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The surface barrier is a key issue for understanding and describing the results of surface-sensitive electron
spectroscopies, such as photoemission and inverse photoemission. We present a feasibility study showing that
the shape of the surface barrier can be derived from very-low-energy electron diffraction (VLEED) fine-structure
measurements. In particular, we focus on the spin dependence of the barrier probed by a spin-polarized
experiment. We show model calculations of spin-dependent fine structures for specific ferromagnetic surfaces,
where spin-dependent barrier models were successfully employed to describe spectroscopic results. We come to
the conclusion that spin-polarized VLEED experiments with state-of-the-art energy and angular resolution are
able to reveal details of the spin-dependent shape of the surface barrier.
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I. INTRODUCTION

Very-low-energy electron diffraction (VLEED) is the most
important experimental tool for analyzing the shape of the
surface (-potential) barrier at single-crystal surfaces. Fine
structures appear in intensity vs energy curves I (E) of
elastically reflected very-low-energy electrons. The energy
position and the shape of these fine structures are directly
sensitive to the surface-barrier shape. Thus, measuring the fine
structure provides experimental access to the surface barrier.1,2

The potential in front of a metal surface, referred to
as the surface barrier, comprises the Coulomb-like image
potential on the vacuum side far from the crystal surface
and the transition region between the image potential and the
inner potential of the crystal. To ensure a smooth transition
between the two different potentials, various barrier models
have been proposed.3–5 The width of the surface barrier is
of the order of the lattice constant of the crystal. Because
of its localization directly at the surface, the surface barrier
influences the energetics and dispersion E(k‖) of surface
states. Additionally, it determines electron transfer processes
through conductive surfaces for electrons with kinetic energies
below 50 eV. Therefore, the surface barrier is essential for the
interpretation of data from electron spectroscopies such as
(inverse) photoemission and low-energy electron diffraction
(LEED). Recently, the interest in a detailed understanding of
the spin-dependent surface electronic structure has strongly
increased due to the interesting spin-orbit-induced phenomena
appearing in Rashba systems6–8 and topological insulators.9–15

In 1964, McRae and Caldwell were the first to observe a fine
structure in VLEED I (E) curves on LiF(100).16 Since then, a
variety of surfaces has been studied experimentally by means
of VLEED.17–22 Many of these experiments were combined
with calculations of VLEED I (E) curves to determine a
surface-barrier shape for the surfaces under consideration.3–5,21

In the 1970s, the electron spin became an important quantity
in LEED experiments on high-Z materials. In accordance
with theoretical predictions, the elastic scattering amplitude
of electrons at W(001) turned out to be spin dependent
due to spin-orbit coupling. This led to the development of

a spin-polarization detector based on spin-polarized low-
energy electron diffraction (SPLEED).23–25 In spin-polarized
VLEED on differently oriented tungsten single crystals, a
spin dependence of the fine structure was observed. This,
however, has been ascribed primarily to spin-dependent crystal
scattering rather than to a spin-dependent surface barrier.26–28

On a ferromagnetic surface, additionally a spin-dependent
surface barrier is expected due to exchange interaction.
Inverse-photoemission studies on image-potential surface
states on Fe(110) suggest a spin dependence of the surface
barrier.29 It turned out that two qualitatively different shapes
for the spin-dependent surface barrier can be used to explain
the experimental data.30,31 To the best of our knowledge, no
spin-polarized measurements of the VLEED fine structure at a
ferromagnetic system can be found in literature. Nevertheless,
a new type of spin-polarization detector has been developed,
based on electron scattering from ferromagnetic Fe(001)
films.32,33 This detector benefits from the large scattering
amplitude of very-low-energy electrons combined with a large
spin asymmetry.

The aim of this paper is to provide a feasibility study
of the possibility of determining the spin-dependent shape
of the surface barrier with spin-polarized very-low-energy
electron diffraction. The question is whether a state-of-the-art
spin-polarized VLEED experiment is capable of resolving
the potentially small differences in a spin-dependent surface
barrier. To anticipate the answer: Such a distinction turns out
to be possible.

We start with a tutorial-like review of some of the
experimental and theoretical VLEED studies found in the
literature over the last five decades. Section II introduces
the concept of the surface barrier. In Sec. III we describe how
the shape of the surface barrier can be derived from VLEED
I (E) data. In Sec. IV experimental aspects are reviewed, in
particular how the experimental resolution influences VLEED
spectra. Section V summarizes the details of our calculations.
In Sec. VI we present VLEED I (V ) curves calculated for
different surface barriers to show how the surface-barrier
shape affects the VLEED fine structure in general. Finally,
we predict VLEED fine structures for Co(0001) and Fe(110)
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FIG. 1. (Color online) Surface-barrier models. (a) The region of interest is the transition between the image potential on the vacuum side
and the constant inner potential V0 within the metal. (b) The simplest transition is described by the “truncated” image potential VTI. (c),(d) Two
more realistic barrier models are the Rundgren-Malmström barrier VRM and the Jennings-Jones barrier VJJ.

based on the spin-dependent surface-barrier models available
in the literature.30,31,34

II. SURFACE BARRIER

The general shape of the surface barrier can be derived
from two basic assumptions: From classical electrostatics it is
known that the shape of the potential V (z) of a charged particle
at a distance z in front of a metallic surface is Coulomb-like:35

V (z) = 1

2(z − z0)
, z < z0.

The classically defined metal-vacuum interface is located at z0,
which is also referred to as the “classical image plane.” The
classical description has proven to be correct for the region
far outside the conductor, i.e., where z � z0, but the potential
diverges upon approaching z0. Inside a free-electron metal, a
constant “inner” potential V0 is assumed. The transition region
between the Coulomb-like image potential far outside the
conductor and the constant inner potential inside the conductor
is a matter of debate [cf. Fig. 1(a)]. The determination of the
surface-barrier shape can basically be reduced to the following
problems:

(a) Where is the classical image plane z0 located relative to
the topmost atomic layer?

(b) What is the exact shape of the transition region?
The simplest model for a surface barrier is a truncated

image potential VTI [Fig. 1(b)]. The image potential is “cut”
by the constant inner potential, resulting in a sharp kink at the
transition. There is little physical justification for this model
besides its simplicity. More sophisticated approaches derive
the transition between the two potentials from a quantum
mechanical treatment. A detailed review on this topic is given
by Jennings and Jones.36

Several authors have derived analytical models of the
surface-potential barrier from ab initio calculations (see, e.g.,
Refs. 36 and 37) in order to incorporate the surface barrier
into the calculation schemes for LEED or photoemission
intensities. Which barrier model is most suitable to describe a
certain metal surface has to be decided usually on a case-by-
case basis. Widespread models are the Rundgren-Malmström
barrier3 and the Jennings-Jones barrier.4

The Rundgren-Malmström barrier,38 shown in Fig. 1(c),
connects the asymptotic regime z � z1 to the bulk muffin-tin
zero V0 by a third-order polynomial in z, spanning the range
z1 < z < z2. The zero of the z scale lies in the outermost layer

of atoms. For the real parts of VRM(z) we have

VRM(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 (z − z0)−1, z � z1 < z0,

s0 + s1(z − z1) + s2(z − z1)2

+s3(z − z1)3, z1 < z < z2,

V0, z � z2.

(1)

The imaginary parts of the barrier potential have been set to
zero, avoiding the introduction of additional parameters. The
polynomial coefficients s0, s1, s2, and s3 are fixed through the
requirement of continuity and differentiability for VRM(z).

The Jennings-Jones barrier4 is given by

VJJ(z) =
{

1
2(z−z0) (1 − eλ(z−z0)), z � z0,

−V0
A exp[−B(z−z0)]+1 , z > z0.

A and B are determined by matching VJJ(z) and its derivative
at z0.

These model barriers imply that the surface barrier is one
dimensional. This is obviously a simplification since the charge
density of a real crystal surface is corrugated lateral to the sur-
face. Tamura and Feder39 showed that barrier corrugation may
have an influence on VLEED spectra of W(001) at energies be-
low 12 eV. They compared experimental data with calculations
based on one- and three-dimensional barrier models.

The shape of the surface barrier results from a rearrange-
ment of electrons near the Fermi level. Since the density of
states in ferromagnetic surfaces is spin dependent, impinging
electrons with different spin directions interact differently
with the electronic system of the crystal due to exchange
interaction. This effect was predicted for a Fe(110) surface
by Nekovee et al.30 and supported by inverse photoemission
experiments.29,31

III. VLEED FINE STRUCTURE

Experimentally, the properties of the surface barrier can
be studied by examining the scattering characteristics of the
barrier. Typically, a collimated, monoenergetic electron beam
is directed onto the crystal surface. The electrons are partly
transmitted into the crystal and partly reflected back into
the vacuum. The amount I of very-low-energy electrons (0–
30 eV) specularly and elastically reflected contains valuable
information about the shape of the surface barrier.40 Hence, the
observable of a VLEED experiment is the intensity I (E,�,�).
E is the kinetic energy of the electrons, and � and � are
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the angles of incidence relative to the surface normal and
relative to an in-plane high-symmetry direction of the surface,
respectively. In a spin-polarized VLEED experiment, there are
two observables I↑(E,�,�) and I↓(E,�,�) for incoming
electrons with spin magnetic moment parallel or antiparallel
to a given quantization axis. In a ferromagnet typically the
magnetization direction is chosen. Usually, � and � are held
constant while varying the energy E of the incoming (and
reflected) electrons.

Due to scattering at the surface barrier, features in these
I (E) profiles arise which consist of oscillations that converge
toward certain energies. The main properties of these so-called
fine structures are as follows:41

(a) The associated peaks are at least an order of magnitude
narrower in energy than the prominent Bragg peaks. They are
clearly recognizable at very low energies and are no longer
resolved as the energy increases.

(b) The series of peaks converges from lower energies
toward the emergence threshold Eg of a new diffracted beam.
The peak positions En and widths �n are approximately given
by

En = Eg − 1/(n − a)2, n = 1,2,3, . . . ,

�n = 1/(n − b)3,

with a and b as parameters. This Rydberg-like series is
attributed to the Coulomb-like part of the surface barrier.

Since the incoming electrons are scattered not only by the
surface barrier but also by the crystal itself, it is not possible to
examine the properties of the barrier and the crystal separately.
Instead, both processes have to be incorporated into a model
that allows the scattering of an electron at a metal surface to
be described. The following sections give a description of how
the Rydberg series evolves from the combined scattering at the
surface barrier and at the crystal.

A. Crystal scattering

Crystal scattering of low-energy electrons is a research area
which has been widely studied (for reviews see, e.g., Refs. 24,
and 42–45). Here, we want to recall some results of the
kinematic LEED theory that are important for understanding
the VLEED fine structure: A plane wave (with wave vector k0)
impinges on the two-dimensional surface mesh and is scattered
by each ion core of the crystal surface. The scattered waves
interfere to give a set of diffracted beams (i.e., plane waves).
Each of these beams is described by a single wave vector k.
Parallel to the surface, the difference in momentum of the
diffracted beams and the incident beam can be described by
the Laue condition

k‖ − k0‖ = �k‖ = g, (2)

where g is a reciprocal lattice vector of the two-dimensional
surface mesh. Since the diffraction process is elastic, conser-
vation of energy applies and with Eq. (2) the perpendicular
component k⊥ of k is determined by

E = 1
2 (|k0‖|2 + |k0⊥|2) = 1

2 (|k‖|2 + |k⊥|2). (3)

After the exchange of a reciprocal lattice vector, we have

E = 1
2 (|k0‖ + g|2 + |k⊥|2). (4)

A beam can propagate into the vacuum only if the
momentum perpendicular to the surface is greater than zero.
Equation (4) determines a threshold energy for the emergence
of a new beam with the corresponding reciprocal lattice vector
g:

Eg(|k⊥| = 0) = 1
2 |k0‖ + g|2. (5)

This threshold energy (or emergence threshold) is important
because the VLEED fine structure always appears as a
Rydberg-like series converging towards this threshold. A beam
with energy just below this threshold is called a preemergent
beam.

Kinematic LEED theory gives some basic insights into the
principles of electron diffraction. It cannot, however, predict
the shape of I (E) profiles because many features of I (E)
curves are induced by multiple scattering of the incoming plane
waves at atomic layers. Dynamical LEED theories address this
problem by transforming the incident plane-wave amplitudes
into the amplitudes (and thus the intensities) of the emerging
diffracted beams. This transformation can be described by
the bulk-reflection matrix R. Hence, the problem lies in the
determination of R. Calculation schemes for R can be found
in Ref. 42 or 24 and references therein.

Due to spin-orbit coupling, electron scattering by high-Z
atoms is spin dependent. The spin dependence of electron
scattering at ion cores is low for LEED energies. Due to
interference effects caused by multiple scattering, however,
the whole scattering process can be highly spin dependent.
This is the basis for the SPLEED spin-polarization detector.23

If a ferromagnetic surface is involved, an additional spin
dependence is caused by exchange interaction,24 which is
exploited in recently developed detectors.32,33,46

B. Barrier scattering

If one describes the barrier as a one-dimensional potential,
the electronic wave can be reflected and/or transmitted by the
barrier, but the magnitude of the k‖ vector never changes.
One-dimensional scattering of an incoming plane wave is
usually described by four complex scattering coefficients
(or “scattering amplitudes”) r+−, r−+, t++, and t−−. The
coefficients r+− and r−+ transform incident plane-wave
amplitudes into the amplitudes of reflected beams. t++ and
t−− are used to describe the transmission of beams. With these
four coefficients determined, the scattering problem is solved.
The scattering coefficients of most barrier models (such as the
Rundgren-Malmström, the Jennings-Jones and the truncated
image potential models) can only be calculated numerically.
A detailed review of how this can be done is given in Ref. 41.

C. Combining the scattering processes

The next step now is to answer the question of how
crystal and barrier scattering can lead to a fine structure in
a VLEED I (E) spectrum. Experimentally (e.g., Ref. 22), the
reflected intensity of a specularly and elastically reflected
electron beam shows fine structures that consist of a series
of Rydberg-like peaks. The Rydberg-like behavior of the fine
structure implies that it is caused by the Coulomb-like tail
of the surface barrier. However, calculations of the reflected
intensity by a Rundgren-Malmström3 or Jennings-Jones41
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(a) (c)(b)

FIG. 2. (Color online) Reflection and diffraction at the crystal and the barrier. (a) Direct reflection at the barrier. (b) Direct reflection at
the crystal surface (with backreflection at the barrier represented by the dashed lines). (c) Indirect reflection involving diffraction at the crystal
surface.

barrier alone do not show oscillating behavior as long as crystal
scattering is neglected. On the other hand, LEED calculations
which disregard the surface barrier exhibit no fine structures.42

Consequently, the fine structure must be caused by interference
between the crystal and the barrier scattering process.

Several elastic processes contribute to the specularly
backscattered intensity (see Fig. 2):41

(1) The incident electron beam is reflected directly at the
barrier [Fig. 2(a)].

(2) The incident electron beam is transmitted through the
barrier, then reflected at the crystal, and further on transmitted
through the barrier into the vacuum [Fig. 2(b)].

(3) Additionally, after reflection at the crystal, the beam
is reflected back at the barrier. This process can occur
repeatedly until the electron is transmitted into the vacuum
again [Fig. 2(b), dashed line].

(4) Since the crystal surface exhibits a periodic structure,
the k‖ component of the incident beam may change by the
amount of a reciprocal lattice vector g of the surface mesh
when the beam is reflected at the crystal. Afterwards, all the
above-mentioned processes can occur. Yet the change of k‖
removes the beam from the specularly reflected intensity. Only
beams that are diffracted back into the specular direction (i.e.,
by changing their wave vector k‖ by −g) can contribute to the
intensity of the specular beam [Fig. 2(c)].

Summing up all these possible processes yields the total
amplitude A00 of the specularly reflected beam (where R

describes the bulk reflection, and the subscripts indicate the
value of k‖ relative to k0‖):

A00 = r−+
00 + t−−

00 R−+
00 t++

00 + t−−
00 R−+

00 r+−
00 R−+

00 t++
00

+ t−−
00 R−+

0g r+−
gg R−+

g0 t++
00 + · · · . (6)

Le Bosse et al.47 determined which physical processes
mainly contribute to the fine structures. The primary cause
of a VLEED fine structure is a two-beam interference of
the primary electron beam with a diffracted, preemergent
beam. Another, but less important, contribution comes from
the presence of surface-state resonances. Both processes will
be described in the next paragraphs.

1. Two-beam interference

The main process which leads to fine structures is com-
parable with two-beam interference from a parallel plate as
is known from optics. Interference between direct reflection
at the crystal surface [as shown in Fig. 2(b)] and indirect
reflection involving diffraction [and back diffraction into the

specular direction as shown in Fig. 2(c)] cause a Rydberg-like
fine structure in VLEED spectra.

Qualitatively, the incident electron wave loses momentum
perpendicular to the surface during the diffraction process.
Now the electron may have insufficient energy to overcome
the barrier and will be reflected back towards the crystal. Here,
it may be diffracted back into the specular direction and thus
regain the energy needed to propagate into the vacuum.

Since the fine structure appears at preemergence conditions,
the energy E of the primary (incident) beam must be below the
grazing-emergence energy Eg [cf. Eq. (5)]. This is equivalent
to e⊥ < 0 if e⊥ is the energy characterizing the perpendicular
momentum of the diffracted beam (as illustrated in Fig. 3).

Now incoming plane waves with different primary energies
are considered. After being diffracted, their energies e⊥ will
also be different, even if their propagation vectors have
changed by the same reciprocal lattice vector g. As e⊥
approaches the vacuum level, the Coulomb-like tail of the
image potential becomes increasingly shallow. Thus, waves
with only a small difference in e⊥ have to travel distances
which differ by increasingly large amounts �z before they are
reflected at the barrier (cf. Fig. 4).

Two-beam interference is described by taking into account
only the first three members of the series given in Eq. (6). High
intensity in the VLEED fine structure appears for constructive
interference between the processes (a), (b), and (c) in Fig. 2.
Due to the long Coulomb-like tail in the surface potential,
the interval between energies which meet the condition for
constructive interference decreases as e⊥ approaches the
vacuum level. This is the cause of the Rydberg series.

FIG. 3. (Color online) Schematic representation of the parallel
component of the wave vector during the diffraction process as well
as the energy corresponding to the perpendicular component of the
wave vector.
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FIG. 4. (Color online) Two beams with different primary energies
E⊥ (left and middle) experience a difference �z in the distance the
diffracted beams have to travel (right) before they are reflected at the
barrier.

2. Surface-state resonances

In the presence of conditions that support the existence of a
bound surface state, the electron may become trapped between
the crystal and the barrier.48 Now, instead of only one internal
reflection at the barrier, the diffracted wave can be reflected an
infinite number of times at the barrier.

The resonant scattering can be qualitatively described as
follows: As the electron beam impinges on the crystal, it
is diffracted so that the propagation vector is changed by a
reciprocal lattice vector g. The energy e⊥ is now below the
vacuum level. If the conditions for a bound surface state are
met at e⊥, the electron occupies this state. If the electron does
not decay into the crystal, the electron can be diffracted back
into the specular channel. This scattering process, which can
occur only at the energies of bound states, yields maxima in
the reflectivity.1

The two-beam interference mechanism is more universal
than the resonance scattering processes because it does not
rely on the existence of a bound surface state. Therefore,
the condition for the two-beam interference is weaker than
the resonance condition and it is usually the primary cause
of VLEED fine structures.47 Consequently, VLEED is more
versatile for examining the surface barrier than other electron
spectroscopies, which rely on the existence of bound surface
states.

D. Fine-structure calculations for different
surface-barrier models

Figure 5 shows fine structures that have been calculated
using the two-beam interference approximation for three
different barrier models. The scattering amplitude R−+ of the
crystal is kept constant in these model calculations. The pa-
rameters of the Rundgren-Malmström and the Jennings-Jones
barriers are chosen such that the fine structure is influenced
only by the intrinsic shape differences (which is not possible
for the “truncated” image potential). The largest differences
in peak position and shape occur for the first fine-structure
maxima and minima. Since all barrier models exhibit the
Coulomb-like image-potential tail for z → −∞, the shape of
the barrier cannot be distinguished by analyzing the Rydberg
peaks of higher order. Therefore, from an experimental point
of view, it is more important to resolve the first (lowest-energy)
peaks than the high-order fringes.49,50

IV. EXPERIMENTAL ACCESS

In a VLEED experiment, electrons with variable kinetic
energy E from 0 to 50 eV are directed onto a sample under

-0.5 -0.4 -0.3 -0.2 -0.1 0

)stinu .bra( ytisn et nI

Energy (Ry)

FIG. 5. (Color online) Model calculations of VLEED fine struc-
tures within the two-beam approximation for three different barriers:
Rundgren-Malmström barrier (orange/grey), Jennings-Jones barrier
(blue/black) and the truncated image potential (dashed).

defined angles of incidence � and azimuth angles � (see
the inset in Fig. 6). The elastically and specularly reflected
electron intensity I is measured as a function of energy E

in I (E) curves. In the energy range under consideration, the
VLEED I (E) curves are explicitly affected by the surface
barrier. VLEED measurements have to be performed under
ultrahigh-vacuum conditions on well-prepared, atomically flat
single-crystal surfaces. The overall experimental resolution,
determined by the electron source and detector, limits the
number of Rydberg peaks which can be resolved in a VLEED
experiment. Fortunately, as mentioned above, the barrier shape
mainly affects the low-order members. An ideal experiment
allows for a large variation of experimental parameters, i.e.,
of electron energy E and angle of incidence � and azimuth
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FIG. 6. (Color online) Azimuthal dependence of the equivalent
resolution for different fine structures of the Cu(001) surface at a
fixed angle of incidence � = 63◦. Here, an energy distribution of
the incoming electron beam of �E = 200 meV and an angular
distribution of �� = �� = 1.8◦ were assumed.
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angle � simultaneously.49 In this way, the surface barrier is
“scanned.”

An example for a VLEED apparatus is described by
Thurgate and Hitchen.51 With an energy resolution of �E =
140 meV full width at half maximum and an angular resolution
of ±0.5◦, they observe up to three fine-structure members
in I (E) curves at the Cu(001) surface for specific electron
incidence conditions E, �, and �.52 Another example for a
VLEED apparatus is reported by Dietz et al.21 The quoted
resolution is 20 meV and 0.5◦ full width at half maximum.
For a single set of electron incidence parameters chosen in this
experiment, there are three members of the Cu(001) series
resolved and a fourth one is visible as a shoulder in the
presented I (E) curve. Here, however, � and � could not be
varied.

Spin-polarized electrons promise access to a possible
spin dependence of the surface barrier, caused either by
exchange interaction at ferromagnetic surfaces or by spin-orbit
interaction at surfaces of high-Z materials (or combinations
thereof). To be able to separate magnetic and nonmagnetic
contributions to the spin dependence of the fine structure, the
respective polarization direction of the electrons has to be
taken into account for the experimental geometry.53 Examples
for VLEED experiments on systems with strong spin-orbit
coupling with a spin-polarized electron source or a spin-
polarization detector are given by Pierce et al.26 and Samarin
et al.,28 respectively. A spin-polarized VLEED experiment
on a ferromagnetic system has, to our knowledge, not been
published so far.

A. Equivalent resolution

In any experiment, the measured spectra are broadened
by the limited resolution in the excitation as well as in the
detection channel. In a typical photoemission experiment, for
example, the spectrum observed experimentally is broadened
by the apparatus function representing a combination of the
energetic width of the exciting light with the energy and
angular resolution of the detector. In a VLEED experiment,
the energy distribution �E and the angular distributions ��

and �� of the incoming electron beam as well as the detector
resolution �ED have to be accounted for. Due to the diffraction
process, the normal kinetic energy e⊥ is a function of E,
�, and � [cf. Eq. (4)]. Consequently, �E, ��, and ��

contribute to the broadening �e⊥ of the preemergent beam,
their individual “share” depending on the incidence conditions
E, �, and �, as well as on the reciprocal lattice vector
exchanged in the diffraction process. The broadening of the
observable elastically reflected electron intensity (subject to
interference processes) is called “total equivalent resolution”
�ET . Convoluted with the detector resolution �ED , this gives
the overall broadening of the VLEED spectra measured with
a particular setup.

For Gaussian distributions of E, �, and � with full widths at
half maximum �E, ��, and ��, and close to the emergence
threshold, �ET can be calculated analytically. A detailed
derivation of all relevant formulas can be found in Ref. 50.
There, the authors also conclude that the angular resolution
of a VLEED setup, rather than the energy resolution, usually
plays the more crucial role in whether a fine structure can be
resolved. Especially for high energies, the total equivalent res-
olution is dominated by the angular distribution of the incident
electron beam. Incidentally, with an equivalent resolution �ET

of a certain minimum value, a detector resolution �ED much
better than that is not necessary to improve the experimental
resolution significantly.

Calculated fine structures have to be separately convoluted
with the corresponding equivalent resolution, since the equiva-
lent resolution depends strongly on the angles of incidence and
the reciprocal lattice vector. This is illustrated in Fig. 6, which
shows the azimuthal dependence of the equivalent resolution
for different fine structures of the Cu(001) surface.

For a certain fine structure at defined angles � and �, it
can be seen from contour plots of �ET (�E,�ϕ) (with �ϕ =
�� = ��), whether the energy or the angular resolution is
the limiting factor for resolving a particular fine structure. An
example is shown on the left-hand side of Fig. 7 for the 1̄1̄ fine
structure of Cu(001) at � = 63◦ and � = 45◦, i.e., the fine
structure resulting from the exchange of the reciprocal lattice
vector g = (1̄,1̄). From the concentric shape of the isolines,
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FIG. 7. (Color) Dependence of the equivalent resolution on �ϕ and �E for different fine structures of the Cu(001) surface at a fixed angle
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total equivalent resolution.
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it can be derived that the energy and angular resolution are
equally important for this structure. For example, an angular
resolution of �ϕ = 4◦ and and energy resolution of �E =
0.1 eV gives the same equivalent resolution as an experiment
with �ϕ = 0.5◦ and �E = 0.45 eV. However, looking at the
right-hand side of Fig. 7, which shows �ET at the same angles
for the 01̄ fine structure, it becomes clear that the resolution is
dominated by the angular resolution.

V. DETAILS OF THE CALCULATION

Our spin-polarized VLEED calculations are based on the
layer Korringa-Kohn-Rostoker formulation introduced first by
Pendry42 and later on generalized to the relativistic case by
Feder.24 For such a calculation one needs as an input quantity
the so-called single-site scattering matrix, which describes
the scattering properties of a single ion-core potential. The
scattering matrix is usually obtained from a self-consistent
electronic structure calculation of the corresponding material.
We used the fully relativistic Korringa-Kohn-Rostoker multi-
ple scattering theory54,55 to obtain these matrices for fcc Cu,
hcp Co, and bcc Fe bulk materials.

Knowing the scattering properties of a single cell potential,
one can define in a second step the scattering matrix for a
certain layer of the semi-infinite half space. With this matrix
we account for all intralayer-type multiple-scattering events.
The interlayer multiple scattering is then accounted for by
means of layer-doubling techniques.42 Hereafter, we are left
with the bulk-reflection matrix R, which gives the scattering
properties of a semi-infinite stack of layers. Finally, it remains
a simple task to include the very surface described by a barrier
potential in the multiple-scattering formalism as an additional
layer.

Here, we employ the Rundgren-Malmström barrier38 as
introduced in Eq. (1) of Sec. II. All barrier parameters are
taken from the literature, where they have been successfully
used to describe surface states and their dispersion. For the
ferromagnetic materials, the surface barrier is expected to
be spin dependent. Consequently, all parameters are spin
dependent, with ↑ (↓) denoting the majority-spin (minority-
spin) component.

(a) Cu(001) (Ref. 56): z0 = −1.93 a.u., z1 = −3.97 a.u.,
and z2 = −0.52 a.u.

(b) Co(0001) (Ref. 34): z
↑(↓)
0 = −2.0(−1.7) a.u., z

↑(↓)
1 =

−3.0 (−3.0) a.u., and z
↑(↓)
2 = −0.9 (−0.9) a.u.

(c) Fe(110) (Ref. 31): z
↑(↓)
0 = −2.0 (−2.15) a.u., z

↑(↓)
1 =

−3.7 (−3.85) a.u., and z
↑(↓)
2 = −0.3(−0.45) a.u.

(d) Fe(110) (parametrization of the surface barrier used in
Ref. 30): z

↑(↓)
0 = −1.6 (−1.88) a.u., z

↑(↓)
1 = −1.76 (−3.92)

a.u., and z
↑(↓)
2 = −0.33 (−0.42) a.u.

The imaginary part of the inner potential was taken constant
with V0i = 0.1 eV for all three materials.

VI. IMPLICATIONS

A. Sensitivity to different barrier shapes

In this section we will investigate the sensitivity of the
VLEED fine structure to changes in the surface-barrier shape,
in particular, what experimental resolution is necessary to
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FIG. 8. (Color online) Calculated VLEED fine structures for
different barrier shapes caused by different positions of the image
plane (as shown in the top part). Left: Calculated fine structure.
Right: Fine structure from left-hand side subject to an experimental
resolution of �E = 150 meV and �ϕ = 2.0◦ and the corresponding
equivalent resolution.

detect such changes. As an example, we compare calculated
profiles of the 1̄1̄ fine structure of Cu(001) for the Rundgren-
Malmström barrier with different parameters. We calculated
I (E) curves for six different positions of the image plane
z0 around the literature value given above, while keeping
the parameters z1 and z2 constant. We move z0 successively
towards the crystal surface. The change in z0 between two
consecutive barriers is 0.05 Å. This leads from a round concave
shape to an almost linear transition into the inner potential. A
similar change in the shape of the barrier can be achieved by
changing the other parameters. The left-hand side of Fig. 8
shows the results of the calculation: The positions, shapes,
and intensities of different fine-structure maxima and minima
change. The position of the first fine-structure peak appears to
be most sensitive. It changes by 100–150 meV for a shift of
the image plane by 0.05 Å.

The influence of an experimental resolution of �ϕ = 2.0◦
and �E = 150 meV is shown on the right-hand side of Fig. 8.
For the 1̄1̄ fine structure of Cu(001) this resolution corresponds
to a total equivalent resolution of 263 meV. The broadened
spectra illustrate that differences in the maxima and minima
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are still visible even if z0 is changed by only 0.05 Å. The
second peak visible in the spectra contains all higher-order
peaks. Since the first peak position is most affected by changes
in the barrier shape, the resulting peak shifts should be easily
discernible in an experiment.

B. Spin-dependent barriers

For an evaluation of the feasibility of spin-polarized
VLEED measurements, we have calculated the spin-dependent
VLEED fine structures for the only spin-dependent barriers
available in the literature. These barrier models were employed
to successfully determine the energetic positions of the spin-
dependent surface states on the Co(0001) (Ref. 34) and the
Fe(110) (Refs. 30 and 31) surfaces.

Figure 9(a) presents the spin-dependent barrier for
Co(0001) (Ref. 34) and the corresponding spin-dependent
VLEED fine structure and spin asymmetry (I↑ − I↓)/(I↑ +
I↓) (calculated without experimental broadening). Strongly
spin-dependent intensities as well as spin-dependent peak
positions, especially of the first fine-structure peak, reflect the
spin-dependent shape of the barrier.

For the case of the Fe(110) surface as shown in Figs. 9(b)
and 9(c), the two surface barriers shown in the literature are not
only quantitatively but qualitatively different. Nevertheless,
both barriers were successfully used to describe the surface
electronic structure of this particular surface. Both barriers
show a similar behavior far away from the surface, where the
spin dependence is reversed compared with Co(0001). Close
to the crystal, however, the barrier published in Ref. 31 still
has a deeper potential for minority-spin electrons, while the
spin components of the barrier published in Ref. 30 cross
at around −1 a.u. away from the surface. This results in
remarkably different VLEED fine structures with distinct spin
asymmetries. While the spin asymmetry in one case is positive
for all energies of the fine structure, it changes sign repeatedly
in the other case.

Note that the spin dependence in the Co and the
Fe fine structure is of the same order of magnitude,
while the absolute values of the spin asymmetry differ
strongly. The latter is due to a large bulk-derived scatter-
ing background, on which this specific Fe fine structure
appears.

Our calculation based on proven realistic barrier models
clearly demonstrates the following:

(i) VLEED fine structures are sensitive enough to reveal
detailed differences in the barrier shape in a study combining
theory and measurement. The spin-dependent VLEED fine
structures exhibit distinct differences, especially in the low-
order members, that should be easily discernible in a spin-
polarized VLEED experiment.

(ii) VLEED fine structures offer a much more versatile
access to the surface barrier than the energetics of surface
states. The latter depends on the existence of surface states
and then provides information only for specific E(k‖) values.
VLEED, however, is capable of delivering a broad data set,
because a scattering signal can be obtained as a function of
energy and angles � and � continuously throughout large
intervals.
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FIG. 9. (Color online) Top: Spin-dependent surface barrier
(Ref. 34) (left) and resulting VLEED fine structure and spin
asymmetry (right) for the Co(0001) surface. Shown here is the 1̄0
fine structure with incidence angles � = 30◦ and � = 0◦ along �̄M̄ .
The magnetization is also along �̄M̄ . The majority-spin component
is shown in green, the minority-spin component in red (dashed), and
the spin asymmetry in blue. Middle: Spin-dependent surface barrier
from Ref. 31 (left) and resulting VLEED fine structure and spin
asymmetry (right) for the Fe(110) surface. Bottom: Spin-dependent
surface barrier after Ref. 30 (left) and resulting VLEED fine structure
and spin asymmetry (right) for the Fe(110) surface. The Fe 01̄ fine
structures shown here are calculated for � = 80◦ and � = 0◦ along
�̄N̄ . Magnetization is along the �̄N̄ direction as well. Note the
qualitative difference in the spin dependence of the surface barriers
and the correspondingly large differences visible especially in the
first fine-structure peak.
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The larger the data set, the more likely that a model potential
which reproduces the complete experimental data set uniquely
represents the true spin-dependent surface potential.

VII. CONCLUSION AND OUTLOOK

We have presented a feasibility study of how the shape of
the spin-dependent surface barrier can be derived from spin-
polarized VLEED fine-structure measurements. We started
with a brief review of different surface-barrier models and
described the origin of the VLEED fine structures. We
discussed the requirements for experimental access to these
fine structures. In this context, we emphasized the importance
of the equivalent resolution. Finally, we presented realistic

model calculations of spin-dependent fine structures for
specific ferromagnetic surfaces. We come to the conclusion
that spin-polarized VLEED experiments with state-of-the-art
energy and angular resolution are able to reveal details of the
spin-dependent shape of the surface barrier. Measurements of
this kind are currently in progress with promising early results.
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