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Calculating electron transport coefficients of disordered alloys using the KKR-CPA method
and Boltzmann approach: Application to Mg2Si1−xSnx thermoelectrics
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Electronic band-structure calculations combined with the Boltzmann transport approach are implemented to
determine temperature-dependent electron-transport properties such as electrical conductivity σ (T ), thermopower
S(T ), electronic thermal conductivity κe(T ), and related quantities such as the Lorenz number L(T ) and the power
factor PF (T ). The Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) is
employed to study the electronic structure of a chemically disordered system and also to explore the Fermi surface.
This allows for the determination of the velocity and lifetime of an electron. The aforementioned procedure was
then applied to investigate promising n-doped Mg2Si1−xSnx thermoelectric material. Using different approaches
for relaxation time as well as treating the lattice thermal conductivity κl as an adjustable parameter, the
thermoelectric figure of merit, ZT , was calculated in terms of temperature T and carrier concentration n.
The ZT (n,T ) map for Mg2Si1−xSnx clearly shows that, for an experimental value of κl ∼ 1.25 W m−1 K−1,
the strongest thermoelectric properties are expected for x ∼ 0.6 composition, when two conduction bands
tend to degenerate near the X point. On the whole, the KKR-CPA results well correspond to experimental
findings upon employing the constant-relaxation-time approach, especially concerning thermopower S(T ). The
above-mentioned method was also used to estimate the figure of merit of a hypothetical nanograin material with
low thermal conductivity (κl ∼ 0.5 W m−1 K−1), yielding ZT ∼ 2.
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I. INTRODUCTION

The study of electronic and thermal transport properties of
solid-state materials has always been a difficult problem for
condensed-matter theory due to the complexity of the phenom-
ena that should be taken into account. The most convenient and
recently explored way is based on density functional theory
(DFT) electronic band-structure calculations combined with
the Boltzmann transport theory.1–4 Actually, the electronic
band structure, together with the known number of electrons in
the system, defining the Fermi surface, contains information on
ground-state properties. In addition, temperature effects can be
incorporated into such computations through the Fermi-Dirac
distribution function. On the other hand, to get a more complete
set of information on electron-transport behaviors (or electron
scattering) in a system, the relaxation time of electrons on
bands lying in the vicinity of the Fermi energy (EF ) is
needed. In practice, calculation of the relaxation time remains
a hard task5,6 and in most cases it must be approximated and
parametrized.

In this paper, the Korringa-Kohn-Rostoker (KKR)7–9

method based on the Green’s function multiple scattering
theory was used to calculate electronic band structure and
relevant kinetic parameters of electrons in the vicinity of EF .
Moreover, the coherent potential approximation (CPA) was
employed both to account for chemical disorder effects on elec-
tronic structure10–13 and to determine the electron’s lifetime
connected with scattering by the impurities.14,15 In general,
the relaxation time contains information about all possible
scattering mechanisms; however, owing to Matthiessen’s rule,
when one mechanism dominates, other ones can be separated
or even neglected. Hence, when electrical conductivity is
mostly driven by chemical disorder, like in alloys, scattering on
impurity remains the key mechanism of electron diffusion, and

the KKR-CPA method appears to be a well-adapted technique
for retrieving the information required for calculating the
electron-transport coefficients without any adjustable param-
eter.

In this paper the linearized Boltzmann equation is im-
plemented to calculate electron-transport coefficients such as
electrical conductivity σ , Seebeck coefficient S, the electronic
part of thermal conductivity, κe, and the effective Lorentz
number16 L. As an illustrative example, this procedure was
applied to the promising n-type Mg2Si1−xSnx thermoelectric
material, which is intensively investigated17–19 both experi-
mentally and theoretically due to the so-called conduction-
band convergence.20–23

The paper is organized as follows. Section II presents theo-
retical details of electron-transport-coefficient calculations in
terms of transport function. Different approximations were
employed for the electron-scattering mechanism, i.e., constant
relaxation time τ , constant mean free path λ, and constant
mobility μ. Moreover, relaxation time, which is treated as
a free parameter, was extracted from experimental data for
further calculations. In Sec. III the details of the application
of the method in Mg2Si1−xSnx are discussed. Section IV
reports the computational results of the temperature-dependent
transport properties, i.e., σ (T ), S(T ), and κe(T ), within the
above-mentioned models of electron scattering. This section
also discusses maps of the power factor PF (n,T ) = S2σ ,
the effective Lorenz number L = κe/(σT ), and the figure of
merit, ZT (n,T ) = σS2/κ (with κ = κe + κl), versus electron
concentration n and temperature T , assuming arbitrary values
of lattice thermal conductivity κl . The paper is concluded in
Sec. V. The Appendix details the relationship between nominal
and active concentrations, which is important to account for an
appropriate comparison between theoretical and experimental
values.
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II. THEORETICAL DETAILS

A convenient way to extract transport coefficients in the
semiclassical approach is Boltzmann theory. On the basis of
electronic band structure and lifetime of electrons it is possible
to calculate transport coefficients (σ , S, and κe). They can be
defined in compact form in terms of L (α) functions,16

σ e = L (0), S = − 1

eT

L (1)

L (0)
,

(1)

κe = L (2)

e2T
− L (1)L (1)

e2T L (0)
,

where

L (α) =
∫

dE

(
− ∂f

∂E

)
(E − μc)ασ (E ). (2)

The latter contains the central quantity of the Boltzmann
theory, i.e., the σ (E ) tensor, which is usually called the
transport function. The transport function σ (E ) together with
the chemical potential μc appear to be necessary data for
performing a calculation of thermoelectric coefficients.

A. Transport function and approximations

The most critical part is the calculation of the transport
tensor σ (E ), which contains the information of the electronic
band structure and the relaxation time. In general, it has a
tensor form

σ (E ) = e2
∑

n

∫
dk
4π3

τn(k)vn(k) ⊗ vn(k)δ(E − En(k)), (3)

where En(k) are band energies, and τn(k) and vn(k) denote
an electron’s lifetime and velocity, respectively. The latter can
be determined from a k-space gradient vn(k) = 1/h̄∇kEn(k).
All these quantities are assigned the specific band n. In
Eq. (3) k-space integration runs over the Brillouin zone (BZ)
and summation over all bands. For convenience, the k-space
volume is integrated over isoenergetic surfaces Sn(E ) using
the formula∫

dkδ(E − E (k)) =
∫

S(E )

dS

|∇kEn(k)| . (4)

The velocity vn(k) can be calculated directly from En(k),
which is commonly extracted from most periodic DFT-based
codes for electronic structure calculations. Electron lifetime
τ (Sn(E )) is usually not calculated but instead is treated as a
free parameter. More generally speaking, relaxation time τ

may describe different scattering phenomena, which are not
explicitly included in periodic DFT calculations. Accordingly,
few approximations were applied to examine their effect on
transport function and relevant electron-transport coefficients.
We have considered the following cases.

Constant lifetime. In this case, τ does not depend on k or
even on energy and τ0 = τ (Sn(E )) becomes a parameter:

σ τ (E ) = τ0
e2

h̄

∑
n

∫
Sn(E )

dS

4π3

v(Sn(E )) ⊗ v(Sn(E ))
|v(Sn(E ))| . (5)

Constant mean free path. In this case, λ as a product
of velocity and lifetime at each k point is constant and

λ0 = |v(Sn(E ))|τ (Sn(E )) becomes a parameter:

σ λ(E ) = λ0
e2

h̄

∑
n

∫
Sn(E )

dS

4π3

v(Sn(E )) ⊗ v(Sn(E ))
|v(Sn(E ))|2 . (6)

Constant electron mobility. The charge carrier mobility,
defined as eτ 〈v2〉/3kBT , does not depend on energy and μ0 =
eτ (Sn(E ))v(Sn(E ))2/3kBT is treated as a parameter. This
approximation is accurately defined in low-doped semicon-
ductors, whereas for heavy doping the definition is modified
by the η factor (see the Appendix). It is noteworthy that this
approximation also assumes direction-independent properties
(as in cubic crystal), and tensors become scalar functions.
Consequently, it yields the following expression for the
transport function:

σμ(E ) = e2τ 〈v2〉
3

∑
n

∫
Sn(E )

dS

4π3

1

|∇kEn(k)|
= e

μ0

η
kBT g(E ), (7)

where g(E ) denotes the density of states (DOS) function.
It is worth mentioning that, within all these approximations,

the free parameters cancel out when the Seebeck coefficient
S and the effective Lorenz number L are calculated. On the
contrary, these parameters must be fitted while charge and
thermal conductivities (σ and κe) are computed.

B. Beyond constant-relaxation-time approximation

In the case of alloys, CPA allows calculation of not only the
real part of the energy band but also its imaginary part, which
gives the lifetime of an electron14,24 τcp(k) = h̄/(2 Im E (k)).
When derived in such a way, the lifetime corresponds to
scattering on impurity and, using Matthiessen’s rule, it can be
added to the constant parameter τother (corresponding to other
scattering mechanisms), which gives the following expression:

τ (k) =
(

1

τcp(k)
+ 1

τother

)−1

(8)

It is worth noting that by taking into account only the CPA
lifetime τcp (when τother = 0), the electrical resistivity related
to impurities can be found, especially in the limit T → 0,
yielding residual resistivity determined with no adjustable
parameter.

The average lifetime as a function of energy is determined
using the formula

〈τ (E )〉 =
∑

n

∫
Sn(E ) dS τ(Sn(E ))|v(Sn(E ))|∫

Sn(E ) dS|v(Sn(E ))| . (9)

C. Chemical potential

Chemical potential μc = μc(T ,nd ) is calculated using the
DOS function for a known number of electrons per unit cell n

in the system smeared by Fermi-Dirac distribution (to mimic
temperature effect) as follows:

n + nd =
∫

dE g(E )
1

1 + e
E−μc (T ,nd )

kB T

. (10)
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In Eq. (10), nd is an additional carrier concentration corre-
sponding to a small number of doped electrons (e.g., Sb in
Mg2Si1−xSnx). For a very low content of dopants a rigid-band
model25 seems to be valid, except for particular cases when
DOS near valence- or conduction-band edges is strongly
modified by introduced impurities (e.g., resonantlike levels26).

III. APPLICATION TO Mg2(Si-Sn)

A. Structural aspects and computational details

Mg2Si (a = 6.100 Å) and Mg2Sn (a = 6.345 Å) crystallize
in the fcc antifluorite-type structure (space group Fm3̄m) and
exhibit semiconducting properties. The Mg2Si1−xSnx alloy
preserves the same crystal structure, excluding the 0.4 < x <

0.6 concentration range where presumably a two-phase region
was detected.20 The lattice constant increases linearly with Sn
content increase. On the whole, the Sn-rich alloys have rather
low ZT (below 0.2); however, after doping on the Si/Sn site
with Sb or Bi, for example, the thermoelectric figure of merit
may increase up to ZT = 1 at 700 K in Mg2Si0.3Sn0.7:Sb.27

The Mg2Si1−xSnx system was selected for calculation due
to the unusual features of the band structure presumably
driving high ZT . The most interesting concentration range
corresponds to x = 0.5–0.7, where two conduction bands
strongly change near the point X in the BZ; i.e., they
mutually shift on the energy scale to degenerate at a critical
x content.20–22 Electronic band-structure calculations were
performed by the KKR-CPA method. The crystal potential
of the muffin-tin form was constructed in the framework of the
local density approximation (LDA) using the Barth-Hedin28

form for exchange-correlation potential. The self-consistency
cycles were repeated until the maximum difference between
the input and output potentials was less than 1 mRy in
any mesh point in the unit cell. The generalized Lloyd
formula29 was employed to compute the Fermi level and
total DOS directly from the Green function.12 In order to
verify the effect of the spherical form of the potential on
En(k), full-potential KKR calculations were also performed
for the parent compounds Mg2Si and Mg2Sn. The shape of
the conduction bands was found to be negligibly affected.
Conversely, the role of relativistic effects, e.g., the spin-orbit
coupling in the calculation of electron transport coefficients,
especially in the case of Sn-rich alloys, is more critical. The
question was addressed via the fully relativistic KKR method,
which resulted in strong spin-orbit splitting of valence bands
in the vicinity of the X point. Fortunately, the conduction
bands, a subject of our theoretical investigations, appeared
not to be sensitive. Another important point corresponds
to the LDA limit in computations of the band gap Eg . A
very recent linearized augmented plane wave calculation30 of
Mg2Si0.5Sn0.5 revealed that employing a more sophisticated
exchange-correlation potential (e.g., (TB-mBJ)31) resulted in
the correct value of Eg . Since the gap’s magnitude has an
important effect on the shape of the σ (T ), S(T ), and κe(T )
curves (especially at high temperature), it is important for the
gap to have a good value so as to reasonably estimate ZT

versus temperature and carrier concentration. Accordingly,
the separation between conduction and valence bands En(k)
computed in Mg2Si1−xSnx was expanded to the experimental

value (e.g., 0.3–0.4 eV for 0.5 < x < 0.7). In addition,
electronic structure calculations were performed with some
previously presented technical details.12,15

IV. RESULTS

KKR-CPA calculations were done for three samples of
Mg2Si1−xSnx : x = 0.5, x = 0.6, and x = 0.7. As expected
for Mg2Si, the KKR-LDA method resulted in almost twofold
underestimation of Eg with respect to the experimental value,
i.e., 0.3 eV versus 0.75 eV.20,32 A small overlap of conduction
and valence bands was computed in Mg2Sn, unlike a true gap
(0.35 eV). The band gaps were adjusted to the experimental
value.20 The isoenergetic surfaces S(E ) needed in Eq. (4)
were determined using the marching cube algorithm33 with an
80 × 80 × 80 box in the BZ. The surfaces were reproduced
by a set of triangles and in the case of n- and p-type
Mg2Si0.4Sn0.6 (Fig. 1) the plotted Fermi surfaces consisted
of ∼15 000 and ∼12 000 triangles, respectively. All energy-
dependent functions were calculated with 3-meV resolution
and interpolated by cubic spline functions. The chemical
potential and all transport coefficients were computed in
the temperature range 10–800 K and in the concentration
range 1019–1021 cm−3 for both types of carriers. The integral
[Eq. (10)] was solved iteratively to extract μc(T ,nd ) with high
precision. It is worth noting that in Mg2Si1−xSnx an increase
of electron carrier concentration was experimentally achieved
by doping with Sb or Bi (on the Si/Sn site). Additionally,
via KKR-CPA (by computing self-consistently the electronic
structure of Mg2Si1−x−ySnxSby and Mg2Si1−x−ySnxBiy with
y = 0.01,0.02,0.03) we verified that neither dopant practically
alters an important part of the conduction bands. Finally, the
Fermi level was shifted in a rigid way on the KKR-CPA bands
of Mg2Si1−xSnx to facilitate calculations of thermoelectric
properties and to mimic extra electronlike doping.

A. Band structure

The calculation of transport properties requires a highly
accurate electronic structure E (k). Figure 1 shows the
band curves for x = 0.6 when the conduction bands tend
to converge. The dispersion curves of Mg2Si0.5Sn0.5 and
Mg2Si0.3Sn0.7 along high-symmetry directions are shown in
Fig. 2. One can observe that at the point X, two conduction
bands become upside-down when the concentration x is
varied from 0.5 to 0.7. This behavior was initially predicted
experimentally20 and was later calculated from the KKR-CPA
method.22 The �E between two conduction bands at the point
X is as small as 44 meV and 67 meV, in x = 0.7 and x = 0.5,
respectively.

B. Resistivity

Electrical resistivity was calculated using three approx-
imations (see Sec. II A). The adjustable parameters were
obtained from fitting the experimental curves20 for three
different carrier concentrations in Mg2Si0.4Sn0.6. However,
the residual resistivity (T = 0 limit) was computed directly
from the KKR-CPA, employing the lifetime attached from the
imaginary part of complex energy band.
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FIG. 1. (Color online) Electron bands and Fermi surfaces of Mg2Si1−xSnx . Shadows around bands represent the imaginary part of the
energy, enlarged 100 times to make it visible. The Fermi surfaces are plotted for carrier concentration n = 1022 cm−3 of electrons (left side)
and holes (right side). The colors on the Fermi surfaces represent the velocity of electrons in ms−1.

1. Impurity resistivity

From Fig. 3 one observes that the lifetime depending on
energy and connected to scattering on impurities [τcp(E )]
tends to infinity when approaching the gap. Impurity scattering
plays a more important role away from the gap (in higher
concentration and lower temperature). The same behavior is
seen in Table I, where ρcp was calculated using τ (k) [Eq. (8)]

FIG. 2. (Color online) Electron bands of Mg2Si1−xSnx . Shadows
around the bands represent the imaginary part of the energy (enlarged
100 times for visibility).

with parameter τother = 0. This type of scattering contributes
the most to the resistivity at lower temperature and carrier
concentration.

2. Total resistivity

Electrical resistivity was calculated using three transport
functions as given in Eqs. (5), (6), and (7). The free parameters,
i.e., lifetime τ0, mean free path λ0, and carrier mobility μ0,
were fitted to adjust calculated conductivity and experimental
data for Mg2Si0.4Sn0.6 measured at three different concen-
tration as a function of temperature.20 Matched results are
shown in Fig. 4. The average of three τ0 (Fig. 4, top) was used
in further calculations of the electronic part of the thermal
conductivity κe and thermopower S. The parameters τ0, λ0, and
μ0 are decreasing with temperature, which is caused mostly
by increased scattering on phonons and which is not taken
explicitly into account in this work.

C. Thermopower

Calculation of S(T ) curves was done for both n- and p-type
electrical conductivity using the average of three functions of
τ0(T ) (see fit in Fig. 4, top) as well as by assuming that the

FIG. 3. (Color online) Electron lifetime τ(E ) (solid blue line with
scale on the left) for τother = 10 fs [see Eq. (8)] and τcp(E ) contribution
(dashed green line with scale on the right) of Mg2Si0.4Sn0.6. In
addition, DOS function is shown (solid red line) in arbitrary units.
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TABLE I. Calculated residual resistivity and its contribution to
overall experimental resistivity at room and high temperature in
Mg2Si0.4Sn0.6.

Carrier Residual ρcp/ρexpt (%)

concentration (cm−3) resistivity ( m) 300 K 800 K

0.6 × 1020 17.0 × 10−7 5.4 2.4
2.5 × 1020 5.0 × 10−7 6.1 2.9
3.0 × 1020 4.5 × 10−7 8.2 4.5

lifetime does not depend on carrier concentration. Figure 5
shows that the largest thermopower is found for the lowest
concentrations. The deviation from this behavior is seen only
at high temperature due to the influence of activation of two
types of carriers (electrons and holes), decreasing the S value.

FIG. 4. (Color online) Lifetime (in fs, top) and mean free path
(in nm, middle) and mobility (in cm2 V−1 s−1, bottom) as a function
of temperature fitted to get agreement with experiment20 for Sb-doped
Mg2Si0.4Sn0.6. Concentration in cm−3.

FIG. 5. (Color online) Seebeck coefficient of Mg2Si0.4Sn0.6 as
a function of temperature for different concentration. The solid
black line represents concentration n = 1.7 × 1020 cm−3. Dots show
measured data21 of Sb-doped Mg2Si0.4Sn0.6 with carrier concentration
denoted by dashed lines (concentration values given by the color in
the legend).

On the whole, we observe that the experimental data21 are very
well reproduced by the constant-relaxation-time approach.

Figure 6 shows that the n-doped Mg2Si0.4Sn0.6 alloy
exhibits the largest Seebeck coefficient with respect to neigh-
boring compositions. This behavior is well supported by the
presence of the conduction-band degeneration at the point X,

FIG. 6. (Color online) Seebeck coefficient of Mg2Si1−xSnx as a
function of carrier concentration for three different amounts of Sn
and three different temperature values. The top plot represents n-type
doping (i.e., Sb, Bi), and the bottom plot represents p-type doping
[i.e., Ga (Ref. 34)].
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K. KUTORASIŃSKI, J. TOBOLA, AND S. KAPRZYK PHYSICAL REVIEW B 87, 195205 (2013)

FIG. 7. (Color online) Power factor map of Mg2Si0.4Sn0.6 as a
function of temperature and nominal concentration. The dashed line
represents the maximum of function PF (T ) for different nominal
concentrations.

best seen at low temperature. At high temperature, the band
splitting becomes less important (almost negligible), since
kBT = 52 meV for T = 600 K is comparable to �E ∼ 44 eV.
When Sn content differs from 60% (see Fig. 2), these bands are
separated more in Mg2Si0.5Sn0.5 than in Mg2Si0.3Sn0.7, which
results in the thermopower decrease. At high concentrations,
the chemical potential μc lies a few kBT above the band
splitting, and no difference is found between the results
obtained for different Sn amounts.

D. Power factor

The power factor PF (T ) = S2(T )σ (T ) was calculated
using S as in Sec. IV C. As a result, one can notice (Fig. 7)
that PF exhibits the largest values at higher temperature for
samples with higher nominal carrier concentrations. PF may
reach almost 4 W m−1 K−2 × 10−3 for n ∼ 6 × 1020 cm−3 at
T ∼ 800 K.

FIG. 8. (Color online) Electronic part of the thermal conductivity
κe as a function of nominal concentration for three different
temperatures.

FIG. 9. (Color online) Electronic part of the thermal conductivity
κe of Mg2Si0.4Sn0.6 in logarithmic scale as a function of temperature
for different nominal concentrations (concentration values given by
the color in the legend).

E. Electronic thermal conductivity

The electronic part of the thermal conductivity κe =
κe(T ,n) was determined using the same lifetime τ0(T ) as for
electrical conductivity σ (also any variation of τ with carrier
concentration was neglected). Figure 8 shows an exponential
increase of κe as a function of nominal concentration (in
logarithmic scale), which means that κe is proportional to
the nominal concentration at a given temperature (κe ∼ n).
Differences between various alloys are noticeable mostly at
low concentration and high temperature. The rise of κe caused
by thermally activated electrons crossing the energy gap can
be noticed. Consequently, the largest increase of electronic
thermal conductivity is detected for Mg2Si0.3Sn0.7, where the
smallest gap of the investigated compositions (x = 0.5, 0.6,
0.7) was found.

Figure 9 shows that κe(T ) remains almost constant for T >

200 K. In addition, quite regular distance between neighboring
thermal conductivity curves at a given temperature is worth
noting. This feature also supports the linear relation between
κe and n (logarithmic scale in value as well as in concentration).

F. Lorenz number

The calculation of both electrical conductivity and the
electronic part of the thermal conductivity as a function of

FIG. 10. (Color online) Effective Lorenz number of
Mg2Si0.4Sn0.6 as a function of temperature for different nominal
concentrations (concentration values given by the color in the
legend). The dashed horizontal line denotes the metallic limit.
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FIG. 11. (Color online) Effective Lorenz number as a function of
nominal concentration for three different compounds and tempera-
tures. The dashed horizontal line denotes the metallic limit.

temperature allows for investigating the limit of the
Wiedemann-Franz law defined by the Lorenz factor L0 =
κe/(σT ) = π2k2

B/(3e) = 2.45 × 10−8 W  K−2. Indeed, in
view of the Sommerfeld model,16 commonly applied in the
metalliclike regime, the Lorenz number is constant and this
law is expected to be valid in metals and strongly degenerated
semiconductors. In other cases, generalization is needed and
L(T ) = κe(T )/(σ (T )T ) should be treated as an effective
quantity.

Figure 10 shows that L varies with temperature and carrier
concentration to approach the metallic limit at low temperature
and high concentration. On the contrary, at high temperature
and low concentration, L(T ) substantially increases well above
L0. This behavior is an influence of the band gap affecting
κe(T ) more significantly than σ (T ).

Figure 11 presents L(n) for three different temperatures.
At high concentration all effective Lorenz numbers tend
to the Sommerfeld limit L0. At lower concentration L(n)
is underestimated except for at high temperature and
low concentrations. Such behavior is caused also by the
thermal activation of electrons from valence states. Since

FIG. 12. (Color online) ZT as a function of nominal concen-
tration for three different compounds and temperature, choosing
parameter κl = 1.25 W m−1 K−1.

Mg2Si0.3Sn0.7 exhibits the smallest gap, the L value becomes
highest for small n and high T . This again demonstrates how
small gap values have a stronger influence on κe than σ . At
intermediate temperature (550 K), L is lower than L0 in a wide
range of concentrations. One can examine an interesting case
showing that thermal activation of electrons on the one hand is
too small to allow for them crossing the gap and, on the other
hand, too high to reach Sommerfeld limit L0, at least for carrier
concentration below n = 1 × 1021 cm−3. Mg2Si0.4Sn0.6 has
again the lowest value of L (neglecting the high-temperature
effect), which makes it the best thermoelectric material of the
investigated series of compounds. The effect can be explained
only by band degeneracy.

G. ZT

Finally, we attempt to estimate ZT = S2σT/(κe + κl),
the dimensionless thermoelectric figure of merit, relying on
calculated electron transport properties, i.e., three quantities
related to electronic structure (S, σ , κe) and one quantity
related to crystal lattice dynamics (κl). The latter is treated as
an adjustable constant parameter, independent of temperature
and carrier concentration. In fact, such an assumption seems
to be quite reasonable. The measured21 thermal conductivity
shows only small variations (10–20%) in the temperature range
300–800 K. The calculated electronic part also exhibits such
behavior (see Fig. 9). Considering κl as constant parameter
allows for focusing on the direct influence of the electronic
band structure on ZT . The lattice part of the thermal
conductivity κl = 1.25 W m−1 K−1 was roughly approximated
to an experimental21 value.

Figure 12 illustrates that ZT of Mg2Si0.4Sn0.6 reaches the
largest values in the range of n up to 5 × 1020 cm−3. In
addition, the maximum of ZT , as a function of concentration,
clearly tends to move to higher values of n when temperature
increases. The same behavior is detected in Fig. 13, which
shows a two-dimensional map of ZT (n,T ) with the color
scale from deep blue (ZT ∼ 0.05) to bright red (ZT ∼ 1.4). In
Table II the largest values of ZT at high temperature and for
optimal electron concentrations are listed for Mg2Si1−xSnx

with x = 0.5, 0.6, and 0.7. ZT has a maximum value
(assuming κl = 1.25 W m−1 K−1) for electron concentration
in the range 1.1–1.6 × 1020 cm−3.

Furthermore, Fig. 14 predicts ZT (n,T ) when lattice ther-
mal conductivity is much smaller than the experimentally
measured values, but probably available by nanostructural
control.35 On the whole, one can notice that, with the κl de-
crease, the global maximum of ZT moves to a lower tempera-
ture and concentration, with ZT reaching values as large as ∼2.

V. CONCLUSIONS

We have shown that electronic-structure KKR-CPA cal-
culations accounting for disorder effects (alloying, doping)
combined with the Boltzmann transport approach (employing
different models for electron scattering) allow for success-
fully investigating temperature-dependent transport quantities,
which define the thermoelectric figure of merit ZT , i.e.,
electrical conductivity σ (T ), thermopower S(T ), and thermal
conductivity κ = κe + κl (where κl is an adjustable parameter).
The aforementioned procedure was implemented to explore
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TABLE II. Max ZT at n (1020 cm−3) for different concentrations and Sn amounts in Mg2Si1−xSnx .

Max ZT at n (×1020 cm−3)

x = 0.5 x = 0.6 x = 0.7

κL (W m−1 K−1) 600 K 900 K 600 K 900 K 600 K 900 K

0.5 1.55 at 0.69 2.08 at 1.07 1.70 at 0.67 2.10 at 1.13 1.64 at 0.66 2.01 at 1.22
0.75 1.22 at 0.89 1.68 at 1.28 1.32 at 0.84 1.72 at 1.31 1.29 at 0.84 1.67 at 1.39
1 1.02 at 1.05 1.44 at 1.47 1.10 at 0.99 1.47 at 1.48 1.07 at 0.99 1.47 at 1.50
1.25 0.88 at 1.20 1.26 at 1.64 0.94 at 1.11 1.29 at 1.63 0.93 at 1.11 1.27 at 1.68
1.5 0.78 at 1.32 1.13 at 1.80 0.83 at 1.22 1.15 at 1.77 0.82 at 1.22 1.14 at 1.82
1.75 0.70 at 1.43 1.02 at 1.94 0.75 at 1.32 1.05 at 1.90 0.73 at 1.32 1.03 at 1.94
2 0.64 at 1.53 0.94 at 2.07 0.68 at 1.41 0.96 at 2.02 0.67 at 1.41 0.95 at 2.05

n-doped Mg2Si1−xSnx , where conduction-band degeneracy
appears near x ∼ 0.6 composition. In comparison with other
compositions, i.e., x = 0.5 and x = 0.7, the KKR-CPA results
showed that the band convergence may indeed enhance the
thermoelectric properties after appropriate electron doping.
We also conclude that the constant lifetime approach well
reproduces the temperature-dependent Seebeck coefficient,
which remains in excellent agreement with measured S(T ).
The ZT (n,T ) map plotted for Mg2Si0.4Sn0.6 reasonably
predicts figures of merit as large as ZT ∼ 1.1–1.2 in a
temperature and carrier concentration range close to that
experimentally detected.21 The ZT values of 1.5–2 in the
600–900 K temperature range are possible if the lattice thermal
conductivity can be sufficiently reduced.
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FIG. 13. (Color online) ZT map of Mg2Si0.4Sn0.6 for parameter
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concentration (in cm−3). The black dashed line shows the maximum
value of ZT (n).

Center (NCN) under Grants No. DEC-2011/02/A/ST3/00124
and No. UMO-2011/03/N/ST3/02644.

APPENDIX: CARRIER MOBILITY IN SEMICONDUCTORS

Originally, carrier mobility referred to a coefficient connect-
ing electrical conductivity with carrier concentration given by
the formula σ = eμ0n = eμ0

∫
dE fg(E ). From Eqs. (1), (2),

and (3), after averaging the lifetime and velocity of an electron
over constant energy surface, the electrical conductivity can
be expressed as

σ (T ) = e2〈τv2〉
3

∫
dE

(
− ∂f

∂E

)
g(E )

= e
e〈τv2〉

3
η︸ ︷︷ ︸

μ0

∫
dE fg(E ), (A1)

FIG. 14. (Color online) ZT map of Mg2Si0.4Sn0.6 for parameter
κl = 0.5 W m−1 K−1 as a function of temperature and nominal
concentration (in cm−3). The black dashed line shows the maximum
value of ZT (n).
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where

η = nactive

nnominal
= kBT

∫
dE

( − ∂f

∂E

)
g(E )∫

dE fg(E )
. (A2)

The 〈τv2〉 is the average over the isoenergetic surface. Note
also that for cubic structure |v ⊗ v| = 1/3v2. The ratio η in the
case of low-doped semiconductors (n < 1 × 1017 cm−3) is 1,
but at higher concentration it is usually less than 1 (mostly in
low temperature).
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