discussed in the framework of
the band-structure picture of the bulk material. However, the
finite size of a system measuring only a few nanometers makes
the justification of this approach questionable. Therefore, the
validity of the band-structure concept and, if need be, its
character in Si NCs of a given size and surface passivation
have to be analyzed.

Traditional electronic structure calculations of Si NCs,
treated as a finite system, provide a priori only real-space
MOs, where the crystal momentum and thus the fuzzy band
structure E(k) are not directly accessible. What is more, in NCs
with typical sizes of a few nanometers, the surface-to-volume
ratio substantially increases and thus the interface between the
NCs and their environment plays a crucial role in tailoring their
optical properties. Consequently, the optoelectronic properties
of Si NCs are very sensitive to their surface passivation,
symmetry, and applied strain, which makes the application
of simple (bulk-like) models questionable.
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Several attempts (see, e.g., Refs. 11–16) have been made
to perform the projection of states of finite systems from real
to reciprocal space, and vice versa. However, to the best of
our knowledge, a detailed analysis of the fuzzy electron band
structure of fully relaxed Si NCs on DFT level has been missing
so far. Therefore, a robust method which allows band-structure
mapping from fully relaxed DFT calculations of realistic Si
NCs is required.

From the perspective of theoretical simulations, many ap-
proaches, ranging from parametrized semiempirical methods
such as pseudopotential,17,18 k · p,19 and tight binding11,20–24

to ab initio methods,25–30 have been adopted to investigate the
optical and electronic properties of Si nanocrystalline struc-
tures. Semiemperical methods based on the parametrization of
the bulk band structure might provide a good description of
some properties (e.g., band gaps, exciton binding energies, and
radiative transition rates) often beyond the accuracy of ab initio
methods like DFT-LDA. What is more, semiempirical methods
are also less computationally demanding, which enables one
to handle Si NCs of a realistic size consisting of tens of
thousands of atoms. On the other hand, the transferability of
semiempirical methods is limited when pronounced atomic
relaxation or charge transfer within NCs occurs, e.g., due to
different surface passivation. Here ab initio methods provide
an accurate description of electronic states of fully relaxed Si
NCs, but simulations of realistic systems of nanometer size are
impossible due to excessive computational demand. From this
point of view, the application of fast local orbital DFT codes31

seems to be the optimal choice.
In this paper, we introduce a general method which

allows reconstruction of the fuzzy band structure from
MOs obtained, e.g., from ab initio calculations. For this
reason, we dare to use the terms highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) and valence-band maximum/conduction-band mini-
mum as synonyms throughout this article. We demonstrate the
method’s capability of folding up the fuzzy band structure of
finite systems in a simple one-dimensional (1D) atomic chain
consisting of a few H atoms. Using this example, we discuss
the main characteristic features of the fuzzy band structure
of finite-size systems. Next, we apply the procedure to the
analysis of the electronic structure of freestanding Si NCs
obtained from DFT calculations. To achieve this objective, we
adopt the fast local orbital DFT code FIREBALL31,32 devised
with the aim of achieving computational efficiency but still
providing the desired precision in the description of the
ground-state electronic structure. This allows us to perform
fully relaxed total energy calculations of different Si NCs
consisting of up to a thousand atoms in a feasible way. We
show how the fuzzy electronic band structure of Si NCs is
affected by their surface passivation, symmetry, and size.

II. METHODS

A. DFT calculations

All computations were carried out using the local orbital
DFT code FIREBALL31,32 within the local density approxima-
tion (LDA) for the exchange-correlation functional. Valence
electrons have been described by optimized33 numerical

atomic-like orbitals having the following cutoff radii (in a.u.):
Rc(s, s*) = 4.0 for H; Rc(s) = 4.5, Rc(p) = 4.5, and Rc(d) =
5.4 for C; Rc(s) = 4.8, Rc(p) = 5.4, and Rc(d) = 5.2 for Si; and
Rc(s) = 3.5, Rc(p) = 4.0, and Rc(d) = 5.0 for O, respectively.
The correctness of the basis set was checked to reproduce the
band structure of bulk silicon within LDA accuracy.

NCs are represented by cluster models with three core sizes,
consisting of 68, 232, and 538 Si atoms. These three models
represent Si NCs with diameters of 1.5, 2.0, and 2.5 nm,
respectively (Fig. 1). The atomic structure of the Si538 core
was cut out from a relaxed bulk silicon lattice in a way so as
to minimize the number of unsaturated bonds and to reflect
the lattice symmetry with well-defined (111) and (100) faces
(Fig. 1). Subsequently, the smaller Si232 and Si68 cores were
derived from Si538 by removing the topmost atomic layer, in
order to get a smaller analog of the same symmetry and surface
faces. Here index numbers stand for the number of Si atoms
forming the NC core. The Si core of each of the three models
is terminated with either polar (–OH, simulating an oxidized
layer) or nonpolar (–H, –CH3) passivating groups, leaving all
surface Si atoms fully saturated. Therefore, the total number
of atoms in nanoparticles varies from several hundred up to
more then 1400 for a Si538 nanoparticle capped with a methyl
group, –CH3.

All Si NCs models were fully optimized, allowing the relax-
ation of all atoms. Total energy calculations were performed as
a cluster calculation (k = 0) and the convergence was achieved
when a residual total energy of 0.0001 eV and a maximal force
of 0.05 eV/Å were reached.

B. Momentum-space projection of molecular orbitals

The band-structure theory of solids is well established and it
has been successfully applied to real materials to explain their
physical and material properties, e.g., electrical resistivity and
optical absorption. A cornerstone of the band-structure theory
is the so-called Bloch’s theorem,34 which initiated the epoch
of modern solid-state physics. Electronic states in an infinite
periodic system are described via the Schrödinger equation,

[∇2 + V (r)]�(r) = ε�(r), (1)

where ε is the energy of eigenstate �(r) and potential V (r)
is periodic V (r) = V (r + R), R being the translational lattice
vector. Bloch’s theorem postulates that the solution of the
Schrödinger equation, �n,k(r), can be written as the product of
a real mother function un,k(r), which is also periodic, un,k(r) =
un,k(r + R), and a Bloch plane wave, eik.r:

�n,k(r) = un,k(r).eik.r. (2)

The eigenstate �n,k(r) varies continuously with the wave
vector k and forms an energy band εn,k identified by the band
index n.

How does the band-structure picture change when the size
of the system is reduced? Or, in other words, is the concept of
energy bands also valid for nanoscopic systems? As we show
in the following, the finite size of a system has two important
consequences: (i) wave vector k becomes discrete, and
(ii) wave functions are delocalized in momentum space.35

The first statement, i, directly follows from the construction
of reciprocal space. For example, let us assume a 1D
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FIG. 1. (Color online) Geometry of model nanocrystals. The first two panels show nine models of NCs of three core sizes (68, 232, and
538 Si atoms of diameter 1.5, 2.0, and 2.5 nm) with either polar oxidized (–OH) or nonpolar (–H, –CH3) passivation. The last panel shows the
geometry of Si538-H from the important crystallographic directions (100), (111), and perpendicular to (111).

monoatomic chain of N atoms with the lattice constant a.
There are N different wave vectors k separated by

�k(1) = 2π

aN
= 2π

L
, (3)

where L = Na is the length of the chain. Obviously, if N

becomes small, the separation between the wave vectors �k(1)

becomes larger.
The second statement, ii, says that, according to the Heisen-

berg uncertainty principle, the crystal momentum becomes
delocalized as follows:

�x�p > h. (4)

Substituting the crystal momentum p = h
2π

k and the size of
the NC �x = L into the equation above, we obtain the relation
for the delocalization of the wave vector due to the finite size
of the system:

�k(2) >
2π

L
. (5)

The fact that the separation of discretized wave vectors �k(1)

and their delocalization �k(2) are of the same order calls for
a more rigorous discussion of the band structure of finite
systems, which is provided in the following text. We use
natural units (h̄ = 1), using k as a synonym for momentum. To
simulate the finite size of systems (e.g., an NC) we introduce
the so-called window function w(r), which restricts the wave

function �n,k(r) to the space occupied by the system. Then
Eq. (2) is modified accordingly:

�n,k(r) = w(r)un,k(r).eik.r. (6)

Figure 2 depicts the characteristics of the individual terms in
Eq. (6) in a 1D case. We should note that the concept of the
window function is similar to an envelope function used in the
frame of the k · p method (see, e.g., Ref. 19 for more details).
In the simplest approximation, one can define the window
function w(r) as a stepwise function,

w(x) =
{

1 : |r| < L,

0 : |r| > L,
(7)

which vanishes outside the NC [see Fig. 2(a)]. Then the
resulting real-space wave function �n,k(r) consists of the
modulation of the mother function by the Bloch plane wave and
the window function w(r) [see Fig. 2(d)]. In real systems, the
window function can have a more complicated shape dictated
by the electronic structure of a particular system [see dashed
(green) line in Fig. 2(a)].

Let us consider a problem inverse to the computation of
the band structure from Bloch’s theorem [Fig. 3(a)]. We know
the real-space wave function φi(r) of the ith eigenstate (e.g., a
Kohn-Sham MO obtained from an aperiodic DFT calculation
of a nanoscopic system), and we would like to assign the
corresponding crystal momentum k. Each MO of energy εi
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FIG. 2. (Color online) Schematic illustration of Eq. (6). (a) Window function constraining the wave function to a finite area of space.
In general, it is the envelope of an MO and it can have a complicated shape [dashed (green) line]. However, for simplicity, we expect the
rectangular shape of Eq. (7) (gray rectangle). (b) Mother function of an infinite system composed of a linear combination of atomic orbitals.
(c) Infinite Bloch plane wave. (d) Final wave function of a nanocrystal as a product of (a), (b), and (c) constrained in a finite area of space.

can cross one or more bands εn,k [Fig. 3(b)]. Then we can
assume the MO φi(r) to be a linear combination of A bands
�n,k(r),

φi(r) =
A∑

a=0

da�na,ka
(r), (8)

FIG. 3. (Color online) Schematic of Eq. (8). (a) Usual approach
to obtaining the band structure of an infinite crystal using Bloch’s
theorem. For a given k vector, the energy spectrum of εn,k is found.
(b) Inverse approach in a finite system. For a given energy state
εi of orbital φi , the corresponding k vectors need to be found. The
orbital is a linear combination of all Bloch-like wave functions �n,k(r)
corresponding to the n,k in which the orbital energy εi crosses the
energy bands εn(k).

where, for a particular φi(r), neither the indexes na,ka nor the
coefficients da are explicitly known.

One option for extracting k vectors of φi(r) lies in the
determination of the corresponding �na,ka

(r) and una,ka
(r) and

the consecutive extraction of the Bloch factor eik.r from Eq. (6).
This is possible, for example, by projecting φi(r) on �BULK

n,k (r)
obtained from the bulk calculation.13 Nevertheless, wave
functions �n,k(r) in a finite system may differ considerably
from the bulk one �BULK

n,k (r) [e.g., if w(r) is more complicated],
and a large number of states have to be considered for a large
NC. These complications hamper a robust implementation of
this method to a computational code.

Here we opt for another method, which transforms MO
φi(r) from real into reciprocal space using Fourier transform. A
similar approach was successfully applied to analyze angular
resolved photoemission (ARPES) spectra of oligomeric or-
ganic molecules.12 In our scheme, a selected φi(r) expanded on
a real-space grid is projected to momentum space either using
discrete 3D fast Fourier transform (FFT) or by the projection
onto a set of plane waves eik′.r,

φ̃i(k′) = 〈φi(r)|eik′.r〉, (9)

where k′ is an arbitrary wave vector.
For practical use, we plot the so-called momentum density

ρ̃i(k′), which is real, instead of the complex Fourier transform
φ̃i(k′). The momentum density ρ̃i(k′) can be written, using
Eq. (9), as follows:

ρ̃i(k′) = |φ̃i(k′)|2. (10)
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FIG. 4. (Color online) Schematic of convolution of momentum-space representations of the three wave-function components.
(a) Rectangular window function transformed to sinc(Lk′). (b) Bulk-like mother function transformed to a series of δ functions in the centers
of Brillouin zones. (c) Bloch wave transformed to a δ function inside the first Brillouin zone shifted out of the center. (d) Momentum-space
representation of the wave function created by the convolution of (a), (b), and (c) in a 1D case. (e) Illustration of a higher-dimensional case: a
2D view of the momentum-space density of MOs in a silicon nanocrystal. Note the side artifacts spaced by multiples of K representing the
higher Fourier components cm in the expansion of the mother function.

It also contains the information about the delocalization of the
MO in momentum space and it can be plotted as a function
of wave vector along a selected line in momentum space [see
Fig. 4(d)].

The first approach (FFT) provides a picture of the 3D
structure and symmetries of the particular state in reciprocal
space [see Fig. 4(e). Nevertheless, its resolution is limited by
the size of the real-space grid on which MOs are expanded.
The second approach (the projection on the set of plane waves)
is more suitable for sticking with the traditional 1D band-
structure representation plotted along the lines connecting
the high-symmetry points in k space. In this case, we let
k′ sample the given high-symmetry line in k space with a
much higher resolution. Although this approach is straight-
forward, a rigorous analysis of the structure of the resulting
momentum-space distribution is required. For simplicity, let
us assume a one-to-one correspondence between a particular
MO and a band wave function φi(r) = �n,k(r). Note that the
generalization of the following discussion if φi(r) is a linear
combination of several �na,ka

(r), Eq. (8), is straightforward
due to the linearity of Fourier transform. Fourier transform of
a wave function �n,k(r) given by Eq. (6) can be expressed as
a convolution of the three terms:

�̃n,k(k′) = w̃(k′) ∗ ũ(k′) ∗ δ(k′ − k). (11)

It is well worth analyzing in detail the process of convolution
and the character of each term in Eq. (11). To make our
discussion more illustrative, we restrict ourselves to the

1D case. Figure 4 represents schematically the process of
convolution and the character of each term separately.

We start from the trivial third term. δ(k′ − k) is a Fourier
transform of Bloch wave eik.r, where k is from the first
Brillouin zone [see Fig. 4(c)] and attains some of the discrete
values separated by �k(1) = 2π/L as postulated in Eq. (3).

The first term in w̃(k′) in Eq. (11) is a Fourier image of the
window function w(r). This term causes the delocalization of
wave function in k space. Considering the window function
w(r) as the step function of length L [see Eq. (7)], its Fourier
transform equals w̃(k′) = sinc(Lk′). Using Eq. (5), it can be
expressed also as sinc(2πk′/�k(2)), which brings us back to
the Heisenberg principle.

The square |w̃(k′)|2 introduces to the momentum-space
density ρ̃i(k′) a blur with a Lorentzian envelope [see Eq. 4(a)]
of slow asymptotic decay 1/(Lk′)2. This has an important im-
plication for the momentum selection rules for the transitions
between states in finite systems: two wave functions centered
around different k can have non-negligible overlap in k space
even if their separation in k is fairly large.

We would like to stress that the decay in the momentum-
space projection depends strongly on the actual shape of w(r).
Therefore, this approach is superior to a simple estimation
of momentum uncertainty based on the Heisenberg principle,
which can provide only the width of the peak around k, and
says nothing about its decay.

Finally, the second term in Eq. (11), ũ(k′), corresponds to
the Fourier transform of the mother function un,k(r), which
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FIG. 5. (Color online) One-dimensional cross section of momentum-space projected MOs of a chain of eight hydrogen molecules.
(a) Atomic structure of a molecular hydrogen chain with bond lengths of 0.7 Å electronically coupled through the intermolecular distance
of 1.3 Å. (b) Real-space projection of MOs φi(r) of the system. The first eight orbitals are bonding and occupied; the remaining eight are
antibonding and unoccupied. The positive sign of the wave function is shown in blue; the negative sign, in red. (c) Band structure of the
finite chain as assembled from momentum densities ρi(k′) plotted at a particular orbital energy εi by color scale. Parabolic band dispersion
can be clearly seen following the maxima of densities (yellow-red-black). For some of the orbitals i = 1, 8, 9, 13, the actual shape of function
ρi(k′) is also plotted to illustrate the correspondence to Fig. 4. The main peaks corresponding to the Fourier components in the expansion of
un,k(k′) are denoted by arrows.

can be expanded in a discrete Fourier series of waves using its
periodicity,

un,k(r) =
∞∑

m=0

cmei(m.K).r, (12)

where K denotes the reciprocal lattice vector and m is an
integer index addressing different reciprocal unit cells. This
expression is transformed to reciprocal space as

ũn,k(k′) =
〈 ∞∑

m=0

cmei(m.K).r

∣∣∣∣∣eik′.r

〉
=

∞∑
m=0

cmδ(k′ − m.K),

(13)
where δ(k′ − m.K) is situated in the center of the mth
reciprocal unit cell (i.e., not in the first Brillouin zone).

Typically, un,k(r) is relatively smooth in the unit cell and
so the Fourier expansion coefficients cm decay with increasing
frequency [Fig. 4(b)]. In reality, just one expansion coefficient
is dominant. The dominant Fourier component is determined
by the nodal structure of un,k(r), where nodes are introduced
either by the antibonding character of the mother function or
by the contribution of the higher angular momentum atomic
orbitals (such as a p orbital). If un,k(r) has no node inside a unit
cell (for example, the bonding state of two s orbitals), the first
coefficient c0 situated in the center of the first Brillouin zone

(k′ = 0) is the dominant term. Similarly, if un,k(r) has m nodes,
the mth Fourier expansion coefficient cm dominates. This
means that most of the momentum-space density is situated
in the mth reciprocal unit cell. Consequently, the convolution
of ũn,k(k′) with the Bloch term δ(k′ − k) forms a new band
located in the mth reciprocal unit cell [see the antibonding band
in Fig. 5(c). Thus, our approach provides the reconstruction
of the so-called unfolded band structure, where each band is
situated in a different reciprocal unit cell. Note also that in the
3D case the index m is a vector, and nodes in each dimension
should be considered independently.

Now we illustrate the projection method in a simple case.
Let us analyze the electronic structure of a finite 1D chain
consisting of eight coupled hydrogen molecules (see Fig. 5),
where the unit cell consists of a single hydrogen molecule.
Upon projecting real-space MOs [Fig. 5(b)] into k space two
distinct bands isolated by a bandgap appear [see Fig. 5(c)].
The lower band (m = 0), composed of bonding orbitals with no
node inside the unit cell, has the dominant Fourier components
located in the first Brillouin zone. The higher antibonding band
(m = 1) has the dominant Fourier components located in the
second reciprocal unit cell.

Apart from these dominant Fourier components, which
characterize the band structure, there are also smaller satellite
peaks representing the other components cm in the Fourier
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(b)

(a)

(c)

FIG. 6. (Color online) Dependence of the delocalization of
momentum density ρ̃i(k′) of MOs in a chain of hydrogen molecules
on the chain length. (a) Momentum-space delocalization of the lowest
MO (i = 1) in chains composed of 2 (black), 4 (red), 8 (green), and 16
(blue) hydrogen molecules. (b) Band structure of a chain composed
of two hydrogen molecules. (c) Fuzzy band structure of a chain
composed of 16 hydrogen molecules.

expansion of ũn,k(k′). In the special case where Bloch k = 0,
the peaks are located directly in centers of the mth reciprocal

unit cell and correspond directly to components cm in the
Fourier expansion of ũn,k(k′) [Eq. (13)]. This is illustrated for
MO i = 16 by peaks denoted c0, c1, and c2 in Fig. 5(c). In the
general case (k 	= 0) these peaks are split and shifted by ±k
as denoted by K + k and K − k in Fig. 5(c).

To illustrate the delocalization of the momentum vector
k due to the finite size of the system, represented by w(r),
we analyzed the lowest band (i = 1) of several different 1D
hydrogen chains with lengths of from 2 to 16 molecules. In
Fig. 6(a) the peak width of the depicted momentum density
decreases proportionally to the number of molecules (unit
cells) in the chain according to Eq. (5). In this particular case,
the window function w(r) is very close to a rectangular step
function. Hence, the shape of the momentum-space density
ρ̃(k′) is very similar to |sinc(Lk′)|2. The frequency of this
sinc-like function can be also deduced from the number of
nodes per reciprocal unit cell, which is proportional to the
increasing chain length L.

Let us summarize the main conclusions of this section.
We have discussed two main implications of the finite size
of an NC for its band structure: (i) the discretization and
(ii) the delocalization of wave vector k. We have introduced
a robust method of projection of MOs to k space, which
provides the band structure of a finite system and discussed in
detail the analysis of the resulting momentum densities ρ̃i(k′).
We have demonstrated that the important characteristics (i.e.,
the Bloch k vector, its delocalization, and the discrimination

FIG. 7. (Color online) Three-dimensional structure of a silicon reciprocal lattice. (a) Structure of the first Brillouin zone of silicon in the
shape of a truncated octahedron with high symmetry directions shown. (b) Positions of points 	a (blue), 	b (red), and Xbb (green) around
the first Brillouin zone. (c) Points 	a , 	b, and Xbb in the context of sublattices a (blue) and b (red). (d) Reciprocal unit cells adjacent to the
first Brillouin zone, distinguished by sublattices a (blue) and b (red). (e) Three-dimensional view of the localization of the maximal k space
projected density of HOMOs (green) and LUMOs (purple) for a Si68-H NC. Points 	a , 	b, and Xbb are marked by spheres to highlight the
correspondence.
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FIG. 8. (Color online) Degeneracy loss due to the broken symmetry of a Si68-H nanocrystal. (a) Top view of a Si68-H nanocrystal along the
111 direction. (b) Side view of a Si68-H nanocrystal perpendicular to the 111 direction. (c) Two classes of energy split MOs of Si68-H due to
anisotropic confinement. There are six degenerate states in directions closer to the 111 direction [polar (blue)] with an energy of 2.17 eV and
another six degenerate states more perpendicular to the 111 direction with an energy of −2.03 eV [equatorial (red)]. Note that states k and −k
are always degenerate due to time-reversal symmetry and the realness of the wave function in a finite system.

of independent bands) can be extracted from the resulting
momentum densities, despite the convolution in Eq. (11).

C. Band structure of bulk silicon and nanocrystal

Before we advance from the 1D hydrogen chain to the
band structure of a silicon NC, it is worth discussing in detail
the reciprocal space structure of bulk silicon. While in solid-
state physics it is common to describe band structure in the
compact picture (or reduced-zone scheme), where all bands
are folded into the first Brillouin zone, for our purposes it is
more suitable to use the so-called unfolded picture. In this
approach, bands located in higher reciprocal unit cells are
considered independently.

Silicon crystallizes in a diamond lattice consisting of two
interpenetrating face-centered cubic (fcc) Bravais lattices. In
real space, the fcc Wigner-Seitz cells build up a rhombic icosa-
hedral honeycomb, which converts to a truncated octahedral
honeycomb in reciprocal space. As shown in Fig. 7(d), the
reciprocal lattice is composed of two cubic sublattices a (blue)
and b (red) with a truncated octahedral shape. Sublattice a is
centered in 	0 of the first Brillouin zone and sublattice b is
shifted by a vector (1,1,1) with respect to sublattice a. Thus,
sublattice b is situated in the cube vertexes, and sublattice a
in the cube centers of a body-centered cubic lattice (bcc), as
shown in Fig. 7(b).

The unit cell located at 	0 is the first Brillouin zone.
There are, in total, 14 reciprocal unit cells adjacent to the

first Brillouin zone. Six of them belong to sublattice a, being
centered at points 	a with coordinates ∀ (±2, 0, 0). Another
eight unit cells belong to sublattice b centered at 	b with
coordinates ∀ (±1, ±1, ±1). Here, ∀ means all permutations
of axes and signs [e.g., (±2, 0, 0), (0, ±2, 0) and (0, 0, ±2)].

All 14 of these reciprocal unit cells are of crucial importance
for us, because both the valence and the conduction bands
are situated there (in the unfolded picture). In particular, the
valence band maximum is located at points 	a and 	b. The
absolute conduction band minimum in bulk silicon is located
near points Xbb of coordinates ∀ (±1, ±1, 0), which are
halfway between two 	b. The positions of points 	a , 	b, and
Xbb are schematically depicted in Fig. 7(b). The localization of
the maximal k-space projected density obtained from HOMOs
(purple) and LUMOs (green) for a Si68-H NCis shown in
Fig. 7(e). From this figure, it is evident that HOMOs are
localized at 	a and 	b, and LUMOs near the Xbb points. To
make the context more clear, in Fig. 7(c) we also depict the
positions of the important points 	a , 	b, and Xbb in the context
of sublattices a and b. Because of convolution with Fourier
expansion of the mother function [Eq. (13) or, more illustrative,
Figs. 4(b) and 4(d)], both the valence and the conduction bands
are situated outside of the first Brillouin zone in the unfolded
picture. Therefore, the first Brillouin zone does not play any
significant role in optical transitions and it is depicted in gray
in Figs. 7(b) and 7(c).

In the case of bulk silicon, all these reciprocal unit cells
around 	a and 	b are equivalent due to lattice symmetry.
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FIG. 9. (Color online) Projected density of states around a gap split into the contributions of surface (red) and core (blue) atoms, for
nonpolar passivation of (a) Si538-H and (b) Si538-CH3; frontier orbitals are localized mostly inside the core. However, for an oxidized NC,
(c) Si538-OH, these are mostly surface states. (d) Variation of energy HOMO-LUMO gap with core diameter for all three types of passivation.

Therefore also the frontier orbitals (HOMOs and LUMOs),
which are composed of Bloch states located at 	a , 	b, and
Xbb, are energetically degenerate. More precisely, HOMOs
(LUMOs) are arbitrary linear combinations of Bloch states
from different 	a and 	b (Xbb) as discussed previously [Eq. (8)
and Fig. 3].

However, this is no longer true in NCs, where the symmetry
is broken due to different lengths in each direction or due to
anisotropic perturbations (e.g., mechanical strain) induced by
surface passivation. This is another reason why it is necessary
to describe the band structure of an NC in the unfolded picture
with all reciprocal unit cells independent.

In other words, the anisotropy of NCs removes the de-
generacy of MOs. We can observe this in our model NCs
even though the shape of the cores (Si68, Si232, Si538) respects
the cubic symmetry of the silicon lattice. In the case of –H
passivation, the degeneracy is almost preserved, because no
anisotropic strain or electrostatic field is induced. The LUMO
state is 12-fold degenerate, representing the 12 Xbb points.

However, due to the shape of a Si68-H NC—slightly shorter
in the (111) direction [Fig. 8(a)]—MOs are split into two
classes of slightly different energies. Electronic states with
the k vector oriented more closely to (111) have an energy
of 2.17 eV, while states with the k vector oriented more
perpendicularly to the (111) direction have an energy of
−2.03 eV [see Fig. 8(c)].

Finally, we comment on the importance of MO symmetry
for optical transitions. Since MOs are real functions, their
Fourier transforms are symmetric for k and −k. Consequently,
we can identify two distinct classes of MOs according to

the character of their symmetry: (a) if an MO is an even
function in real space, its k-space representation becomes real
(cosine part); and (b) if an MO is an odd function, the k-space
representation is purely imaginary (sine part). According to
selection rules, optical transitions are strongest between two
states localized around the same point in k space with a
complementary symmetry character, i.e., sine to cosine, or
vice versa.

III. RESULTS

It is well known that the electronic states of silicon
nanoparticles at the band edge are very sensitive to surface
passivation.26,36,37 In this section, we employ the method to
analyze the fuzzy band structure of Si NCs as a function of
their diameter and surface passivation including both polar
(–OH) and nonpolar (–H, –CH3) groups.

A. SiNC:H

First, we consider Si NCs passivated by hydrogen groups
(–H). Our calculations of the fully optimized structure show
that the atomic relaxation of Si atoms in the core region
is negligible. Therefore, the Si NC core has very similar
atomic structure as bulk Si. We attribute this effect to (i) the
negligible charge transfer between the Si core and the hydrogen
terminating groups due to the fairly close electronegativities
of both elements (1.9 for Si and 2.2 for H, respectively) and
(ii) the absence of mechanical stress resulting from the small
volume of the hydrogen terminating groups.
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FIG. 10. (Color online) Spectrum of electronic states (black, green, and red bars) with their k-space projection from 	 to X (color scale
legend, at the right) for (a) Si538-H, (b) Si538-CH3, and (c) Si538-OH. Real-space projections of selected frontier orbitals are plotted as well in
order to show their overall shape, symmetry, and localization. Note: The color scale is limited to the same maximal value in order to enhance
the contrast and to compare the absolute k-space densities between different passivations.

The calculated projected density of states for a Si538 NC
is shown in Fig. 9(a). Surface states corresponding to Si-H
bonds are localized far from the band-gap edges. Therefore, the
highest occupied and lowest unoccupied electronic states are
localized mainly in the core region. The electronic states in the
Si NC core are strongly affected by the quantum confinement
effect. Consequently, the band gap of a Si NC decreases with
increasing NC diameter [see Fig. 9(d)], in good agreement with
previous calculations.26,28–30 We should note that band gaps in
our calculations are underestimated due to the well-known
DFT problem (see, e.g., Ref. 38).

Figure 10(a) displays real-space wave functions corre-
sponding to individual electronic states at band-gap edges. We
see that, in the case of hydrogen passivation, both HOMOs
and LUMOs are spread almost homogeneously over the
whole Si538 core. Applying our transformation method, we
can convert electronic states from real to reciprocal space
to obtain the electronic band-like picture of a Si NC with a
given diameter. Figure 11 represents the projected k-space
density along the 	-X direction. We can see the gradual
emergence of the fuzzy band structure with an increase in
NC size. While for the smallest Si68 NC the band structure can
hardly be recognized, in the case of the Si538 NC the dispersion
of electronic states near the band gap mimics well the bulk
band structure of both the conduction and the valence bands
[compare Figs. 11(c) and 11(d)]. Therefore, we can estimate
≈2 nm to be a phenomenological limit where it makes sense
to speak about the electronic fuzzy band structure and indirect

band gap in silicon NCs. It is to be noted that a similar behavior
was predicted for Si crystallite sizes lower than 2.5 nm in
terms of enhanced efficiency of the radiative recombination
rate.23

FIG. 11. (Color online) Comparisons of 1D cross sections of the
projected k-space density in –H passivated NCs of different sizes
for (a) Si68-H, (b) Si232-H, and (c) Si538-H. Gradual emergence of
energy bands can be seen with increasing NCsize. (d) Band structure
of bulk Si for comparison. Note: The color scale is normalized by the
maximal density independently for each NCsize.

195420-10



THEORETICAL ANALYSIS OF ELECTRONIC BAND . . . PHYSICAL REVIEW B 87, 195420 (2013)

FIG. 12. (Color online) Delocalization of k-space projection
of LUMO in –H passivated NCs depending on the nanocrystal
diameter. The sinc-like shape can be clearly seen, which means an
approximately rectangular envelope of the MO in real space.

There are two important differences between the bulk band
structure and the projected band structure of a Si538-H NC that
must be noted: (i) the presence of discontinuities (minigaps)
in the energy dispersion and (ii) delocalization (blurring) of
electronic states in k space. The presence of the minigaps
within the bands is induced by the finite size of the Si NC
and the preserved symmetry of the atomic Si-core structure.
The latter evokes the degeneracy of electronic states with a k
vector in the equivalent crystal lattice directions in a manner
similar to that shown in Fig. 8 for Si68-H. We should note
that the presence of minigaps larger the 63 meV can have
important implications for the relaxation process of hot excited
electrons from 	 to X. Usually, the maximal vibrational energy
of phonons in bulk Si does not exceed 63 meV.39 Therefore
hot electrons might be unable to reach the conduction band
minimum near X points once they meet the minigap along
their path from 	 to X.

The blurring effect on electron states in momentum space
can be directly attributed to the confinement in a finite space
determined by the window function w(r), as discussed in
the previous section. Figure 12 shows the k-space density
projection of the lowest unoccupied state onto a 1D line

between the 	(0, 0, 0) and the 	(0, 2, 2) k points for different
Si:H NC diameters. It demonstrates the variation of k-space
delocalization and its shape depending on the size of the Si
NC. We can clearly identify the sinc-like shape envelope
corresponding to the rectangular step window function (see
Fig. 6 for comparison).

B. SiNC:CH3

In the next step, we examine an impact of the methyl (–CH3)
terminating group on the atomic and electronic structure of Si
NCs. Our fully relaxed Si:CH3 NCs expand by ≈1% of the
lattice constant as a consequence of steric repulsion between
the individual –CH3 groups (see Fig. 14). The presence
of mechanical strain causes inhomogeneities in the atomic
Si-core structure, which lifts up the degeneracy of molecular
states [see Fig. 10(b)]. This effect significantly reduces the
size of the minigaps [see Fig. 10(b)]. Moreover, the electronic
states are more localized in real space compared to those of a
H-passivated NC of a similar size as shown by comparison of
Figs. 10(a) and 10(b). Consequently, the tails of projected
densities ρ̃i(k′) of individual electronic states in k space
decay more slowly in k space than in Si:H NCs of the
same size [compare again Figs. 10(a) and 10(b)]. This means
that individual “bands” are not strictly localized in their k
momentum.

We found out that the presence of nonpolar methyl groups
leads to the localization of surface states in energies far from
the Si NC band gap similarly to the situation in Si:H NCs
[Fig. 9(b)], but the band gap is smaller compared to Si:H NCs
[Fig. 9(d)].

C. SiNC:OH

According to our DFT simulations, Si NCs capped with
hydroxyl (–OH) groups suffer from large atomic relaxation in
proximity to the surface with respect to the Si bulk structure
[see Fig. 14(c)]. Nevertheless, the atomic structure deep within
the Si NC core remains almost intact and thus close to the
bulk. The large distortion of the surface atomic structure is
driven by the presence of significant charge transfer between
Si and electronegative O atoms. The strong polarity of the Si-O
bond tends to cause large localization of their MOs near the
surface in real space [see Fig. 10(c)] with energies close to

FIG. 13. (Color online) Map of Hartree potential inside Si538 NCs with different passivations. For nonpolar passivating groups (a) –H and
(b) –CH3, the potential is regular and corresponds to the charge distribution in the crystal lattice. However, for polar –OH passivation (c), a
considerable number of local electrostatic fields can be seen near the surface. Note: The potential of neutral atoms was subtracted from the full
self-consistent potential to make the features easily visible.
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FIG. 14. (Color online) Histogram of Si-Si bond lengths in
Si538 NCs with different passivations. Insets: Maps of bond length
distortions in the color scale: (a) Si538-H, (b) Si538-CH3, and
(c) Si538-OH. (d) Increase in mean bond length between –H and
–CH3 by 1%.

band-gap edges [Fig. 9(c)]. This picture is consistent with pre-
vious experimental evidence40 and theoretical simulations26–30

of oxidized Si NCs.
What is more, our simulations point out that –OH groups

tend to align via hydrogen bonds, forming ordered domains at
low temperatures. Consequently, considerable local electric
fields are induced across the Si NC as shown in Fig. 13.
We computed the electric dipole of 120 D for the largest
–OH passivated NC (3 nm, Si538), while the electric dipoles
of the corresponding NCs passivated by –H (0.15 D) and
–CH3 (0.9 D) are negligible. The presence of the electric
field together with the geometrical distortion of the surface
layer [Fig. 14(c)] probably causes the irregular real-space
distribution of HOMOs and LUMOs in –OH passivated NCs
[Fig. 10(c)].

Due to the strongly localized states in the surface layer,
the projected band structure is significantly blurred [with
large tails of projected density ρ̃i(k′)], which relaxes the
k-space selection rules of optical transitions and improves the
radiative recombination probability of indirect transitions.
Also, the degeneracy of electronic states is almost removed due
to the large distortion of atomic structure near the surface. This,
however, goes hand in hand with the higher localization and
irregular distribution of MOs in real space, which decreases the
real-space overlap of orbitals and thus can limit the radiative
recombination probability.

IV. DISCUSSION

In the previous sections, we have discussed the character
of the fuzzy band structure of nanostructures depending on
their size and surface passivation. We have shown differences
with respect to the Si bulk band structure. First, utilization
of the band-structure concept makes sense only for “larger”
NCs, above a certain size limit. For example, for Si NCs this
size limit lies between 1.5 and 2 nm (see Fig. 11), because

under this limit the k-space projected MOs do not show much
band-like behavior.

Second, the smaller the NC, the more pronounced the
presence of minigaps inside the energy bands, which can
limit the nonradiative relaxation of excitons. For the same
size NCs, the minigaps are wider in more symmetric NCs with
a weaker surface effect due to the degeneracy of energy levels
(see Fig. 10).

Third, the nanoscale size introduces blurring of the k
vector [see Figs. 12 and 4(d)]. Although this phenomenon
is qualitatively easily predictable from the Heisenberg uncer-
tainty principle and was already treated, e.g., by Hybertsen,35

our approach allows us to quantify the influence of k-vector
blurring for individual MOs.

Finally, in addition to describing the crystalline core,
our computed band structures already include the effect of
surface states. This is very important, because many types of
real-life semiconductor NCs need to be capped by various
surface terminating groups, which profoundly influences their
electronic properties.

V. CONCLUSION

In this paper, we have introduced a general method to
map effectively the electronic structure of aperiodic systems
such as NCs from real space to reciprocal space. This method
allows us to reassemble the fuzzy electronic band structure of
finite-size systems. We believe that this method could provide
more insight into the question whether the band-structure
concept can still be applied to NCs of different shapes,
sizes, or chemical compositions. In particular, we demonstrate
that the fuzzy band-structure picture of nanometer-scale Si
NCs can still be adopted down to a size of ≈2 nm, but
with two important consequences of the finite size of the
system: (i) the discretization and (ii) the delocalization of
electronic states in the reciprocal space. This results also
means that efficient slow red PL in Si NCs arises from indirect
X-to-	 electron-hole recombination, in agreement with recent
experimental evidence.41

We employed this method to investigate the effect of Si NC
size and the presence of different passivation groups including
nonpolar and polar groups on their fuzzy band structure. We
found that Si NCs capped with methyl groups expand by
∼1% due to steric repulsion between methyl surface groups.
In the case of polar hydroxyl groups, real-space-localized
states near the surface form band-gap edges, which tend
toward rather delocalized k-space states. In other words, the
band-structure concept is preserved, but near the band gap the
electronic states become more blurred. In addition, we found
strong alignment of hydroxyl groups forming a significant
macroscopic electrostatic dipole moment across Si NC.
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