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Role of band states and trap states in the electrical properties of organic semiconductors:
Hopping versus mobility edge model
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We compare the merits of a hopping model and a mobility edge model in the description of the effect
of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic
semiconductors. We consider the case of a composite electronic density of states (DOS) that consists of a
superposition of a Gaussian DOS and an exponential DOS. Using kinetic Monte Carlo simulations, we apply
the two models in order to interpret the recent experimental data reported for n-doped C60 films. While both
models are capable of reproducing the experimental data very well and yield qualitatively similar characteristic
parameters for the density of states, some discrepancies are found at the quantitative level.
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I. INTRODUCTION

In spite of recent progress made in controlling the system
purity and morphology, most organic electronic thin-film
devices still suffer from the presence of significant structural
disorder and chemical defects. It was recently shown that a sub-
stantial density of localized (trap) states (∼1015–1018 cm−3)
is present even in the case of high-mobility organic single
crystals such as rubrene and pentacene.1–5 Therefore, under-
standing how disorder affects the electrical properties of the
system is important in the quest for new materials and devices
with improved performance.

In materials with significant disorder, charge transport is
usually described in the framework of a hopping model in
combination with, for instance, kinetic Monte Carlo (KMC)
simulations, the concept of a transport level, effective-medium
theory,6–11 or percolation theory.12–18 In the hopping regime,
charge transport is governed by the thermally activated
hopping of charge carriers within the manifold of localized
states. An alternative to the hopping model is the mobility edge
model.19,20 In the latter, the electronic states are divided into
two nonoverlapping state distributions, one corresponding to
localized (trap) states and the other to delocalized (band) states;
the two distributions are separated by an energy level referred
to as the mobility edge (ME). An additional assumption
frequently made within the ME model is that, in contrast to the
hopping model, the charge carriers in the localized states are
completely immobile; thus, only the carriers that are thermally
activated (a multitrap-and-release mechanism) into the band
states contribute to charge transport.

An important ingredient of any transport model is the
energy spectrum of the electronic system, commonly char-
acterized by the density of states (DOS). In inorganic
systems, the DOS of localized band-tail states presents an
exponential shape.21–26 Although an exponential DOS has
also been used to interpret the properties of disordered
organic semiconductors,18,27,28 a Gaussian DOS was initially
considered and is still more frequently employed for these
systems;12,13,15,29–32 the origin of this choice is that the
absorption and fluorescence spectra of disordered organic
solids usually display a Gaussian shape.12,14,33 In addition,
hopping models based on a Gaussian DOS predict that, at

low carrier concentration, carrier mobility does not depend
on charge concentration,12,34 a feature observed for some
polymers.35

However, there is now increasing evidence from a number
of investigations that, in many organic systems, the deep
gap states exhibit an exponential distribution.1–5,36–38 These
studies also suggest that the shallow trap states, i.e. the states
located closer to the ME (or the valence band or conduction
band edge), deviate from an exponential shape. For instance,
very recent results obtained by means of scanning Kelvin
probe microscopy on a self-assembled monolayer field-effect
transistor (SAMFET) based on quinquethienyl molecules
reveal that the DOS consists of an exponential distribution of
deep trap states with an additional group of localized shallow
states that can be modeled via a Gaussian function.36 A DOS
that can be represented as a superposition of an exponential
distribution and a Gaussian distribution has also been recently
extracted from the carrier-concentration dependence of the
conductivity in C60 films.37 A similar model was used as well
to interpret the current-voltage dependence in poly(phenylene
vinylene) and in a polyfluorene-based copolymer.38,39

The purpose of this paper is to provide a detailed compar-
ison of the hopping model and ME model in describing the
effect of charge-carrier concentration on electrical conductiv-
ity, carrier mobility, and position of the Fermi level in the case
of such a composite DOS. We apply our approach to explain
the recent experimental data reported for n-doped C60 films.37

II. METHODOLOGY

We use a cubic supercell containing 50 × 50 × 50 lattice
sites with an intersite distance of 1 nm. The charge-transport
properties are simulated using the KMC technique. In our
KMC simulations, the electron transfer rate νij from site i to
site j is described by the Miller–Abrahams model:40

νij = ν0 exp(−2γ rij ) exp

(
−�Eij + |�Eij |

2kBT

)
. (1)

Here, rij = |�rij |, �rij = �rj − �ri , and �ri is the position vector
of site i; ν0 represents the intrinsic attempt frequency; γ

the inverse of the localization radius; kB the Boltzmann
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FIG. 1. (Color online) (a) Energetic disorder described by super-
imposing two distributions, a Gaussian DOS (black) ρG(E), centered
at Ec, and an exponential DOS (blue) ρE(E), positioned below Ec.
(b) Description of the DOS in the ME model using a superposition of
an exponential (blue) and a half-Gaussian (black) distribution below
the ME, and a uniform distribution (red) ρU (E), above the ME.

constant; T the temperature; �Eij = Ej − Ei + e �F · �rij ; and
Ei denotes the electron energy at site i. Without loss of
generality, the electric field �F is applied in the negative x

direction. Only electron hops between nearest neighbors on
the lattice have been taken into account and periodic boundary
conditions along all three directions have been applied.

As shown in Fig. 1(a), the energetic spectrum of the system
is described by a superposition of: (i) a Gaussian distribution
of states, centered around Ec, with a total number of electronic
states NG and a distribution width δG:

ρG(E) = NG√
2πδ2

G

exp

[−(E − Ec)2

2δ2
G

]
, (2)

and (ii) an exponential distribution of states:

ρE(E) = NE

δE

exp

[−(Ec − E)

δE

]
, E � Ec, (3)

where the total number of states and width are given by NE

and δE , respectively.
In the KMC simulations, a random Gaussian or expo-

nentially distributed value of energetic disorder taken from
Eq. (2) or Eq. (3), respectively, is assigned to each lattice site.
Each simulation starts with a random distribution of carriers
whose number is given by the electron concentration Ne. Only
single electron occupancy on each lattice site is allowed.
Since we are mainly interested in charge transport at very
low to moderate carrier concentration, we neglect the effect of
electrostatic interactions.

We make use of the first reaction method41,42 in the KMC
simulations. At each step of the KMC simulations, we compute
the hopping rates for all possible hops of all electrons. The next
hop is randomly selected from the derived hopping list. We find
the hopping time τk for the kth step in the KMC simulation
from

τk = − ln(X)∑N
i,j,i �=j νijLi

, (4)

where N is the total number of sites, Li is equal to unity if
site i is occupied by an electron and zero otherwise, and X

is a random number uniformly distributed between 0 and 1
(note that the νij values are updated at each time step, and
thus indirectly depend on the index k). We run each simulation
for a time long enough that the system energy relaxes to a
steady-state value, leading to convergence of the electrical
conductivity. At this time, we begin to record the time with
which we compute conductivity and mobility:

σ = e
∑

k xk

FL3
∑

k τk

, μ = σ

eNe

=
∑

k xk

NeFL3
∑

k τk

, (5)

where e denotes the unit charge; σ the effective electrical
conductivity; μ the effective charge mobility; xk the x

component of the selected hop at time τk; and F = | �F | the
magnitude of the applied electric field.

III. RESULTS AND DISCUSSION

It is instructive to consider first the dependence of the
electrical conductivity, carrier mobility, and position of the
Fermi level on charge density Ne for the case where the energy
spectrum can be described solely by either an exponential or a
Gaussian DOS. Figure 2 shows the KMC simulation results for
conductivity, mobility, and Fermi energy performed at room
temperature for several distribution widths (δ = 1kBT to 4kBT

with intervals of 1kBT ) assuming NG = NE = 1021 cm−3.
These results, in accordance with the predictions of percolation
theory,18 reveal that, in the case of an exponential DOS and low
carrier concentration, the conductivity exhibits a super-linear

dependence on charge density,18 σ ∼ (Ne)
T0
T (solid black lines)

where T0 = δ/kB and δ = δE , as illustrated in Fig. 2(a).
Figure 2(a) also indicates that, for the same distribution width
and at low carrier concentration, the conductivity using a
Gaussian DOS is much larger than that for the exponential
DOS. However, in the case of the Gaussian DOS, the
conductivity exhibits a less strong dependence on Ne than
in the case of the exponential distribution. The significance of
the effect that the DOS shape has on charge transport is more
clearly seen from the dependence of the effective mobility on
charge density [Fig. 2(b)]. The difference is especially evident
in the low charge-density limit where the mobility is seen to
hardly depend on carrier concentration for a Gaussian DOS
while it shows a strong dependence on Ne for an exponential
DOS.

We now turn to the dependence of the Fermi level on charge
density. The Fermi level Ef is derived from

Ne =
∫ +∞

−∞
ρ(E)f (E,Ef )dE, (6)

where f (E,Ef ) = {1 + exp[β(E − Ef )]}−1 represents the
Fermi–Dirac distribution and β = (kBT )−1. Figure 2(c) shows
the impact of DOS on the position of the Fermi level for
different distribution widths ranging from δ = 1kBT to 4kBT .
The dependence of the Fermi energy on the charge-carrier
concentration is much more pronounced in the case of an
exponential DOS than for a Gaussian DOS. The sharper
increase in conductivity and Fermi level with charge density
in the case of an exponential DOS can be attributed to a
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FIG. 2. (Color online) KMC simulation results for (a) conduc-
tivity and (b) mobility of charge carriers and (c) analytical results
for Fermi level position versus charge density Ne for materials with
a Gaussian (solid lines, δ = δG) or an exponential (dashed lines,
δ = δE) DOS. Different distribution widths δ are considered, from
1kBT to 4kBT , corresponding to blue to red, with NG = NE =
1021 cm−3. Solid black lines in panel (a) illustrate analytical results

for the conductivity σ ∼ (Ne)
T0
T .18

faster filling of the low-energy states. We note that, in the low
charge-carrier concentration limit, the position of the Fermi
level can be derived analytically and is given by

Ef = δE

{
ln

[
Ne

NE

]
− ln

[
�

(
1 − T

T0

)
�

(
1 + T

T0

)]}
, (7)

for an exponential DOS18,43,44 and by

Ef = −1

2

(
δ2
G

kBT

)
+ kBT ln

(
Ne

NG

)
, (8)

for a Gaussian DOS.45 Here, δE = kBT0 and � is the gamma
function. As is apparent from Eqs. (7) and (8) and illustrated in
Fig. 2(c), the evolution (slope) of the position of the Fermi level
as a function of the logarithm of charge density is determined

FIG. 3. (Color online) KMC simulation results for (a) conduc-
tivity and (b) mobility and (c) analytical results for Fermi level
position versus charge density Ne for a superposition of Gaussian and
exponential DOS, assuming NG = 9.9 × 1020 cm−3, δG = 2.5kBT ,
NE = 1019 cm−3 for different δE ranging from 3kBT to 6kBT , from
blue to red.

by the width of the distribution in an exponential DOS and by
temperature in a Gaussian DOS.

With the knowledge gained from each individual DOS
distribution, we now consider a more complex DOS consisting
of a superposition of a Gaussian and an exponential DOS,
as shown in Fig. 1(a). The results using a set of parameters
similar to that derived for C60 films37 NG = 9.9 × 1020 cm−3,
δG = 2.5kBT , Ec = 0, NE = 1019 cm−3 and δG ranging from
3kBT to 6kBT are illustrated in Figs. 3 and 4. As seen from
Fig. 3, it is only at low carrier concentration that the width of the
exponential DOS significantly affects the transport properties
and the position of the Fermi level. In a similar way, the
width of the Gaussian DOS, as seen from Fig. 4, affects the
charge-transport characteristics and the Fermi energy only at
high carrier concentration, while it has limited impact on the
charge-transport properties at low carrier concentrations.

The effects of the ratio of the DOS concentrations (NE/NG)
on conductivity, carrier mobility, and Fermi energy are
illustrated in Fig. 5. The KMC simulations were performed as-
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FIG. 4. (Color online) KMC simulation results for (a) conduc-
tivity and (b) mobility and (c) analytical results for Fermi level
position versus charge density Ne, with fixed δE = 5kBT for different
δG ranging from 1.5kBT to 4.5kBT , from blue to red (the NG and
NE values are the same as in Fig. 3: NG = 9.9 × 1020 cm−3; NE =
1019 cm−3).

suming δE = 5kBT , δG = 2.5kBT and different DOS concen-
trations (NE = 0.5 × 1019 cm−3, 1.0 × 1019 cm−3, 2.0 × 1019

cm−3, and 4.0 × 1019 cm−3) with the constraint NE + NG =
1021 cm−3. The results suggest that, while the widths of the
DOS define how the evolutions of conductivity, mobility, and
Fermi energy depend on charge density in the low and high
charge density regimes, the two DOS concentrations define
the charge density at which these dependences intersect. As
depicted in Fig. 5, changes in the two DOS concentrations do
not affect the slopes (parallel line shift). Importantly, the KMC
simulation results in Figs. 3–5 illustrate a clear transition in the
slopes of the conductivity and carrier mobility as a function
of carrier density; a similar transition is also observed for the
Fermi level [Fig. 5(c)]. This transition can be explained in the
following way. At low carrier concentration, the deep states of
the exponential DOS are quickly filled upon initial increase in
carrier concentration, leading to a steep rise in the Fermi level

FIG. 5. (Color online) KMC simulation results for (a) conduc-
tivity and (b) mobility and (c) analytical results for Fermi level
position versus charge density Ne with fixed δE = 5kBT and δG =
2.5kBT for different exponential DOS concentrations NE ranging
from 0.5 × 1019 cm−3 to 4 × 1019 cm−3, from blue to red, with
NG + NE = 1021 cm−3.

and in conductivity. However, at higher carrier concentration,
when the Fermi level reaches the point where the Gaussian
DOS becomes larger than the exponential DOS, the transport
properties and the position of the Fermi level become defined
by the Gaussian DOS.

The results described above imply that the charge-transport
characteristics at low carrier concentrations are controlled
by the distribution of deep traps (exponential distribution),
whereas these characteristics at high carrier concentrations are
entirely governed by the distribution of states (in the Gaussian
distribution) close to the conductive edge (conduction band).
Our results also reveal that the electrical conductivity exhibits
a transition from super-linear to linear dependence on carrier
density at the value of Ne at which the Fermi level reaches
the energy where the exponential DOS and Gaussian DOS are
approximately equal.

We now turn to the discussion of the ME model. We
first consider the case where the states below the ME are
solely described by either a half-Gaussian or an exponential
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DOS [see Fig. 1(b)]. As mentioned above, according to the
ME model,19,20,46 the total charge density (Ne) is split into
mobile (nM ) and immobile (nI ) carriers. In this model, only
mobile charges contribute to the overall current and thus to
the conductivity. On the basis of the ME model, we obtain the
conductivity from

σ = enMμ0, (9)

where μ0 is the mobility of mobile charges. In this case, Eq. (6)
reads

Ne = nI + nM =
∫ 0

−∞
g(E)f (E,Ef )dE

+
∫ +∞

0
ρT (E)f (E,Ef )dE, (10)

in which g(E) represents the DOS of the states localized below
the ME and ρT (E) = NU , the DOS of the band states above
the ME. Without loss of generality, we assume that the ME is
positioned at EC = 0. The conductivity and mobility are then

given by

σ = eμ0

∫ +∞

0
ρT (E)f (E,Ef )dE

= eμ0NUkBT ln

[
1 + exp

(
Ef

kBT

)]
, (11)

and

μe = σ

eNe

= μ0NUkBT

Ne

ln

[
1 + exp

(
Ef

kBT

)]
. (12)

The conductivity, carrier mobility, and Fermi level position are
obtained by numerically solving Eqs. (10)–(12). The results
are shown in Figs. 6(a)–6(c) and 6(d)–6(f) for Gaussian and
exponential DOS, respectively. Along with the numerical
results, we also report in Fig. 6 the analytical results obtained
in the limit of low carrier concentration (see Appendix).
Interestingly, the trends obtained for conductivity, mobility,
and Fermi energy are very similar to those obtained using the
hopping model (Fig. 2), despite the fact that the localized states

FIG. 6. (Color online) Analytical results of (a) and (d) conductivity, (b) and (e) carrier mobility, and (c) and (f) Fermi level position versus
charge density Ne obtained from the ME model using a Gaussian distribution [colored solid lines in (a)–(c)] or an exponential distribution
[colored dashed lines in (d)–(f)] of band-tail states below the ME. Different distribution widths δ = δG = δE are considered and vary from
1kBT to 4kBT , from blue to red, respectively, with NE = NG = 1021 cm−3 and NU = 2 × 1022 cm−3 eV−1. The range of agreement between
the analytical results and the asymptotic limits at low charge concentration (solid black lines), obtained in Appendix and shown in panels
(a)–(c), decreases with δ for a Gaussian DOS.
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in the ME model are not directly contributing to transport.
This similarity can be rationalized in the following way. In
the hopping model, although all states are formally involved
in the transport process, charge transport, irrespective of the
shape of the DOS distribution, effectively takes place via a
so-called transport level13,16,17 onto which the carriers should
be thermally excited. The activation energy rapidly decreases
as the carrier concentration increases. In the ME model,
however, only charge carriers thermally excited above the ME
contribute to the conductivity. Again, the activation energy is
a function of the charge density and rapidly decreases as the
carrier concentration increases. This means that the transport
level in the hopping model is simply replaced by the band states
in the ME model. Overall, both models at low and moderate
charge carrier concentrations lead to the same trends in the
electrical transport properties and position of the Fermi level
as a function of charge density.

It is also useful to note that Eqs. (10)–(12) in the limit of
low charge density can be solved analytically; the description
is given in Appendix. In similarity to the hopping model,
the conductivity at low carrier concentration in the ME
model exhibits a super-linear dependence on charge density

[σ ∼ (Ne)
T0
T ] for an exponential DOS [Eq. (A2)] and a linear

dependence (σ ∼ Ne) for a Gaussian DOS [Eq. (A8)]. It is
also important to note that the ME model predicts, as for the
hopping model, that the range of carrier concentration over

FIG. 7. (Color online) Comparison of (a) conductivity and
(b) Fermi level position obtained from experiment (filled squares), the
ME model (dashed lines), and the hopping model (solid lines) versus
the dopant molar ratio (MR) at three temperatures, 400, 296, and
140 K, corresponding to the red, purple, and blue curves, respectively.
In panel (a), error bars for the experimental data are shown by hori-
zontal line segments. In panel (b), the experimental data as well as the
HOMO energy (EHOMO) were extracted from UPS measurements.37

TABLE I. Parameters obtained from fitting the hopping and ME
models to the experimental data37 reported for n-doped C60 films.

Fitting parameters Hopping model ME model

NG (cm−3) 0.99 × 1021 1.6 × 1021

NE (cm−3) 0.01 × 1021 0.02 × 1021

NU (cm−3) 0.8 × 1021

δG/kBT 2.5 1.8
δE/kBT 5 3.9
T (K) 298 298
F (V cm−1) 12,795
ν0 (S−1) 7 × 1012

μ0 (cm2 V−1 S−1) 1.5

which the dependence is linear decreases with the increase in
δG [see Fig. 6(a)].

In analogy to inorganic semiconductors, the control of
charge carrier concentration in organic semiconductors can
be achieved by means of molecular doping.47–52 Here, we
apply both hopping and ME models to interpret the recent
experimental data reported for n-doped C60 films.37 We note
that the carrier concentration in these experiments is derived
via a well-controlled n-type doping of the films whereby
it can be assumed that each dopant provides one electron
to the system; therefore, the electron concentration can be
given in terms of the molar ratio (MR) of the dopant versus
host. The results obtained from the KMC simulations and
from the ME model19,20,46 are shown in Fig. 7 along with
experimental data. For the sake of comparison with the
experimental data, axes representing both the dopant MR
and the charge density are given in Fig. 7. The parameters
derived from the fitting to the experimental data, of the results
of the hopping model using KMC simulations and those of
the ME model for conductivity are given in Table I. Note
that, in the ME model, we construct the band-tail states
using a superposition of a half-Gaussian and an exponential
distribution. We attribute the overall fitting distribution widths
of 2 to 5kBT , indicated in Table I, to structural defects and
chemical impurities,1 previously reported for small organic
molecules.3,53,54 A recent study55 has also shown that the
level of such chemical impurities can be reduced, to some
extent, by material purification. Figure 7(a) demonstrates that
both models are capable of reproducing the dependence of
conductivity on charge-carrier concentration over the range
of temperatures from 140 to 400 K. Using the parameter
set (NG, NE , δG, and δE) obtained above, we also computed
the dependence of the Fermi level on charge density Ef (Ne)
and compared it to the evolution observed in the ultraviolet
photoelectron spectroscopy (UPS) measurements.37 As seen
from Fig. 7(b), a good match between the KMC simulation
results of the hopping model, the results of the ME model and
the experimental data is again obtained.

IV. CONCLUSIONS

We have compared the performance of a hopping model
and a ME model in describing the effect of charge-carrier
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concentration on conductivity, mobility, and Fermi level for a
composite DOS that consists of a superposition of Gaussian
and exponential distributions. Our results indicate that the
two models lead to similar trends. In both instances, the
charge-transport characteristics at low carrier concentration
are controlled by the distribution of deep traps (exponen-
tial distribution); at high concentration, these characteristics
are entirely governed by the distribution of shallow states
(Gaussian distribution). As a result, the charge-transport
characteristics show a transition between two different regimes
(a super-linear to linear dependence of electrical conductivity
on total carrier concentration Ne) at a value of Ne where the
Fermi level reaches the energy at which the exponential and
Gaussian DOS are approximately equal.

We have applied our approach to interpret the recent
experimental data reported on n-doped C60 films.37 Our results
indicate that both models can reproduce very well the experi-
mental dependence of electrical conductivity, carrier mobility,
and Fermi energy on charge concentration. However, from
a quantitative standpoint, some discrepancies arise between
the values of the parameters extracted from both models.
For instance, the total density of exponential states estimated
using the ME model and the hopping model are NE = 0.02 ×
1021 cm−3 and 0.01 × 1021 cm−3, respectively. A similar
difference is also obtained for NG = 0.8 × 1021 cm−3 (for
the sake of comparison, only the states below the reference
energy Ec = 0 are taken into account) and 0.5 × 1021 cm−3

using the ME and hopping model, respectively. These dis-
crepancies arise from the two different pictures of carrier
transport, indicating that the suitability of either model for
prediction of the charge-transport properties, in particular the
electrical conductivity and charge-carrier mobility, requires
more experimental data from a wide range of materials.

To summarize, we have shown that, in the range of low and
moderate charge carrier concentrations, that is up to carrier
concentrations on the order of 1017 cm−3, both the hopping and
ME models predict similar charge transport characteristics,
even in the case of a composite DOS. Therefore, it appears that
either model can be utilized to obtain a qualitative description
of the distribution of trap states. However, the fact that the
ME model can reproduce the experimental data related to
electrical transport is not by itself evidence of the existence of
band states. In general, a number of other experimental data,
for instance, via measurements of the Hall effect, electron
spin resonance, or thermoelectric measurements, and those
obtained at high charge density are needed in order to gain
an in-depth understanding of the nature of the DOS over the
whole range of energies.
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APPENDIX: LOW CHARGE CARRIER
CONCENTRATION LIMIT

1. Exponential DOS

Using Eq. (10), we obtain

Ne = NE

δE

∫ 0

−∞
exp

(
E

δE

)[
1 + exp

(
E − Ef

kBT

)]−1

dE

+NUkBT ln

[
1 + exp

(
Ef

kBT

)]
. (A1)

Since at low charge concentration the Fermi level satisfies
the condition −Ef /(kBT ) � 1,18,43,44 the contribution of
the second term in Eq. (A1) (delocalized states) becomes
negligible. As a result, Ef is given by Eq. (7), which is similar
to that in the hopping model. Using Eqs. (7) and (9), we find
the conductivity to correspond to

σ = eμ0NUkBT ln

[
1 + exp

(
Ef

kBT

)]

≈ eμ0NUkBT exp

(
Ef

kBT

)

≈ eμ0NUkBT

[
NE�

(
1 − T

T0

)
�

(
1 + T

T0

)]− T0
T

(Ne)
T0
T .

(A2)

Similarly, the mobility is obtained from

μe = μ0NUkBT

Ne

ln

[
1 + exp

(
Ef

kBT

)]

≈ μ0NUkBT

Ne

exp

(
Ef

kBT

)

≈ μ0NUkBT

[
NE�

(
1 − T

T0

)
�

(
1 + T

T0

)]− T0
T

(Ne)
T0
T

−1.

(A3)

Equations (A2) and (A3) are similar to those found within the
hopping model using the percolation approach.18

2. Gaussian DOS

Replacing the exponential distribution below the ME by a
Gaussian distribution in Eq. (A1), we find

Ne = NG√
2πδG

∫ 0

−∞
exp

(
− E2

2δ2
G

)[
1 + exp

(
E − Ef

kBT

)]−1

dE

+NUkBT ln

[
1 + exp

(
Ef

kBT

)]
. (A4)

Taking into account that, in the low concentration limit Ef 	
0 and −Ef /(kBT ) � 1, we obtain

Ne ≈ C exp

(
Ef

kBT

)
, (A5)
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where the constant C is given by

C =
{

NG

2
exp

(
α2

2

) [
1 + erf

(
α√
2

)]
+ NUkBT

}
. (A6)

Here, erf denotes the error function and α = δG/(kBT ). From
Eq. (A5), the Fermi level is given by:

Ef ≈ kBT ln

(
Ne

C

)
. (A7)

Using Eqs. (11), (12), and (A7), the conductivity and mobility
are written as

σ ≈ eμ0NUkBT exp

(
Ef

kBT

)
≈ eμ0NUkBT

(
Ne

C

)
, (A8)

and

μe ≈ μ0NUkBT

C
. (A9)
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