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Derivation of low-energy effective models by a partial trace summation of the electronic degrees of freedom
far away from the Fermi level, called downfolding, is reexamined. We propose an improved formalism free
from the double counting of electron correlation in the low-energy degrees of freedom. In this approach, the
exchange-correlation energy in the local-density approximation (LDA) is replaced with the GW self-energy;
herewith its low-energy part associated with the double counting is subtracted. Moreover, in our formalism, the
frequency dependence of the effective parameter is renormalized into the static one. We apply the formalism to
SrVO3 as well as to two iron-based superconductors, FeSe and FeTe. The resultant bandwidths of the effective
models are nearly the same as those of the previous downfolding formalism because of striking cancellations
between an increase arising from the exclusion of the low-energy correlation and a shrinking arising from
the renormalization of the frequency dependence. In the nondegenerate multiband materials such as FeSe and
FeTe, the momentum dependent self-energy effects yield substantial modifications of the band structures and
relative shifts of orbital-energy levels of the effective models, which may explain the stability of the bicollinear
antiferromagnetic phase in FeTe as well as the experimental absence of the antiferromagnetic phase in FeSe.
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I. INTRODUCTION

Strongly correlated electron systems have been a central
subject of condensed-matter research for decades. A challenge
is to unveil their electronic structures from first principles.
A major advance has recently been made in this direction1,2

by taking advantage of the hierarchical energy structure of
strongly correlated electron materials, which commonly have
only a small number of bands near the Fermi level in contrast
to usual highly dense band entanglement at energies far away
from the Fermi level. In this general framework of multiscale
ab initio scheme for correlated electrons (MACE),1 global
dense and entangled band structure is calculated based on
density functional theory (DFT).3,4 The degrees of freedom
far away from the Fermi level is traced out perturbatively
in the spirit of the renormalization group, which generates
an effective low-energy model consisting of a small number
of bands near the Fermi level, which we call “target bands.”
This downfolding procedure is efficiently performed by
the constrained random-phase approximation (cRPA)5,6 after
constructions of the maximally localized Wannier orbitals.7,8

Derived ab initio low-energy models are represented in
general by multiband fermions on lattices, which are typi-
cally extended-Hubbard-type models. The low-energy models
are solved by high-accuracy solvers such as variational
Monte Carlo (VMC),9 path-integral renormalization group
(PIRG),10,11 dynamical mean-field theory (DMFT)12,13 with its
cluster extensions,2,14–23 and functional renormalization group
(FRG).24 The validity of the cRPA is ascribed to the small
vertex correction thanks to the above hierarchical structure,1

while an extension of the cRPA by using the FRG has also
been proposed.25

This hybrid scheme referred inclusively as MACE has been
applied to a wide variety of materials: semiconductors,26 tran-
sition metals,6,27–29 transition-metal oxides,28,30–39 transition-

metal-oxide interface,40 molecular organic conductors,41–44

and Fe-based layered superconductors45,46 by using the solvers
with the choices of VMC,47,48 DMFT,49–54 and the FRG.55,56

Ab initio effective models were derived for other challenging
complex materials with a large number of atoms on a unit cell
as well.57,58

Quantitative accuracies of obtained physical quantities in
comparison to experimental results support the validity of the
scheme. However, there remains a basic question about the
counting of the electron correlation: The correlation effects
are, though insufficiently, taken into account, in principle, in
the DFT calculation as the exchange-correlation energy. Since
the correlation effects contained in the effective low-energy
model are considered when the model is solved by the
low-energy solver, there exists a well-known double counting
problem. Removing the Hartree contribution can be considered
easily when solved by the low-energy solver.47 On the other
hand, the double counting effect arising from the exchange
correlation has been absorbed into the chemical potential in
most of the studies in the literature, as the exchange-correlation
potential has been assumed to be nearly independent of the
orbital. Removing the double counting as well as removing
the influence of the original local-density approximation
(LDA)/DFT bias is a desired step for the consistent and ab
initio descriptions of the correlation effects in the present
downfolding scheme. Several attempts in this direction have
been put forward in the literature.39,59–64 Since it is not a
practical choice to completely throw away the DFT/LDA
calculations in obtaining the global band structure, it is better
to remove the bias and the double counting as a correction as
much as possible within the present framework.

The self-energy depends on both frequency and momentum
k. The frequency dependence yields band narrowing, whereas
the k dependence widens bands.65 In strongly correlated
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systems, the former effect is greater, consequently the band-
width is reduced by the self-energy effects. If these effects
are taken into account partially in the exchange correlation
in the LDA calculation, narrowing of the bands coming
from the effects within the target bands, however small it
is, is regarded as the double counting, and the resultant
parameters underestimate the transfer integral in the effective
model. Here, we should note that the transfer integral in
the effective model is a virtual parameter, which cannot be
observed in experiments. The band structure to be compared
to experiments is obtained after correlation effects in the
low-energy degrees of freedom are included by solving the
effective model.

To overcome the double-counting problem, in the first step
of this paper, we subtract the whole exchange-correlation
energy in the LDA to remove the double counting. Instead
of the exchange-correlation potential V xc, we then add a
constrained self-energy arising from the high-energy region
�H = iGHW based on the GW approximation (GWA)66,67

by excluding the self-energy contribution from the low-energy
target degrees of freedom. Here, GH is the Green’s function for
the degrees of freedom outside the target bands (high-energy
bands) and W is the fully screened interaction in the RPA as
we define below.

In general, the one-body parameter calculated from such
constrained GWA and the two-body parameter calculated from
the cRPA have frequency dependencies originating from the
constrained self-energy �H (ω) and the constrained polariza-
tion P H (ω), respectively. Although the frequency dependence
of the interaction has been considered in the literature,39,54,68

in practice, it is difficult to treat the dynamical Hubbard model
by keeping both the frequency and momentum dependencies
of fluctuations at high accuracy. So far, although the DMFT
is able to incorporate frequency dependencies of the effective
interaction, it is actually difficult to consider extensions to the
DMFT that account for spatial fluctuations. Therefore, in this
paper we make an attempt to derive reliable static effective
fermion models on lattices. This means that the effective
models derived in this paper are of the extended Hubbard-type
ones on three-dimensional lattices tailored for the low-energy
solvers developed for the fermion lattice models. When one
wishes to solve by using low-dimensional effective models,
one may downfold the present models further by renormalizing
the interlayer (or interchain) part of the interaction and transfer
into the low-dimensional models.26 If one wishes to solve by
the DMFT, the momentum (spatial) dependence as well as
long-range part of the interaction need to be renormalized.

Then, in the second step of the present study, we renormal-
ize the frequency dependence of the effective interaction to
derive static low-energy effective models. This Hamiltonian
formalism allows the consideration of spatial fluctuation
effects from the low-energy space accurately by low-energy
solvers beyond the GWA, while that from the high-energy
space is renormalized into the one-body part with an adequate
accuracy by the constrained GWA. We renormalize the
frequency dependence of the constrained self-energy �H into
static one-body parameters by using the renormalization factor
ZH , namely by using the linear frequency dependence of the
real part of �H . As we will see later, the constrained self-
energy has a well-behaved and gentle frequency dependence

near the Fermi level, and thus the expansion around the energy
eigenvalue is justified. In addition, we renormalize the effect
of frequency dependence of the partial screened Coulomb
interaction Wp(ω) into the one-body part as the self-energy.5

We next apply the present formalism to several typical
examples: First we apply it to SrVO3, where the t2g orbital
degeneracy is retained. Second we apply it to FeSe and FeTe,
single-layered iron-based superconductors, where the lift of
the orbital degeneracy introduces additional complexity.

In these examples, we show that after removing the double
counting in the low-energy space obtained in the first step, the
bandwidth and the transfer integral increase typically about
30–50% than those of the LDA. When we perform the second
step and renormalize the effect of the frequency dependence of
the effective Coulomb interaction screened by the high-energy
bands into the mass enhancement, then the bandwidth and the
transfer integral remarkably recover to those of the LDA.

However, in the case of the multiband systems with nonde-
generate orbitals, the removal of the double counting causes
the orbital dependent shift of the chemical potential. Because
the constrained self-energy is not only frequency dependent
but also wave-number and orbital dependent, the low-energy
band after excluding the double counting is different from
that of the LDA, especially in nonequivalent multiorbital
systems such as Fe-based layered superconductors. However,
a warning is that this band structure should not be compared
with experiments, because the experimental band structure is
a consequence of the many-body effects within the target band
and the direct comparison is possible only after solving the
low-energy effective model.

The organization of this paper is the following: In Sec. II
we propose the formulation. Section III describes the global
band structures together with the derived effective models
after the improved downfolding for the examples of a
transition-metal-oxide SrVO3 (SVO) and the Fe-based layered
superconductors, FeSe and FeTe. Section IV is devoted to
discussions and summary.

II. METHOD

A. Constrained random-phase approximation

In the LDA, the band structure is calculated from the Kohn-
Sham equation,

HLDAψLDA
i (r)

= [− 1
2∇2 + V ext(r) + V H(r) + V xc(r)

]
ψLDA

i (r)

= εLDA
i ψLDA

i (r), (1)

where V ext is the potential of atomic nucleus, V H is the Hartree
term of the Coulomb interaction, and V xc is the exchange-
correlation potential. The energy eigenvalue is denoted by
εLDA
i , and ψLDA

i is its eigenstate.
Now we derive the three-dimensional effective model for

the target bands as a typical case. Our target bands here are the
d electrons. From the eigenvalues and eigenstates of Eq. (1),
the transfer integral of the low-energy effective model is given
by

tLDA
mn (R) = 〈

φL
m0

∣∣HLDA
∣∣φL

nR

〉
, (2)
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where φL
mR is the maximally localized Wannier function

(MLWF) of the mth orbital localized at the unit cell R
in the low-energy space derived from a linear combination
of the Kohn-Sham (KS) wave functions by following the
conventional prescription.7,8 In this paper, we define the
low-energy space as one spanned by the MLWF, and the rest
is defined to be the high-energy space. We use both band and
orbital expressions for the spacial index. We explicitly specify
the index in the orbital expression, while the band index and its
summation are omitted in the band expression. The reciprocal
represents the inverse matrix ( A

B
= B−1A).

The partially screened Coulomb interaction for the d bands
is given by

Umn(R,ω) = 〈
φL

m0φ
L
m0

∣∣Wp
∣∣φL

nRφL
nR

〉
, (3)

Wp = v

I − vP H
, (4)

where v is the bare Coulomb interaction, P H is the polarization
without low-energy L-L transition, P H = P − P L, and I is
the identity operator. Namely, P H is defined from the total
polarization subtracted from P L, the polarization contributed
only from the L space. The indices “L” and “H” express the
low- (within target bands) and high-energy (including outside
of the target bands) parts of the Hilbert spaces, respectively.5 In
the cRPA, the polarization without low-energy L-L transition
P H are estimated as

−P H = iGG − iGLGL = iGLGH + iGH GL + iGH GH,

(5)

where the whole Green’s function G is given by the sum of the
low- and high-energy propagators estimated by the DFT, GL

and GH , respectively. The frequency dependence of Wp comes
from the frequency dependence of the high-energy polarization
P H . The partially screened Coulomb interaction is usually
written as Wr in the literature, but, in this paper, we express
it as Wp to avoid confusion with the renormalized Green’s
function in the low-energy space.

B. Double counting of self-energy in low-energy space

The transfer integral in Eq. (2) formally contains the
self-energy of the low-energy space in the form of the
exchange-correlation energy V xc in the DFT/LDA. However,
the parameters of the low-energy effective model should not
contain such an energy of the low-energy space, because
the self-energy effect in the low-energy space should be
considered when one solves the low-energy effective models.
Therefore, this contribution has to be subtracted, but it is not
easy to separate V xc[n(r)all] to the high- and low-energy parts.

On the other hand, in the GWA beyond the LDA, we can
easily divide the whole self-energy GW into the low- and
high-energy parts:

iGW = iGLW + iGH W, (6)

where W is the fully screened Coulomb interaction. In general,
GH contains a contribution extending over the L and H spaces,
as has been discussed formally (beyond GWA) in Ref. 69.
The off-diagonal components disappear in the quasiparticle
approximation.

When one subtracts the exchange-correlation energy V xc

from the one-body energy in the Kohn-Sham LDA Hamilto-
nian HLDA and adds a constrained self-energy �H = iGH W

to that, we can calculate the transfer integral by excluding the
self-energy contributed from the low-energy space only:

t̃Hmn(R,ω) = 〈
φL

m0

∣∣HLDA − V xc + �H
∣∣φL

nR

〉
. (7)

This allows us to eliminate the double counting of the self-
energy in the low-energy space when one solves the low-
energy model explicitly.

Moreover, it allows a formalism to calculate the one-
body parameter beyond the DFT/LDA schemes. The good
convergence of the GW scheme in terms of the perturbative
expansion and the irrelevance of the vertex correction1 assure
the accuracy of �H .

C. Static Hubbard model

In the previous section, we considered the “dynamical”
effective Hubbard model

Heff =
∑
ij

∑
mnσ

t̃Hmnσ (Ri − Rj ,ω)d†
inσ djmσ

+ 1

2

∑
ij

∑
mnσρ

{Umnσρ(Ri − Rj ,ω)d†
inσ d

†
jmρdjmρdinσ

+ Jmnσρ(Ri − Rj ,ω)(d†
inσ d

†
jmρdinρdjmσ

+ d
†
inσ d

†
inρdjmρdjmσ )}, (8)

where d
†
inσ (dinσ ) is a creation (annihilation) operator of an

electron with spin σ in the nth MLWF centered at Ri . The
effective Coulomb interaction U and the exchange interaction
J are given by

Umn(R) = 〈
φL

m0φ
L
m0

∣∣Wp
∣∣φL

nRφL
nR

〉
(9)

and

Jmn(R) = 〈
φL

m0φ
L
n0

∣∣Wp
∣∣φL

nRφL
mR

〉
, (10)

respectively.
The renormalized Green’s function of the low-energy space

GLp, where the constrained self-energy from the high-energy
space is implemented, is written as

GLp(ω) = GL0

I − GL0�H
(11)

= I

ωI − [H LDA − V xc + �H (ω)]
, (12)

where the “bare” Green’s function GL0 is

GL0(ω) = I

ωI − (H LDA − V xc)
. (13)
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In the KS gauge, we expand the self-energy in GLp(ω) around the respective eigenvalue as follows:

GLp(ω) ≈ I

ωI − (
H LDA − V xc + �H (εLDA) + ∂�H

∂ω

∣∣
ω=εLDA (ω − εLDA)

) (14)

= ZH (εLDA)

ωI − {H LDA + ZH (εLDA)[−V xc + �H (εLDA)]} , (15)

where ZH (εLDA) is the renormalization factor of �H :

ZH (ε) =
{
I − ∂Re�H

∂ω

∣∣∣∣
ω=ε

}−1

, (16)

and, in the off-diagonal element, εLDA = 0 and we assume
∂�H

∂ω
as zero. In these equations, GLp, GL0, �H , H LDA, V xc,

and ZH are matrices in the band basis. We note that H LDA

is not renormalized by ZH , because the Fermi level must be
fixed by the electron number and we have taken into account
the ω dependence around εLDA. Because �H = iGHW does
not contain the poles of GL, ZH is close to 1 in contrast to the
substantially small renormalization factor obtained for the full
self-energy GW , as we will see later.

If we can ignore the imaginary part of �H and ZH in the
numerator of GLp(ω), and the terms higher than the linear one
in the ω dependence in the real part of �H , we obtain

GLp(ω)

= I

ωI − {H LDA + ZH (εLDA)[−V xc + Re�H (εLDA)]} ,
(17)

or, in the case where the self-energy is expanded around the
Fermi level instead of the eigenvalue in the LDA,

GLp(ω) = I

ωI − ZH (0)[H LDA − V xc + Re�H (0)]
, (18)

which preserves the number of the electron in Eq. (15) and
has the form of the “dynamical” effective Hubbard model,
containing the ω dependence in the two-body part,

Heff =
∑
ij

∑
mnσ

tHmnσ (Ri − Rj )d†
inσ djmσ

+ 1

2

∑
ij

∑
mnσρ

{Umnσρ(Ri − Rj ,ω)d†
inσ d

†
jmρdjmρdinσ

+ Jmnσρ(Ri − Rj ,ω)(d†
inσ d

†
jmρdinρdjmσ

+ d
†
inσ d

†
inρdjmρdjmσ )}, (19)

where the static one-body part tH is given by

tHmn(R) = 〈
φL

m0

∣∣HH
∣∣φL

nR

〉
, (20)

HH = HLDA + ZH (εLDA)[−V xc + Re�H (εLDA)] (21)

= ZH (0)[HLDA − V xc + Re�H (0)]. (22)

In this paper, we expand both the screened Coulomb interaction
and the self-energy around the Fermi level instead of the
eigenvalue in the LDA. In Eq. (18), we do not have to neglect

∂�H

∂ω
of the off-diagonal element unlike Eq. (17), and the

ambiguity of the definition for the off-diagonal element does
not exist.

Actually, the ω dependence requires the Lagrangian de-
scription instead of the Hamiltonian description. However,
if the frequency dependence is small in the energy range of
physics to be considered by the low-energy effective model,
one may ignore the frequency dependence by replacing U (ω)
and J (ω) with its static limit ω → 0. This is indeed the
case when the low-energy bands are well separated from
the high-energy ones as is normally expected in the strongly
correlated electron systems.1 Then one may employ a static
value

Wp(ω = 0) = v

I − vP H (0)
(23)

instead of Eq. (4).
However, if the energetic separation between the low and

high energy is moderate, the effect of U (ω) can indeed be
sizable despite an energetic separation. To further renormalize
the effects of ω dependence of P H in the GWA, we append
the self-energy correction perturbatively. A choice of this
correction is


�L
HF = iGLp[Wp(ω) − Wp(0)]. (24)

Note that Wp(ω) − Wp(0) vanishes at ω = 0. Equation (24)
is the “Hartree-Fock” approximation (HFA), because GLp is
the “bare” Green’s function in the sense of the absence of the
self-energy arising from L-electron’s many-body effects and
Wp is the bare Coulomb interaction in terms of the low-energy
effective model.

In the case of the GWA beyond the HFA, the self-energy
correction is calculated as


�L
GW = iGL(W − WU ), (25)

where

WU = Wp(0)

I − Wp(0)P L(ω)
. (26)

Here WU (ω) is equal to the fully screened interaction W (ω)
at ω = 0, while WU (ω) approaches Wp(0) for ω → ∞. On
the other hand, W approaches v in the ω → ∞ limit. In
this one-shot GWA, the self-energy expected in the level of
the GWA of the effective model, namely GLWU , has been
subtracted from the full GW self-energy GLW , since GLWU

should be considered when one solves the model. In this
paper, we calculate 
�L by the one-shot GWA according
to Eq. (25).
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Thus, the renormalized Green’s function for the static Hubbard model,

GLp
(ω) = GLp

I − GLp
�L
(27)

= I

ωI − (H LDA − V xc + �H + 
�L)
(28)

≈ ZH
(εLDA)

ωI − {H LDA + ZH
(εLDA)[−V xc + (�H + 
�L)(εLDA)]} , (29)

ZH
(ε) =
{
I − ∂(Re�H + Re
�L)

∂ω

∣∣∣∣
ω=ε

}−1

(30)

is obtained.
Similarly to the reduction to Eq. (17), even with this 
�L correction as well, we reduce the renormalized Green’s function

with Z factor to

GLp
(ω) = I

ωI − {H LDA + ZH
(εLDA)[−V xc + Re(�H + 
�L)(εLDA)]}
= I

ωI − ZH
(0)[H LDA − V xc + Re(�H + 
�L)(0)]
. (31)

In the practical calculation below, we employ 
�L
GW in

Eq. (25) for 
�L. The “static” effective Hubbard model, after
incorporating all the effects of frequency dependencies into
the renormalization of one- and two-body parts, are written as

Heff =
∑
ij

∑
mnσ

tH

mnσ (Ri − Rj )d†

inσ djmσ

+ 1

2

∑
ij

∑
mnσρ

{Umnσρ(Ri − Rj ,0)d†
inσ d

†
jmρdjmρdinσ

+ Jmnσρ(Ri − Rj ,0)(d†
inσ d

†
jmρdinρdjmσ

+ d
†
inσ d

†
inρdjmρdjmσ )}, (32)

where the renormalized static one-body part tH
 is given by

tH

mn (R) = 〈

φL
m0

∣∣HH

∣∣φL

nR

〉
, (33)

HH


= HLDA + ZH
(εLDA)[−V xc + Re(�H + 
�L)(εLDA)]

= ZH
(0)[HLDA − V xc + Re(�H + 
�L)(0)]. (34)

Recently, Casula et al. have developed a nonperturbative
procedure to renormalize the frequency dependence of U (ω)
by using the bosonic mode.68 The present perturbative method
has an advantage that it can easily be applied to more general
cases such as the long-ranged (nonlocal) interactions. It would
be an interesting future work to apply the two complementary
approaches to real materials and make a comparison.

The renormalized effective models of Eqs. (21) and (34)
with Eqs. (19) and (33) still contain a double counting of the
Hartree term arising from the low-energy (target) degrees of
freedom in the one-body part. This Hartree double counting
may easily be subtracted in the model,47 because the Hartree
term in the LDA and that in the model are essentially the same.
For example, to subtract the double counting of the Hartree
term for the on-site potential, one should employ the one-body

part as

tdcf
mmσ (Ri) = tH


mmσ (Ri) −
∑
jnρ

Umnσρ(Ri − Rj ,0)
〈
nL

jnρ

〉
, (35)

where the average 〈nL
jnρ〉 is calculated from the Hartree

approximation of HLDA combined with the partially screened
interaction calculated from cRPA as listed in Ref. 46. This
prescription is based on the observation that the Hartree
potential originated from the low-energy target degrees of
freedom considered in the LDA may well be reproduced in
the Hartree approximation of the previous model obtained
without considering the self-energy effect, because the Hartree
potential must be essentially the same. Then we can determine
the on-site potential tdcf

mmσ (Ri) free from the double counting.

D. Computational conditions

Computational conditions are as follows. We calculate the
band structures of the transition-metal-oxide SVO, and the
Fe-based layered superconductors FeSe and FeTe based on
the DFT/LDA.3,4 The band structure calculation is based
on the full-potential linear muffin-tin orbitals (FP-LMTO)
implementation.70 The cRPA and GW calculations use a
mixed basis consisting of products of two atomic orbitals and
interstitial plane waves.71 In the LDA calculation, 8 × 8 × 8 k

mesh is employed for the SVO, 12 × 12 × 6 k mesh is
employed for FeSe and FeTe. The muffintin (MT) radii are
as follows: RMT

Fe(FeSe) = 2.23 bohrs, RMT
Se(FeSe) = 2.26 bohrs,

RMT
Fe(FeTe) = 2.33 bohrs, RMT

Te(FeTe) = 2.58 bohrs. The angular
momentum cutoff is taken at l = 4 for all the sites. In the
cRPA and GW calculation, 6 × 6 × 6 k mesh is employed
for the SVO, 6 × 6 × 3 k mesh is employed for FeSe and
FeTe. By comparing the calculations with the smaller k mesh,
we checked that these conditions give well converged results.
We construct 3 (5 × 2 = 10) maximally localized Wannier
functions having strong V t2g (Fe 3d) character for SVO
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(the iron-based layered superconductors), respectively. For
SVO and FeSe, we calculate the Wannier function from the
linear combination of the minimum number of the isolated
KS bands near the Fermi level. For FeTe, where the target
band is entangled with other high-energy bands, we choose
[−2.2: 3.0] eV as the energy window for the Wannier
functions, and disentangle the target bands from the global KS
bands.29 In the calculation of the screened Coulomb interaction
and the self-energy, we include 24 occupied and 76 unoccupied
bands.

III. RESULT

A. SrVO3

In this section, we derive the low-energy effective model for
the V t2g bands of the transition-metal-oxide SVO. Figure 1(a)
shows the band structure of SVO in the DFT/LDA. SVO is
a paramagnetic metal72 and has a cubic structure with lattice
parameter aSVO = 3.843 Å.73 The three conduction bands at
the Fermi level are derived from the t2g orbitals of V sites,
where the octahedral crystal field of O−2 partially breaks the
fivefold symmetry of the 3d orbitals into the lower orbitals
of the t2g and the higher orbitals of the eg . The bandwidth of
the t2g bands is 2.58 eV. One conduction electron per unit cell
is accommodated in the t2g bands. Hereafter, we regard such
three conduction bands of the t2g orbitals as the low-energy
bands and the rest of the whole band structure of SVO as the
high-energy bands. The top of the occupied high-energy band
is the O 2p band and the bottom of the unoccupied high-energy
band is the V eg band.
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FIG. 1. (Color online) Electronic band structures of SVO ob-
tained by (a) the LDA and (b) the GWA. The zero energy corresponds
to the Fermi level. In the GWA, the self-energy is calculated only for
the t2g Wannier band.

FIG. 2. (Color online) Isosurface of the maximally localized
Wannier function for ±0.05 a.u. for the V dxy orbitals in SVO.

Figure 1(b) shows the band structure of SVO in the GWA,
where we calculate the self-energy only for the V t2g orbitals
after removing the exchange-correlation energy in the LDA.
Figure 2 shows the isosurface of the Wannier function of
the V dxy orbital, where the V dxy atomic orbital hybridizes
the nearest O p atomic orbitals. The Fermi energy of the
low-energy bands in Fig. 1(b) is determined by the occupation
number in the low-energy space separated from the whole
Hilbert space. Due to the large self-energy mainly from the
low-energy space of the t2g bands, the bandwidth in the GWA
is about 15% smaller than that in the LDA (see Table I).
In Fig. 3, the ω dependence of the self-energy of SVO in
the one-shot GWA is not smooth near the eigenvalues of the
V t2g bands. Incidentally, when one chooses [−10,10] (eV)
instead of [−0.5,0.5] (eV) as the ω range to calculate the
renormalization factor, then the average of Z considerably
increases from 0.55 to 0.74. This is an indication that the linear
approximation of the self-energy collapses in the low-energy
band near the Fermi level.

To calculate the transfer integral without double-counting
terms in the low-energy space, we calculate the constrained
self-energy originated only from the high-energy space, �H =
iGH W , instead of the exchange-correlation term V xc in the
LDA or the full self-energy GW in the GWA. We show
the ω dependence of the full self-energy GW and those of the
constrained self-energies GLW and GHW in Fig. 3, where
the real and imaginary parts of the correlation part at the
� point are presented in Figs. 3(a) and 3(b), respectively.
As one can see in Fig. 3, the ω dependence of GW mainly
originates from GLW , and thus the ω dependence of GH W

TABLE I. Bandwidth of the t2g band in each calculation of
the self-energy. Units are given in eV. The bandwidth of “HH ”
is calculated according to Eq. (17) and that of HH
 is calculated
according to Eq. (31), respectively. The bandwidth except for “LDA”
includes the ω dependence effect of the self-energy through the
renormalization factor.

SVO LDA GWA HH HH


Width 2.58 2.19 3.41 2.56
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FIG. 3. (Color online) (a) Real parts and (b) imaginary parts of correlation self-energy of the V t2g Bloch functions of SVO at � = (0,0,0)
in the Kohn-Sham gauge. The zero energy corresponds to the Fermi level. Inner window is the magnification only for “GH W.”

is very smooth and weak compared to those of GW and
GLW and the partial renormalization factor ZH is close to 1
(see Table II). These results are obtained from the first-shot
GWA, the first step of the iterative approximation of the GWA
from the DFT/LDA. The smoothness of GH W originates
partially from the validity of GH as the initial state of the
iterative calculation of the GWA. Because of the smoothness
and the small frequency dependence of GH W , the truncation
up to the first-order expansion of �H in frequency in Eq. (14)
and the neglect of Im�H and ZH in the numerator of GLp in
Eq. (17) are justified. Actually, ZH in this calculation does not
sensitively depend on the choice of the ω range. Figure 4 is the
ω dependence of the transfer integral without double-counting
terms to the nearest [1,0,0] and next-nearest [1,1,0] V t2g

orbitals. Similar to the self-energy of the t2g Bloch function
in Fig. 3, the ω dependence of the transfer integral without
double-counting terms is very weak. In the next paragraph, the
effect of the weak ω dependence is renormalized to the transfer
integral through the renormalization factor ZH . As one can see
in the list for ZH in Table II, the band narrowing effect by the
ω dependence of �H is small and nearly uniform in k space.

Figure 5 shows the band structure after considering the
self-energy GH W , where we calculate GH W for V t2g bands

instead of V xc and subtract the constant shift of the self-energy
from the low-energy bands. The band structure of the t2g

states is calculated according to Eq. (17), where the effect
of the renormalization factor ZH is included. In Fig. 5, the
Fermi level for the low-energy band is determined from the
occupation number in the low-energy space. On the other
hand, because the energy is determined not only from the
low-energy space but also from the high-energy space, the
energy is calculated from all degrees of freedom including
the high-energy space. If we calculate the self-energy from the
low-energy Green’s function GL in the GWA (GLW ), then the
band structure in the low-energy space corresponds to that in
the full GWA in Fig. 1(b).

We summarize the values of the transfer integral in Table III.
The transfer tH in the left column of Table III corresponds
to Fig. 5, where the ω dependence of �H is renormalized
to ZH . The renormalized values obtained further from the
ω dependence of the partial screened Coulomb interaction
WH (ω), namely, 
�L and tH
, are discussed in the next
paragraph. We note that the parameter of the t2g orbital has the
same symmetry with the V t2g orbitals in the real SVO. In
the LDA, the largest value of the nearest hopping is between
the same symmetries tLDA

xy,xy(1,0,0) and is about 270 meV,

TABLE II. Renormalization factor Z for each V t2g Wannier band in bulk SVO. ZH is the partial renormalization factor: ZH =
(I − ∂�H

∂ω
|ω=0)−1. “Average” is the average of the renormalization factor in k space. Each renormalization factor calculated from the energy

range [−0.5,0.5] (eV) around the Fermi level except for that with index “wide” which is calculated from the energy-range [−10,10] (eV)
around the Fermi level.

Z Average � X M R Zwide Average � X M R

xy 0.55 0.54 0.53 0.56 0.57 xy 0.74 0.75 0.75 0.73 0.73
yz 0.55 0.54 0.56 0.56 0.57 yz 0.74 0.75 0.73 0.73 0.73
zx 0.55 0.54 0.56 0.57 0.57 zx 0.74 0.75 0.73 0.73 0.73

ZL Average � X M R ZH Average � X M R

xy 0.58 0.56 0.55 0.59 0.60 xy 0.92 0.93 0.93 0.92 0.93
yz 0.58 0.56 0.59 0.59 0.60 yz 0.92 0.93 0.91 0.92 0.93
zx 0.58 0.56 0.59 0.59 0.60 zx 0.92 0.93 0.91 0.93 0.93

Z
 Average � X M R ZH
 Average � X M R

xy 0.77 0.78 0.77 0.78 0.77 xy 0.72 0.73 0.73 0.72 0.73
yz 0.77 0.78 0.78 0.78 0.77 yz 0.72 0.73 0.73 0.72 0.73
zx 0.77 0.78 0.78 0.77 0.77 zx 0.72 0.73 0.73 0.73 0.73
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FIG. 4. (Color online) Dynamical transfer integral of the t2g orbitals of the V sites without double-counting terms: t̃H (ω) = 〈φL|HLDA −
V xc + �H |φL〉 [see Eq. (7)]. The left panel is the nearest hopping [1,0,0] of the V t2g orbitals and the right panel is the next-nearest hopping
[1,1,0]. These values are dynamical and, therefore, do not include the effect of the renormalization factor ZH . We also show the transfer
integral in the LDA tLDA for comparison.

whereas that of the next-nearest hopping tLDA
xy,xy(1,1,0) is about

90 meV. Compared to the results of the LDA and the full GWA
in Fig. 1, the bandwidth of the V t2g in Fig. 5 is much larger
because of the absence of the self-energy originating from
the low-energy space GLW (see Table I). Correspondingly,
the transfer integral for the nearest-neighbor pair becomes
about 50% larger than that of the LDA. In other words, the
absolute value of the “effective” nearest transfer integral is
about 130 meV lower than that of the “bare” nearest transfer
integral given by tLDA − V xc because of the screening effect
of the high-energy degrees of freedom.

We now consider the self-energy effect arising from the
ω dependence of the partially screened Coulomb interaction.
Figure 6 is the ω dependence of the partially screened Coulomb
interaction between the V t2g orbitals. As is the case with
the constrained self-energy �H , the ω dependence of the
partially screened Coulomb interaction Wp is weak for small
ω(< 10 eV). We summarize the static limit of the partially
screened Coulomb interaction in Table IV. We renormalize the
ω dependence of the screened Coulomb interaction neglected
in Table IV into the one-body part by following Eq. (24).
Figure 7 shows the ω dependence of the correlation term of
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FIG. 5. (Color online) Electronic band structure of SVO, where
we calculate �H = iGH W for t2g Wannier orbitals instead of V xc

according to Eq. (17), and subtract the average of the self-energy
from the low-energy bands. The zero energy corresponds to the Fermi
level.


�L = iGL(W − WU ). Because 
�L originates from the
low-energy degrees of freedom, the overall slope in the ω

dependence of 
�L is basically similar to GLW illustrated in
Fig. 3(a). A small dip originating from L-L polarization GLGL

is observed near the energy eigenvalue of the low-energy band.
Figure 8 illustrates the band structure where the ω-

dependent part of the partially screened Coulomb interaction
is renormalized into the one-body part by following Eq. (31).
This band not only includes the effect of Z
 = (I − ∂
�L

∂ω
)−1

but also includes the effect of ZH . In Table III, the nearest
transfer integral renormalized by the ω dependence of U , tH
,
is substantially reduced from tH . This reduction of the transfer
integral is mainly caused by the renormalization factor ZH
.

It is remarkable that the resultant band structure of the
effective model is nearly the same as that of the LDA. Table I
shows that the final bandwidth is 2.56 eV in comparison to the
LDA result of 2.58 eV. The two corrections originated from
different effects, namely the increase in the bandwidth arising
from �H and the reduction arising from 
�L, are roughly
compensated and result in tH
 similar to the LDA estimate.

B. FeSe and FeTe

FeSexTe1−x is the simplest iron-based superconductor.74

It shows superconductivity with the transition temperature
Tc ∼ 10 K at ambient pressure75,76 and Tc ∼ 37 K under
pressure (7 GPa).77 FeTe indicates an antiferromagnetic
ordered moment ∼2.0–2.25μB at a Bragg point (π/2,π/2)
in the extended Brillouin zone,76,78 whereas magnetism is
not observed in FeSe. In this subsection, we derive the
effective model of the two compounds and discuss how orbital-
dependent effective parameters affect low-energy properties.

Figure 9(a) shows the band structure of FeSe in
the DFT/LDA. As is the general case in iron-based
superconductors,46 ten states having strong Fe 3d character
form a band near the Fermi level. The band is about 4.5 eV
in width, and is occupied by 12 electrons per unit cell. Small
electron pockets are found around the M point and hole pockets
are around the � point. Below the d bands, six states exist
between −6 and −3 eV. They consist of mainly Se 4p orbitals.
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TABLE III. Transfer integral and its components for the t2g orbitals of the V sites in the bulk SVO, tmn(Rx,Ry,Rz), where m and n

denote symmetries of t2g orbitals. Units are given in meV. tLDA is the expectation value of the KS Hamiltonian for the Wannier function:
tLDA = 〈φL|HLDA|φL〉 [Eq. (2)]. tGWA is the static transfer integral in the GWA : tGWA = 〈φL|HLDA + Z(−V xc + Re�)|φL〉. V xc is the
expectation value of the exchange-correlation potential for the Wannier function: V xc= 〈φL|V xc|φL〉. (�H + 
�L)(0) is the expectation
value of the constrained self-energies at ω = 0 for the Wannier function: (�H + 
�L)(0)= 〈φL|(�H + 
�L)(ω = 0)|φL〉. tH is the static
transfer integral without double counting: tH = 〈φL|HLDA + ZH (−V xc + Re�H )|φL〉 [Eq. (21)]. tH
 is the static transfer integral including
the correction of the ω dependence of U : tH
 = 〈φL|HLDA + ZH
[−V xc + Re(�H + 
�L)]|φL〉 [Eq. (34)]. The nominal energy bands of
orbitals (corresponding to the green bands in Fig. 1) are obtained by adding the constants in the parentheses shown in the column [0, 0,0] to
the values in front of the parentheses. This means that we derive the on-site energy from the numerical value by lowering with the amount (in
the unit of meV) in the parentheses so as to meet the requirement for the electron density occupied below the Fermi level, which must be fixed
to the LDA value and hence the experimental ones. This constant shift does not alter the low-energy effective model itself, because this just
gives the constant offset of the energy. The shift is related to the fact that the exchange-correlation effect will lower the whole energy of the
target band when we solve by the low-energy solver. The relative energy between the target band and the high-energy bands must eventually be
readjusted by subtracting this lowering from the present constant shift after solving the low-energy effective model. In this sense, the relative
energy between the target and the high-energy bands in the band structure is a tentative one.

(m,n) \ R [0,0,0] [1,0,0] [1,1,0] [1,1,1] [0,0,0] [1,0,0] [1,1,0] [1,1,1]

SVO tLDA tGWA

(xy,xy) 684 −271 −87 −6 550(+856) −237 −76 −6
(xy,yz) 0 0 0 4 0 0 0 2
(xy,zx) 0 0 0 4 0 0 0 2
(yz,yz) 684 −31 6 −6 550(+856) −21 5 −6
(yz,zx) 0 0 10 4 0 0 9 2
(zx,zx) 684 −271 6 −6 550(+856) −237 5 −6

V xc (�H + 
�L)(0)
(xy,xy) −24355 264 101 7 −21156 157 71 5
(xy,yz) 0 0 0 −24 0 0 0 −23
(xy,zx) 0 0 0 −24 0 0 0 −23
(yz,yz) −24355 134 −10 7 −21156 118 −9 5
(yz,zx) 0 0 −4 −24 0 0 −2 −23
(zx,zx) −24355 264 −10 7 −21156 157 −9 5

tH tH


(xy,xy) 991(+8112) −410 −64 −2 660(+2103) −281 −86 −6
(xy,yz) 0 0 0 11 0 0 0 4
(xy,zx) 0 0 0 11 0 0 0 4
(yz,yz) 991(+8112) −66 −6 −2 660(+2103) −30 5 −6
(yz,zx) 0 0 5 11 0 0 9 4
(zx,zx) 991(+8112) −410 −6 −2 660(+2103) −281 5 −6

TABLE IV. Effective Coulomb interaction between the two electrons for all the combinations of V t2g orbitals in SVO (in eV). v and Jv

represent the bare Coulomb interaction/exchange interactions, respectively. U (0) and J (0) represent the static values of the effective Coulomb
interaction/exchange interactions (at ω = 0). The index “n” and “nn” represent the nearest V site[1,0,0] and the next-nearest V site[1,1,0],
respectively.

v U (0) Jv J (0)

SVO xy yz zx xy yz zx xy yz zx xy yz zx

xy 16.03 14.86 14.86 3.51 2.52 2.52 0.55 0.55 0.47 0.47
yz 14.86 16.03 14.86 2.52 3.51 2.52 0.55 0.55 0.47 0.47
zx 14.86 14.86 16.03 2.52 2.52 3.51 0.55 0.55 0.47 0.47

vn Vn(0) vnn Vnn(0)

xy yz zx xy yz zx xy yz zx xy yz zx

xy 3.90 3.67 3.88 0.76 0.67 0.74 2.77 2.71 2.71 0.50 0.47 0.47
yz 3.67 3.48 3.67 0.67 0.60 0.67 2.71 2.65 2.66 0.47 0.45 0.46
zx 3.88 3.67 3.90 0.74 0.67 0.76 2.71 2.66 2.65 0.47 0.46 0.45
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FIG. 6. (Color online) Frequency dependence of partially screened Coulomb interaction U of the t2g orbitals of the V sites. Here, v is the
bare Coulomb interaction, and v̄ is the average value of the bare Coulomb interaction of the V t2g orbitals.

We regard the ten states having Fe 3d character as the
low-energy states, and construct the effective model. Figure 10
shows the isosurface of the maximally localized Wannier
functions associated with the ten states. They are spatially
extended because of hybridization between the Fe 3d atomic
orbital and adjacent Se 4p atomic orbitals. Since the strength
of hybridization depends on the orbital, spread of the Wannier
functions is orbital dependent (Table V). This is in sharp
contrast with the t2g-Wannier orbitals of SVO in the previous
section. The yz/zx and x2 − y2 orbitals are delocalized
compared to the xy and 3z2 − r2 orbitals. This trend is
observed not only in FeSe but also in FeTe and other iron-based
superconductors.46 (The xy axes in our convention are along
the unit vectors of the cell containing two Fe atoms.46 We
abbreviate the 3d orbitals such as dxy as xy, unless confusions
occur.)
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FIG. 7. (Color online) Correlation part of 
�L of the t2g Bloch
functions of SVO at � = (0,0,0) in the Kohn-Sham gauge.

Orbital dependence is also observed in the partial density of
states (pDOS). Figure 11 presents the pDOS of FeSe resolved
by the Wannier functions. The x2 − y2 orbital has large density
of states at the Fermi level in the LDA. A dip (pseudogap) is
seen at about 0.3 eV above the Fermi level. Table VI shows
the occupation number, where the 3z2 − r2 orbital has the
largest value (nearly 3/4 filling), while the x2 − y2 and yz/zx

orbitals are about half filling. We will discuss the results other
than LDA later.

Figure 9(b) is the band structure of FeSe in the GWA, where
we add the self-energy to the low-energy states after removing
the LDA exchange-correlation potential. The band dispersion
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FIG. 8. (Color online) Electronic band structure of SVO, where
we calculate �H + 
�L for t2g Wannier orbitals instead of V xc

according to Eq. (31), and subtract the average of the self-energy
from the low-energy bands. The zero energy corresponds to the Fermi
level.
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FIG. 9. (Color online) Electronic band structures of FeSe obtained by (a) the LDA and (b) the GWA and calculated according to (c) Eq. (17)
(double-counting-less of the low-energy space) and (d) Eq. (31) (renormalizing the ω dependence of Wp). The zero energy corresponds to the
Fermi level.

is similar to the LDA result, though the bandwidth becomes
about 10% smaller by the self-energy effect. This trend is more
clearly seen in the pDOS. In Fig. 11(b), we can confirm that
the pDOS is similar to that of LDA except for overall band
narrowing. The occupation number of each orbital is nearly
the same as the LDA value. In Figs. 12 and 13, ω-dependence
of the real (imaginary) part of the self-energy in FeSe is shown,
where the correlated part of the self-energy at the � point in
the full/constrained GWA is presented. These results in the
one-shot GWA are similar to those of the self-consistent GWA
(SCGWA).79 The degree of band shrink in the one-shot GWA
is nearly the same as that in the SCGWA. Compared to the

(c) d3z
2
-r

2 (d) dx
2
-y

2

(a) dxy (b) dyz

FIG. 10. (Color online) Isosurface of the maximally localized
Wannier functions ±0.02 a.u. for the Fe 3d orbitals in FeSe.

LDA result, energy splitting at the bottom of the 3d band at
the M point becomes smaller in both the one-shot GWA and
the SCGWA.

Now we turn to the results of effective models. Figure 9(c)
shows the band structure for Eq. (21), where the self-energy
correction from high-energy states is included. As is observed
in SVO, the band is substantially wider than that of LDA. In
contrast with SVO, however, the band dispersion is qualita-
tively different from the LDA band structure. Both the small
electron pockets around the M point and hole pockets around
the � point disappear. We note here that this band structure
does not include the self-energy effect from the low-energy
space, hence it should not be compared to experimental mea-
surements. The partial density of states and occupation number
corresponding to Fig. 9(c) are shown in Fig. 11(c) and Table VI,
respectively. The pseudogap observed in both LDA and GWA
disappears. The x2 − y2 orbital has a weight down to ∼−6
eV below the Fermi level, while the xy component extends up
to 3 eV, which results in the band widening. The occupation
number of the yz, zx, and x2 − y2 increases, whereas that of
the 3z2 − r2 decreases substantially to 0.81 from the LDA

TABLE V. Spread of the Wannier functions (in Å2) defined by
quadratic extent.

Spread xy yz 3z2 − r2 zx x2 − y2

FeSe 1.92 2.38 1.79 2.38 2.68
FeTe 2.85 3.38 2.42 3.38 2.86
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FIG. 11. (Color online) Partial densities of FeSe resolved by the Wannier function of the Fe 3d orbital: (a) LDA, (b) GWA, (c) according to
Eq. (17) (double-counting-less of the low-energy space), (d) according to Eq. (31) (renormalizing the ω dependence of Wp). The zero energy
corresponds to the Fermi level.

value of 1.57. Consequently, the order of the occupation
numbers is completely different from the LDA and GWA.

From now on, we focus on the effective model parameters
obtained from HH
 in Eq. (34), because they are the best
parameters which should be used in low-energy solvers. In
“HH
,” the ω dependence of the screened Coulomb interaction
is renormalized to the one-body part. The static value of the
on-site screened Coulomb (U ) and exchange (J ) interactions
in FeSe are presented in Table VII. We can see that the U

strongly depends on the orbital. Inclusion of its ω dependence
using Eq. (34) yields the band structure shown in Fig. 9(d).
The band becomes narrower by the dynamical effect of U .
The bandwidth is about 4 eV, which is smaller than the LDA
bandwidth and close to the GW one. The pDOS is shown in
Fig. 11(d). The yz/zx and 3z2 − r2 components have a peak
near the Fermi energy. This explains why the numbers are
quite different between LDA, GWA, HH , and HH
.

TABLE VI. Occupation number of the Wannier functions of FeSe,
where the sum of the occupancy is 6.

Occ. Num. xy yz 3z2 − r2 zx x2 − y2

LDA 1.23 1.05 1.57 1.05 1.11
GWA 1.20 1.03 1.52 1.03 1.22
HH 1.19 1.33 0.81 1.33 1.34
HH
 1.22 1.04 1.37 1.04 1.33

These results are understood from the transfer integrals
and on-site energies. The transfer integrals, tmn(R), are
summarized in Table VIII. In the tables and this subsection,
the symmetry of the d orbitals is denoted as the number;
1 for xy, 2 for yz, 3 for 3z2 − r2, 4 for zx, and 5 for
x2 − y2 orbitals.46 The on-site energy listed in the column
for (Rx,Ry,Rz) = (0,0,0) and the nearest-neighbor transfer
integral listed in the column for (1/2, − 1/2,0) are extracted
in Figs. 14 and 15, respectively.

It is useful to discuss the behavior of HH to understand
the parameter values for HH
. In comparison to the LDA and
HH
 approximation, the on-site energy of the x2 − y2 is lower
inHH , and the transfer integral for x2 − y2 (789 meV) is much
larger than that in LDA (56 meV). Both of them widen the
pDOS of the x2 − y2 orbital. The on-site energy of the 3z2 − r2

is higher in HH , which results in reduction of the occupation
number. The next-nearest transfer integrals (Rx,Ry,Rz) =
(1,0,0) are comparable with the nearest-neighbor ones in the
LDA. Especially, the (m,n) = (zx,zx) component, t ′LDA

44 , is
nearly the same as tLDA

11 , which makes the system frustrated.
These strong tendencies in HH are substantially weakened in
HH
, but still a similar difference remains relative to the LDA
result.

In the HH
 case, the order of the on-site energies is
partially changed from the HH case. The crystal-field splitting
is reduced and the transfer integrals change in both magnitude
and order, which brings qualitative modification of the band
dispersion. Compared to the LDA, the on-site energy of the
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FIG. 12. (Color online) Real parts of correlation self-energy of the 3d Bloch functions at � = (0,0,0) in the Kohn-Sham gauge.

x2 − y2 is lower by 0.25 eV and the occupation number
increases, while the 3z2 − r2 orbital is shifted upward by
as large as 0.35 eV and the occupation number decreases.
As is the case with the LDA, the nearest-neighbor transfer
integral for (m,n) = (xy,xy), tH


11 is the largest in magnitude.
The value is −451 meV and is about 10% larger than that of
the LDA (−410 meV). The (m,n) = (zx,zx) transfer, t ′H


44 , is
about 40% smaller than tH


11 . The transfer integrals tH
 except
for the yz/zx orbitals become larger than those of the LDA,
and the increase is substantial for the 3z2 − r2 and x2 − y2.
Since the x2 − y2 orbital is primarily responsible for the strong
correlation effects with the Mott physics,47,48 the increase in its
transfer may cause some reduction of the correlation effects.

We next show results for FeTe. Figure 16(a) shows the band
structure of FeTe in the LDA. The tenfold Fe 3d bands partially
entangle with the Te 5p valence bands, while the low-energy
bands are similar to that of FeSe. In fact, the density of states
of FeTe for the Fe 5d bands shown in Fig. 17(a) reveals that the
x2 − y2 orbital has the largest density of states at the Fermi
level followed by the yz/zx orbitals similarly to the case of
FeSe discussed above. In the case of FeTe, these two orbitals
even have peaks near the Fermi level. In Table IX, we see that
the occupation number is also similar to that of FeSe.

Figures 16(b) and 17(b) show the band structure and the
density of states of FeTe in the GWA, respectively, where we
disentangle the Fe 3d Wannier bands from the whole KS-band
structure1,29 and calculate the self-energy only for them. The

distribution of the density of states and the occupation number
are again nearly the same as those of the LDA and similar to
those of FeSe (see Table IX).

We now show in Figs. 16(c) and 16(d) the band structure
of FeTe after including the self-energy effect described by
HH introduced in Eq. (21) and HH
 in Eq. (34), respectively,
excluding the double counting of the electron correlation. As
is the case with FeSe, the band structures are substantially
different from that of the LDA. The corresponding densities of
states are also shown in Figs. 17(c) and 17(d). We summarize
the transfer integrals of FeTe without the double counting of
the electron correlation in Table X.

Now we focus on the effective model parameters obtained
fromHH
 in Eq. (34). The transfer integrals tH
 except for the
yz/zx orbitals become larger than those of the LDA, and the
increase is substantial for the 3z2 − r2 and x2 − y2, similarly
to FeSe.

Geometrical frustration effects measured by the ratio
between the next-nearest-neighbor (t ′) to the nearest-neighbor
(t) transfers also show a tendency similar to the case of FeSe:
The frustration |t ′/t | is remarkably suppressed from 52/66 to
36/263 for the diagonal transfer between two x2 − y2 orbitals.
Although this reduction looks dominating for the magnetic
stability, the frustration for the 3z2 − r2 orbital increases
because t and t ′ both become more than twice of the LDA
parameters and have similar amplitudes (t = −103 meV and
t ′ = −114 eV). All of these corrections from the LDA results
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FIG. 13. (Color online) Imaginary parts of correlation self-energy of the 3d Bloch functions at � = (0,0,0) in the Kohn-Sham gauge.
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TABLE VII. On-site effective Coulomb interaction between the two electrons for all the combinations of Fe 3d orbitals in FeSe (in eV).
U (0) and J (0) represent the static values of the on-site effective Coulomb interaction/exchange interactions (at ω = 0).

v U (0)

FeSe xy yz 3z2 − r2 zx x2 − y2 xy yz 3z2 − r2 zx x2 − y2

xy 18.65 16.50 17.28 16.50 16.51 4.51 3.19 3.21 3.19 3.48
yz 16.50 16.97 17.05 15.70 15.30 3.19 4.11 3.53 3.02 2.98
3z2 − r2 17.28 17.05 19.09 17.05 16.00 3.21 3.53 4.68 3.53 3.01
zx 16.50 15.70 17.05 16.97 15.30 3.19 3.02 3.53 4.11 2.98
x2 − y2 16.51 15.30 16.00 15.30 15.88 3.48 2.98 3.01 2.98 3.77

Jv J (0)

xy yz 3z2 − r2 zx x2 − y2 xy yz 3z2 − r2 zx x2 − y2

xy 0.66 0.79 0.66 0.34 0.57 0.69 0.57 0.32
yz 0.66 0.46 0.56 0.61 0.57 0.42 0.48 0.53
3z2 − r2 0.79 0.46 0.46 0.75 0.69 0.42 0.42 0.62
zx 0.58 0.56 0.46 0.61 0.57 0.48 0.42 0.53
x2 − y2 0.34 0.61 0.75 0.61 0.32 0.53 0.62 0.53

vn V (0)

xy yz 3z2 − r2 zx x2 − y2 xy yz 3z2 − r2 zx x2 − y2

xy 5.20 5.10 5.10 5.10 5.11 1.11 1.09 1.09 1.09 1.11
yz 5.10 4.99 5.00 5.01 5.01 1.09 1.08 1.08 1.10 1.09
3z2 − r2 5.10 5.00 5.00 5.00 5.02 1.09 1.08 1.07 1.08 1.08
zx 5.10 5.01 5.00 4.99 5.01 1.09 1.10 1.08 1.08 1.09
x2 − y2 5.11 5.01 5.02 5.01 5.03 1.11 1.09 1.08 1.09 1.11

are qualitatively similar to the case of FeSe. The increase of t ′
between the 3z2 − r2 and x2 − y2 orbitals to 38 meV is also
noticeable, which is different from the case of FeSe.

The stripe order is in general stabilized when t ′ becomes
comparable to t in amplitude, while the reduction of |t ′/t |
may stabilize longer-period antiferromagnetic order such as
up-up-down-down structure11 as is observed as the double
stripe order in FeTe before the simple staggered G-type
antiferromagnetic order becomes stabilized. The previous
solution for the ab initio low-energy models by the variational
Monte Carlo method48 based on the LDA band structure has
shown nearly degenerate ground states of the stripe and double
stripe structure. By considering the overall reduction of the
frustration particularly for the pair at the x2 − y2 orbitals, it is
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FIG. 14. (Color online) On-site potential of the Wannier function
of FeSe. The numerical numbers in the brackets indicate the constant
shift of the target-band energy to lower level in the unit of eV, in the
same way as in Table III.

an interesting issue to study whether the double stripe phase
becomes the unique ground state in the present ab initio model
as in the experimental observation.

The effective Coulomb interactions for FeTe obtained from
the cRPA are listed in Table XI. The on-site U , the exchange
J , and the nearest-neighbor diagonal Coulomb interaction V

are very similar to those obtained previously46 by using HLDA

(namely, the LDA band structure) and the differences are all
within 10% and mostly below 0.2 eV. Similarly to the previous
results,46 the overall correlation amplitudes are slightly smaller
than those of FeSe.

FeSe |t| [1/2,-1/2,0]

 0

 0.2

 0.4

 0.6

 0.8

 1

LDA

E
N

E
R

G
Y

 (
eV

)

(a) xy

 0

 0.2

 0.4

 0.6

 0.8

 1

E
N

E
R

G
Y

 (
eV

)

(b) yz

LDA

 0

 0.2

 0.4

 0.6

 0.8

 1

E
N

E
R

G
Y

 (
eV

)

LDA

(c) 3z -r2 2

 0

 0.2

 0.4

 0.6

 0.8

 1

E
N

E
R

G
Y

 (
eV

)

LDA

(d) x -y2 2

FIG. 15. (Color online) Nearest-neighbor transfer integral of the
Wannier function of FeSe.
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TABLE VIII. Transfer integral and its components for the 3d orbitals of the Fe sites in the FeSe, tmn(Rx,Ry,Rz), where m and n denote
symmetries of 3d orbitals. Units are given in meV. tLDA is the expectation value of the KS Hamiltonian for the Wannier function: tLDA =
〈φL|HLDA|φL〉 [Eq. (2)]. tH is the static transfer integral without double counting: tH = 〈φL|HLDA + ZH (−V xc + Re�H )|φL〉 [Eq. (21)].
tH
 is the static transfer integral including the correction of the ω dependence of U : tH
 = 〈φL|HLDA + ZH
[−V xc + Re(�H + 
�L)]|φL〉
[Eq. (34)]. The numerical numbers in the brackets in [0, 0,0] indicate the constant shift of the target-band energy to lower level in the unit of
meV, in the same way as in Table III.

tLDA

(m,n) \ R [0,0,0] [ 1
2 , − 1

2 ,0] [1,0,0] [1, − 1,0] [ 3
2 , − 1

2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −509 −410 −70 −11 3 −25 6 + + +
(xy,yz) 0 273 131 −9 −6 0 −9 + − −(1,4)
(xy,3z2 − r2) 0 −347 0 22 −8 0 11 − + +
(xy,zx) 0 273 0 −9 18 0 −3 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 −9 0 −4 − + −
(yz,yz) 46 197 128 −17 −8 8 27 + + (4,4)
(yz,3z2 − r2) 0 −119 0 7 2 0 11 − − −(4,3)
(yz,zx) 0 127 0 −23 −19 0 12 − + (4,2)
(yz,x2 − y2) 0 223 0 1 −3 0 20 − − (4,5)
(3z2 − r2,3z2 − r2) −388 −4 −15 −14 −6 −23 −9 + + +
(3z2 − r2,zx) 0 119 199 −7 −13 0 −10 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 −115 0 1 −8 −6 + + −
(zx,zx) 46 197 335 −17 13 8 0 + + (2,2)
(zx,x2 − y2) 0 −223 82 −1 −15 0 7 + − (2,5)
(x2 − y2,x2 − y2) −34 −56 93 0 17 −28 4 + + +
tH

(m,n) \ R [0,0,0] [ 1
2 , − 1

2 ,0] [1,0,0] [1, − 1,0] [ 3
2 , − 1

2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −155(+11666) −679 96 100 6 −67 6 + + +
(xy,yz) 0 15 94 −49 −10 0 −8 + − −(1,4)
(xy,3z2 − r2) 0 −518 0 41 11 0 −2 − + +
(xy,zx) 0 15 0 −49 −66 0 −8 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 16 0 −23 − + −
(yz,yz) −714(+11666) −198 179 −44 −23 −3 19 + + (4,4)
(yz,3z2 − r2) 0 −17 0 39 2 0 5 − − −(4,3)
(yz,zx) 0 405 0 −82 −75 0 22 − + (4,2)
(yz,x2 − y2) 0 159 0 −4 15 0 12 − − (4,5)
(3z2 − r2,3z2 − r2) 370(+11666) −217 −192 39 50 50 34 + + +
(3z2 − r2,zx) 0 17 206 −39 −30 0 19 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 135 0 −35 −56 37 + + −
(zx,zx) −714(+11666) −198 117 −44 39 −3 −9 + + (2,2)
(zx,x2 − y2) 0 −159 315 4 −73 0 −18 + − (2,5)
(x2 − y2,x2 − y2) −1176(+11666) 789 −98 −4 −19 −50 44 + + +
tH


(m,n) \ R [0,0,0] [ 1
2 , − 1

2 ,0] [1,0,0] [1, − 1,0] [ 3
2 , − 1

2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −263(+3786) −451 −25 22 2 −38 6 + + +
(xy,yz) 0 210 101 −27 −1 0 −9 + − −(1,4)
(xy,3z2 − r2) 0 −386 0 27 −5 0 8 − + +
(xy,zx) 0 210 0 −27 −7 0 −4 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 8 0 −10 − + −
(yz,yz) −71(+3786) 114 148 −39 −16 8 27 + + (4,4)
(yz,3z2 − r2) 0 −97 0 25 −3 0 8 − − −(4,3)
(yz,zx) 0 179 0 −33 −35 0 16 − + (4,2)
(yz,x2 − y2) 0 210 0 −1 10 0 18 − − (4,5)
(3z2 − r2,3z2 − r2) −12(+3786) −54 −85 5 10 −6 1 + + +
(3z2 − r2,zx) 0 97 203 −25 −14 0 −4 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 −48 0 −14 −20 5 + + −
(zx,zx) −71(+3786) 114 273 −39 28 8 −2 + + (2,2)
(zx,x2 − y2) 0 −210 138 1 −42 0 1 + − (2,5)
(x2 − y2,x2 − y2) −295(+3786) 157 25 −27 11 −34 15 + + +
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FIG. 16. (Color online) Electronic band structures of FeTe obtained from (a) LDA, (b) GWA, (c) Eq. (21) (HH , excluding double counting
in low-energy space), and (d) Eq. (34) (HH
, renormalizing the ω dependence of Wp in addition to HH ). The zero energy corresponds to the
Fermi level.

FeTe

 0

 0.5

 1

 1.5

-6 -4 -2  0  2  4

pD
O

S
 (

st
at

es
/e

V
)

ENERGY (eV)

xy
yz

3z2-r2
zx

x2-y2

(a) LDA

 0

 0.5

 1

 1.5

-6 -4 -2  0  2  4

pD
O

S
 (

st
at

es
/e

V
)

ENERGY (eV)

xy
yz

3z2-r2
zx

x2-y2

(b) GWA

 0

 0.5

 1

 1.5

-6 -4 -2  0  2  4

pD
O

S
 (

st
at

es
/e

V
)

ENERGY (eV)

xy
yz

3z2-r2
zx

x2-y2

 0

 0.5

 1

 1.5

-6 -4 -2  0  2  4

pD
O

S
 (

st
at

es
/e

V
)

ENERGY (eV)

xy
yz

3z2-r2
zx

x2-y2

(c) (d) 
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TABLE IX. Occupation number of Wannier functions of FeTe,
where total occupancy is 6.

Occ. Num. xy yz 3z2 − r2 zx x2 − y2

LDA 1.22 1.02 1.51 1.02 1.23
GWA 1.20 0.98 1.48 0.98 1.36
HH 1.32 1.48 0.88 1.48 0.84
HH
 1.23 1.22 1.32 1.22 1.01

A sharp contrast emerges in the comparison of the ab initio
models for FeSe and FeTe: The contrast is found in orbital level
shifts (or the on-site potential shifts) of the x2 − y2 orbital
when we compare with the LDA band structure, as we see in
the comparison between Figs. 14 and 18. For the present FeTe
ab initio model, although the relative shift of the x2 − y2

orbital level is not remarkable in Fig. 18, the occupation
number of the x2 − y2 orbital is reduced from the LDA value
1.23 to 1.01 as we list in Table IX. On the contrary, FeSe shows
a completely opposite behavior, where the occupation number
of the x2 − y2 orbital increases from the LDA value 1.11 to
1.33, because of a substantial downward shift of the x2 − y2

orbital level relative to other orbitals.
We now elucidate the origin of this conspicuous downward

shift of the x2 − y2 orbital of FeSe. We find that this downward
shift is even stronger in tH (actually the x2 − y2 orbital
becomes more than 0.45 eV lower than any other Fe 3d orbital,
as one sees in Table VII. In contrast, the occupation number
of the xy orbital, which has the band-insulator-like pDOS, is
almost unchanged from that of the LDA (∼6/5 = 1.2). We
then show the band structure, the density of states, and the
transfer integral calculated without the exchange-correlation
potential, t0 = 〈φL|HLDA − V xc|φL〉, in Figs. 19 and 20 and
Table XII, respectively. Overall behavior is nearly the same as
that of tH except for the uniform reduction of the bandwidth.
The total width of the Fe 3d bands in t0 is about 80% larger
than that in tH . This is because the self-energy �H only weakly
depends on the wave number and orbital in contrast to 
�L.
Therefore �H uniformly shrinks the bandwidth from t0.

Since the downward shift of the x2 − y2 orbital level in
t0 is even more enhanced than tH , we find that the essence
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FIG. 18. (Color online) On-site potential of Wannier orbitals for
FeTe. The numerical numbers in the brackets indicate the constant
shift of the target-band energy to lower level in the unit of eV, in the
same way as in Table III.

of the shift is contained in the procedure of subtracting
the exchange-correlation potential of the LDA: When the
effect of the exchange correlation would be removed, the
x2 − y2 orbital would be located at a level much lower than
other orbitals, because its stronger hybridization with the
chalcogen p orbitals contributes to the exchange-correlation
potentials. By contrast, in FeTe, because the yz/zx orbitals
have the strong hybridization with the chalcogen p orbitals (see
Table V), the reduction of the on-site potential of the yz/zx

orbitals is the largest. Such a weakly localized orbital, whose
effective on-site interaction is relatively weak, has weaker
self-energy compared to the other 3d orbitals.

More strictly speaking, the contribution of the d electrons to
the exchange-correlation potential is more or less proportional
to U in amplitude and the sign is negative. Therefore, if one
removes this contribution, the level is pushed up more or less
proportional to U . Since the x2 − y2 orbital has the weakest
U for FeSe, the upward level shift is the smallest for x2 − y2,
meaning that it moves downward relative to other orbitals. This
interpretation is in accord with the interpretation above by the
largest hybridization of the x2 − y2 orbital, because the largest
hybridization makes the largest Wannier spread and hence the
weakest U . The level shift is indeed in the order of U both
for FeSe and FeTe and in the order of the Wannier spread as
well. Then the level shift of xy, yz/zx, 3z2 − r2, and x2 − y2

orbitals of FeSe from the LDA result to the result by HH
 are
∼+0.25, − 0.1, + 0.4, and −0.25 eV, respectively, as we see
in Table VII. Therefore, when we solve by using the present
effective low-energy model with the single-particle part HH


instead of HLDA, the orbital levels should be effectively shifted
with these amounts.

Since the correlation effect is governed by the most cor-
related x2 − y2 orbital while the effective screened Coulomb
interactions are nearly the same between the previous46 and
the present models, such a downward shift of the x2 − y2

orbital may increase the filling of the x2 − y2 orbital, and
cause the depinning from half filling. This may destroy the
antiferromagnetic order as in the experimental observation.

Here, we note again that the band structure and the density
of states shown in Figs. 9, 11, 16, and 17 should not be
taken as the properties that can be directly compared with the
experiments, because the experimentally accessible quantities
such as the Fermi-surface structure and the spectral weight are
obtained only after solving the effective low-energy models.

IV. SUMMARY

We have proposed an improved scheme for ab initio deriva-
tion of the low-energy effective models. Our formalism is free
from the double counting of Hartree and Fock contributions
from the low-energy space, and the LDA exchange correlation
is replaced by the GW self-energy. Moreover, the derived
effective model is reduced to a static one, where the ω

dependence of the screened Coulomb interaction is taken
into account and renormalized to the one-body part as a
self-energy. We have applied this formalism to transition-metal
oxide SVO, as well as to iron-based superconductors FeSe
and FeTe. We have found that there are two opposite effects,
namely the increase in the bandwidth arising from �H and
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TABLE X. Transfer integral and its components for the 3d orbitals of the Fe sites in FeTe, tmn(Rx,Ry,Rz), where m and n denote symmetries
of 3d orbitals. Units are given in meV. tLDA is the expectation value of the KS Hamiltonian for the Wannier function: tLDA = 〈φL|HLDA|φL〉
[Eq. (2)]. tH is the static transfer integral without double counting: tH = 〈φL|HLDA + ZH (−V xc + Re�H )|φL〉 [Eq. (21)]. tH
 is the static
transfer integral including the correction of the ω dependence of U : tH
 = 〈φL|HLDA + ZH
[−V xc + Re(�H + 
�L)]|φL〉 [Eq. (34)]. The
numerical numbers in the brackets in [0, 0,0] indicate the constant shift of the target-band energy to lower level in the unit of meV, in the same
way as in Table III.

tLDA

(m,n) \ R [0,0,0] [ 1
2 , − 1

2 ,0] [1,0,0] [1, − 1,0] [ 3
2 , − 1

2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −452 −378 −11 −41 −1 −31 12 + + +
(xy,yz) 0 237 109 3 −6 0 −12 + − −(1,4)
(xy,3z2 − r2) 0 −336 0 33 −9 0 21 − + +
(xy,zx) 0 237 0 3 35 0 −1 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 −14 0 3 − + −
(yz,yz) 44 156 103 −15 −12 13 37 + + (4,4)
(yz,3z2 − r2) 0 −122 0 17 6 0 11 − − −(4,3)
(yz,zx) 0 101 0 −27 −25 0 14 − + (4,2)
(yz,x2 − y2) 0 178 0 0 −10 0 22 − − (4,5)
(3z2 − r2,3z2 − r2) −480 −73 −53 3 8 −67 −23 + + +
(3z2 − r2,zx) 0 122 198 −17 −17 0 −32 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 −29 0 −6 30 −30 + + −
(zx,zx) 44 156 300 −15 42 13 9 + + (2,2)
(zx,x2 − y2) 0 −178 136 0 −23 0 26 + − (2,5)
(x2 − y2,x2 − y2) −211 66 52 9 12 16 −24 + + +
tH

(m,n) \ R [0,0,0] [ 1
2 , − 1

2 ,0] [1,0,0] [1, − 1,0] [ 3
2 , − 1

2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −415(+11116) −583 232 105 −3 −107 16 + + +
(xy,yz) 0 −160 42 −33 2 0 −19 + − −(1,4)
(xy,3z2 − r2) 0 −400 0 17 −2 0 40 − + +
(xy,zx) 1 −159 1 −33 −84 0 −5 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 10 0 −17 − + −
(yz,yz) −1041(+11116) −310 154 −44 −30 32 21 + + (4,4)
(yz,3z2 − r2) 0 13 0 29 8 0 −13 − − −(4,3)
(yz,zx) 0 456 0 −66 −98 0 7 − + (4,2)
(yz,x2 − y2) 0 44 0 2 9 0 2 − − (4,5)
(3z2 − r2,3z2 − r2) 324(+11116) −235 −289 56 81 65 13 + + +
(3z2 − r2,zx) 0 −13 173 −29 −13 0 −7 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 263 0 −64 −56 21 + + −
(zx,zx) −1041(+11116) −310 7 −44 72 32 7 + + (2,2)
(zx,x2 − y2) 0 −44 225 −3 −52 0 −15 + − (2,5)
(x2 − y2,x2 − y2) −193(+11116) 997 −276 −11 10 −51 43 + + +
tH


(m,n) \ R [0,0,0] [ 1
2 , − 1

2 ,0] [1,0,0] [1, − 1,0] [ 3
2 , − 1

2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −353(+3402) −401 46 3 −2 −49 13 + + +
(xy,yz) 0 142 78 −11 0 0 −14 + − −(1,4)
(xy,3z2 − r2) 0 −338 0 27 −9 0 26 − + +
(xy,zx) 0 142 0 −11 2 0 −1 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 0 0 −2 − + −
(yz,yz) −219(+3402) 55 119 −29 −17 17 32 + + (4,4)
(yz,3z2 − r2) 0 −88 0 25 6 0 5 − − −(4,3)
(yz,zx) 0 171 0 −34 −45 0 13 − + (4,2)
(yz,x2 − y2) 0 142 0 1 −1 0 16 − − (4,5)
(3z2 − r2,3z2 − r2) −176(+3402) −103 −114 21 24 −37 −13 + + +
(3z2 − r2,zx) 0 88 187 −25 −11 0 −26 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 38 0 −23 11 −17 + + −
(zx,zx) −219(+3402) 55 223 −29 52 17 10 + + (2,2)
(zx,x2 − y2) 0 −142 143 −1 −31 0 16 + − (2,5)
(x2 − y2,x2 − y2) −230(+3402) 263 −36 −10 22 0 −7 + + +
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TABLE XI. Bare and effective Coulomb interactions between two electrons for all the combinations of Fe 3d orbitals in FeTe (in eV).
Here, v and Jv represent the bare on-site and exchange Coulomb interactions, respectively. The static limit (ω → 0) of the effective on-site and
exchange Coulomb interactions are denoted by U (0) and J (0), while vn and V (0) represent the bare and effective nearest-neighbor Coulomb
interactions, respectively.

v U (0)

FeTe xy yz 3z2 − r2 zx x2 − y2 xy yz 3z2 − r2 zx x2 − y2

xy 17.08 15.05 16.20 15.05 16.26 3.46 2.30 2.36 2.30 2.80
yz 15.05 15.36 15.87 14.24 14.94 2.30 3.08 2.62 2.15 2.30
3z2 − r2 16.20 15.87 18.25 15.87 16.08 2.36 2.62 3.73 2.62 2.35
zx 15.05 14.24 15.87 15.36 14.94 2.30 2.15 2.62 3.08 2.30
x2 − y2 16.32 14.94 16.08 14.94 16.77 2.82 2.30 2.36 2.30 3.39

Jv J (0)

xy yz 3z2 − r2 zx x2 − y2 xy yz 3z2 − r2 zx x2 − y2

xy 0.59 0.73 0.59 0.33 0.49 0.62 0.49 0.31
yz 0.59 0.42 0.49 0.59 0.49 0.37 0.40 0.49
3z2 − r2 0.73 0.42 0.42 0.74 0.62 0.37 0.37 0.62
zx 0.59 0.49 0.42 0.59 0.49 0.40 0.37 0.49
x2 − y2 0.33 0.59 0.74 0.59 0.31 0.49 0.62 0.49

vn V (0)

xy yz 3z2 − r2 zx x2 − y2 xy yz 3z2 − r2 zx x2 − y2

xy 4.96 4.87 4.91 4.87 4.97 0.92 0.90 0.90 0.90 0.92
yz 4.87 4.79 4.83 4.80 4.88 0.90 0.90 0.90 0.91 0.90
3z2 − r2 4.91 4.83 4.85 4.83 4.92 0.90 0.90 0.89 0.90 0.90
zx 4.87 4.80 4.83 4.79 4.88 0.90 0.91 0.90 0.90 0.90
x2 − y2 4.97 4.88 4.92 4.88 4.99 0.92 0.90 0.90 0.90 0.93

the reduction arising from 
�L. In SVO, these effects are
roughly compensated, and remarkably, the resultant bandwidth
and the dispersions are nearly the same as that of the LDA
(the bandwidth of LDA: 2.58 eV; HH
: 2.56 eV). On the
other hand, in the nondegenerate multiband systems such
as FeSe and FeTe, though the bandwidths are also similar
to the LDA results, the momentum and orbital dependent
self-energy effects yield modifications of the resultant band
structures. For the effective low-energy model for FeSe given
by HH
, the on-site potential of the x2 − y2 orbitals, which
has the strongest hybridization with the Se 4p orbitals and
thus the weakest on-site interaction among the Fe 3d orbitals, is
substantially lowered from that of the LDA. This may make the

occupation number of the x2 − y2 orbital away from half filling
and destroy the antiferromagnetic order as in the experimental
observation. In contrast, the lowering of the on-site potentials
is the largest in the yz/zx orbitals in FeTe, and the resultant
occupation number of the x2 − y2 orbital remains close to half
filling.

By our formalism, two major drawbacks in the derivation of
the low-energy effective model in the literature are removed.
The effects of �H and 
�L compensate and the resultant
bandwidth is, rather accidentally, nearly the same as that of the
LDA, while the structure of the band and the on-site potential
of the nonequivalent orbital quantitatively change in some
systems such as FeSe and FeTe.
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FIG. 19. (Color online) Electronic band structures calculated without exchange-correlation potential of FeSe and FeTe. The zero energy
corresponds to the Fermi level.
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FIG. 20. (Color online) Partial densities of states calculated without exchange-correlation potential for FeSe and FeTe resolved by Wannier
functions of Fe 3d orbitals.

Even with this improvement, we still have future issues
to be resolved: In the practical calculation of the low-energy

effective model by low-energy solvers, one often neglects the
farther-neighbor effective interaction owing to heavy costs

TABLE XII. Transfer integral between Fe 3d Wannier orbitals for FeSe and FeTe, tmn(Rx,Ry,Rz), where m and n denote symmetries of
3d orbitals. Here, Fock terms are not included. Units are given in meV. Transfer integral calculated without exchange-correlation potential is
given as t0 = 〈φL|HLDA − V xc|φL〉. The numerical numbers in the brackets in [0, 0,0] indicate the constant shift of the target-band energy to
lower level in the unit of meV, in the same way as in Table III.

FeSe
(m,n) \ R [0,0,0] [ 1

2 , − 1
2 ,0] [1,0,0] [1, − 1,0] [ 3

2 , − 1
2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −509(+28062) −1137 172 166 6 −126 20 + + +
(xy,yz) 0 107 191 −102 −16 0 −7 + − −(1,4)
(xy,3z2 − r2) 0 −861 0 96 12 0 15 − + +
(xy,zx) 0 107 0 −102 −110 0 −20 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 48 0 −29 − + −
(yz,yz) −956(+28062) −310 377 −88 −47 16 55 + + (4,4)
(yz,3z2 − r2) 0 −87 0 85 2 0 −5 − − −(4,3)
(yz,zx) 0 936 0 −166 −145 0 48 − + (4,2)
(yz,x2 − y2) 0 145 0 −4 36 0 25 − − (4,5)
(3z2 − r2,3z2 − r2) −148(+28062) −330 −329 54 73 39 38 + + +
(3z2 − r2,zx) 0 87 222 −85 −41 0 9 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 339 0 −59 −89 51 + + −
(zx,zx) −956(+28062) −310 83 −88 95 16 −13 + + (2,2)
(zx,x2 − y2) 0 −145 586 4 −126 0 −18 + − (2,5)
(x2 − y2,x2 − y2) −1416(+28062) 1584 −243 −6 −16 −82 71 + + +
FeTe
(m,n) \ R [0,0,0] [ 1

2 , − 1
2 ,0] [1,0,0] [1, − 1,0] [ 3

2 , − 1
2 ,0] [0,0, c

a
] [ 1

2 , − 1
2 , c

a
] σy I σL

(xy,xy) −1016(+27715) −1039 422 195 −22 −203 41 + + +
(xy,yz) 0 −195 96 −91 14 0 −22 + − −(1,4)
(xy,3z2 − r2) 0 −659 0 71 8 0 81 − + +
(xy,zx) 0 −195 0 −91 −179 0 −13 − − −(1,2)
(xy,x2 − y2) 0 0 0 0 33 0 −13 − + −
(yz,yz) −1527(+27715) −568 347 −83 −57 86 41 + + (4,4)
(yz,3z2 − r2) 0 −76 0 86 18 0 −55 − − −(4,3)
(yz,zx) 0 1095 0 −148 −203 0 9 − + (4,2)
(yz,x2 − y2) 0 −23 0 17 22 0 −10 − − (4,5)
(3z2 − r2,3z2 − r2) −435(+27715) −394 −410 111 121 26 −1 + + +
(3z2 − r2,zx) 0 76 129 −86 −4 0 −54 + − −(3,2)
(3z2 − r2,x2 − y2) 0 0 502 0 −110 −29 3 + + −
(zx,zx) −1527(+27715) −568 −80 −83 132 86 24 + + (2,2)
(zx,x2 − y2) 0 23 348 −17 −65 0 −1 + − (2,5)
(x2 − y2,x2 − y2) −806(+27715) 1758 −522 −11 30 −24 37 + + +
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of the numerical computation. This long-range part makes
the effect of the on-site interaction weaker. The polaronic
screening effect from the lattice also weakens the effective
Coulomb interaction between the electrons. When simplified
models are used in the low-energy solvers, these corrections
may have small contributions. Counting these effects to the
downfolding formalism is left for future problems.

Biases originating from the DFT/LDA in the global band
structure may induce false effects on the low-energy effective
model. In both cRPA and constrained GWA, the screening
effect is usually calculated from the DFT/LDA(GGA) band
structure. If the band originated from the localized orbital
such as 4f is fallaciously located near the Fermi level in
the DFT/LDA, the screening effect is overestimated. Such a
problem can be solved by the preconditioned GWA,40 although
the calculation of the global band structure becomes heavy
compared to that in the DFT/LDA. One of the most serious
cases is the interface of the Mott insulator. In such case, we
should calculate the high-energy band beyond the DFT/LDA
or the GWA.

The Hilbert space of the low-energy degrees of freedom
is also determined from the global band structure in the
DFT/LDA or the GWA. If one calculates MACE self-
consistently (which means the calculation of the effective
model by the low-energy solver, replacing of the obtained low-
energy bands with the previous low-energy band of the LDA,
and calculation of the screening effect of the high-energy space
from the updated global band structure with renormalization
of the high-energy degrees of freedom into the low-energy
effective model, etc.), the Hilbert space of the low-energy
degrees of freedom still remains that in the DFT/LDA. In the
three-step approach of MACE, each space is fixed and treated
independently except for the first calculation of the global
band structure by the DFT/LDA, although the screening effect
from the high- to low-energy spaces is taken into account.
Therefore, the hybridization between the low- and high-energy

spaces is unchanged in the three-step approach. Such a bias
can be removed by taking the large energy window for the low-
energy Wannier function and to include many orbitals to the
low-energy model such as the dp model, but the calculation by
the low-energy solver inevitably becomes heavy and restricted.

Another open issue is to consider possible refined esti-
mates of the GW self-energy arising from the high-energy
contributions. A self-consistent GW scheme instead of the
one-shot self-energy has been employed by Kutepov et al.80

with the combination of the solver based on the dynamical
mean-field theory. In the full GW calculations, it has been
known for a long time that the self-consistent GW calculations
give worse agreements with the experimental estimates of the
gap amplitudes than those of the one-shot GW . This may
be attributed to the vertex corrections ignored in the GW

approximation that roughly cancels the difference between
the one-shot and self-consistent estimates. Counting both of
the vertex corrections and self-consistency is, though expected
to cause minor differences in this constrained self-energy, left
for future studies.
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