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We analyze the sharpness of crossing (“isosbestic”) points of a family of curves which are observed in many
quantities described by a function f (x,p), where x is a variable (e.g., the frequency) and p is a parameter (e.g.,
the temperature). We show that if a narrow crossing region is observed near x∗ for a range of parameters p, then
f (x,p) can be approximated by a perturbative expression in p for a wide range of x. This allows us, e.g., to
extract the temperature dependence of several experimentally obtained quantities, such as the Raman response
of HgBa2CuO4+δ , photoemission spectra of thin VO2 films, and the reflectivity of CaCu3Ti4O12, all of which
exhibit narrow crossing regions near certain frequencies. We also explain the sharpness of isosbestic points in
the optical conductivity of the Falicov-Kimball model and the spectral function of the Hubbard model.
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I. INTRODUCTION

As early as 1937 it was noticed1 that the curves of the
extinction coefficient α(ω,c1) of a mixture of two liquid
solutions intersect exactly at one frequency ω� when plotted
as a function of ω for different concentrations c1 of one of
the components. At this particular frequency, the extinction
coefficient therefore no longer depends on the parameter c1.
This point of intersection of the family of curves α(ω,c1) is
referred to as an isosbestic point.2–4 Today isosbestic points of
the extinction coefficient of two compounds play an important
role in spectrophotometry.5

It is a common practice in the natural sciences to illustrate
the functional dependence of a quantity f on a variable x and
a parameter p by plotting f (x,p) versus x for several values of
p, say p1, . . . ,pn. This leads to a family of n curves f (x,pi),
i = 1, . . . ,n. The curves will usually intersect. If the points of
intersection are confined to a narrow region of x values, or if
they even coincide at a single point x� as in the case of the
absorbance α(ω,c1), it leads to a conspicuous feature whose
origin calls for an explanation. Well-defined crossing points of
curves are now often called “isosbestic points” even if they do
not fall onto a single point.6,7 We will use this term also in the
present paper. We stress that the characteristic p-independence
of f (x,p) at x� in these general cases is only fulfilled in a fairly
small p-interval, i.e., it is a “local” phenomenon.

For example, an unexpected sharp crossing point at T � =
160 mK was recognized in the family of curves of the
specific heat cV (T ) of normal-liquid 3He when plotted as a
function of temperature for different molar volumes.8 Rather
sharp crossing points are also observed9 in the specific-
heat curves c(T ,X) of many heavy-fermion compounds,
with X as a second thermodynamic variable, e.g., when
measured at different pressures (X = P ) as in CeAl3,10 or
for different magnetic fields (X = H ) as in CeCu6−xAlx ,11

RuSr2Gd1.5Ce0.5Cu2O10−δ ,12 Mn1−xFexSi,13 Mn1−xCoxSi,13

Cu2OSeO3,14 and MnSi.15

Crossing points of specific-heat curves have been found
in theoretical investigations of lattice models for correlated
electrons such as the one-band Hubbard model.9,16–18 At

half-filling the curves obtained by plotting c(T ,U ) versus
T for different values of the local Coulomb repulsion U

always cross at two temperatures, irrespective of the type of
lattice, as seen in the case of nearest-neighbor hopping in
d = 1,19–21 d = 2,22–25 and d = ∞,17 as well as for long-range
hopping in d = 1.26 In particular, the crossing point at high
temperatures was found to occur at a nearly universal value
c�/kB � 0.34.18,27 Subsequently, crossing points were noticed
also in the charge susceptibility of the half-filled extended
Hubbard model in d = 128 and the thermal conductance
of strongly correlated quantum dots.29 The heavy fermion
compound YbRh2Si2 exhibits analogous isosbestic points in
its magnetic susceptibility χ (H,T ).30

The crossing points discussed above all occur when the
temperature dependence of some physical quantity such as the
specific heat is plotted for different values of a parameter,
e.g., pressure, magnetic field, or interaction strength. But
crossing points have also been observed in experimental
data and theoretical results for the frequency dependence of
various response functions, e.g., (i) in the optical conductivity
σ (ω,X) of electron-doped Nd2−δCeδCuO4, with X = δ as
the doping level,6 and other high-Tc materials31 as well as
in the pyrochlore-type molybdate family R2Mo2O7 (R =
Nd,Sm,Eu,Gd),32 where X now denotes the ionic radius r

associated with the different elements R; (ii) in the Raman
response function χ (ω,T ) of the high-Tc material
HgBa2CuO4+δ plotted as a function of the Raman shift ω

for different temperatures;33 and (iii) in the dielectric function
ε(ω,T ) of the colossal magnetoresistance material LaMnO3

34

and the reflectivity R(ω,T ) of the colossal dielectric constant
material CaCu3Ti4O12

35 when plotted as a function of the
photon energy ω for different values of T .

Sharp crossing points in the Raman response χ (ω,T ) have
been found in theoretical investigations based on the Hubbard
model7,36 and the Falicov-Kimball model.37,38 The spectral
function A(ω,U ) of the Hubbard model computed within
dynamical mean-field theory (DMFT) also shows a sharp
crossing point.39

Whenever isosbestic points occur in a function f (x,p), two
separate questions arise:9
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(i) Why do the curves cross at all?
(ii) Why is the crossing feature confined to a narrow region

despite significant changes in the parameter p?40

As discussed by one of us,9 the existence of crossing points
in specific-heat curves can be explained by a sum rule for
the change of the entropy S(T ,X) with respect to X in the
limit of T → ∞. Furthermore, their sharpness can be linked
to the smallness of the susceptibilities χ (n)(T ,X) = ∂nξ/∂Xn

of strongly correlated systems in an expansion of the specific
heat c(T ,X) with respect to X, where ξ (T ,X) is the conjugate
variable to X.41

In this paper, we concentrate on the second question.
In Sec. II we discuss the properties of isosbestic points
and derive the leading parameter dependence for a function
f (x,p) with an approximate isosbestic point. This yields
a generalization of the two-fluid model1 and allows us to
extract the leading parameter dependence for quantities which
exhibit such a narrow crossing region. In Sec. III we then
extract the temperature dependence of several experimentally
obtained quantities, such as the Raman response χ (ω,T )
of the cuprate compound HgBa2CuO4+δ , in photoemission
spectra I (ω,T ) of VO2 thin films, and in the reflectivity
R (ω,T ) of CaCu3Ti4O12. We also explain the sharpness of
isosbestic points in the optical conductivity of the Falicov-
Kimball model37 (Sec. IV) and the spectral function A (ω,U )
of the Hubbard model (Sec. V), both within DMFT.42–47 A
conclusion follows in Sec. VI.

II. PROPERTIES OF EXACT AND APPROXIMATE
ISOSBESTIC POINTS

A. Existence of crossing points

A family of nonmonotonic curves, obtained by plotting a
quantity f (x,p) as a function of x for different values of a
parameter p, will in general intersect. The crossing points are
located along a curve x�(p) defined by9,39

∂f (x,p)

∂p

∣∣∣∣
x�(p)

= 0 . (1)

If these points of intersection are confined to a narrow region
(in which case we refer to them as isosbestic points), the value
x�(p) depends only weakly on p. If the curves intersect at a
single point, x� does not depend on p at all.

Equation (1) immediately explains why the absorbance of a
mixture of two liquid solutions with individual concentrations
c1,c2, whose total concentration is constant (c1 + c2 = c), has
a sharp isosbestic point.2 Namely, in this case the absorbance
α(ω,c1) depends only linearly on the concentration c1, i.e., it
has the special form

α(ω,c1) = c1α1(ω) + (c − c1)α2(ω). (2)

If α1 and α2 coincide at some frequency ω�, i.e., α1(ω�) =
α2(ω�), then

∂α(ω,c1)

∂c1

∣∣∣∣
ω�

= 0 . (3)

This implies that for all concentrations c1 the absorbance
curves intersect exactly at one frequency ω�, or the equiv-
alent wavelength. Quite generally, whenever a system is a

superposition of two components, where the sum of the
densities is conserved, isosbestic points in the curves plotted
for different densities are bound to occur.39,48 Indeed, this
argument is used by Uchida et al.6 and Kézsmárki et al.32 to
explain the well-defined isosbestic points in the optical con-
ductivity σ (ω,p) of numerous correlated electron materials,
where p is some control parameter, e.g., the temperature or
the bandwidth. Starting from the sum rule for the optical
conductivity, and assuming (i) that the spectral weight is
only redistributed between electrons with two different energy
scales, and (ii) the optical spectrum can be decomposed and
linearly interpolated by two terms as a function of p, they
arrive at an expression for the optical conductivity given by
σ (ω,p) = pσ1(ω) + (1 − p)σ2(ω), which is identical to the
result for the absorbance in Eq. (2) and hence leads to an
isosbestic point at some particular frequency ω�.49

Before we continue with our discussion, we need to
introduce a suitable nomenclature. Based on the behavior
of the curve of crossing points x�(p), we identify three
different cases: (i) A globally exact isosbestic point, which is
characterized by x�(p) = const, corresponding to a complete
p independence of f (x�,p); (ii) a locally exact isosbestic
point, which arises when x�(p) exhibits a local extremum
or a higher-order stationary point around some value p =
p0, corresponding to a locally p-independent f (x�(p),p)
around p = p0; (iii) an approximate isosbestic point, which
corresponds to a weak p dependence of x�(p).

We note that locally exact isosbestic points can be further
classified by the order of the stationary point of x�(p) at p0. If

∂kx�(p)

∂pk

∣∣∣∣
p0

= 0 (4)

for k � n, the isosbestic point is called an “isosbestic point of
nth order.”

B. Sharpness of isosbestic points

To understand the general origin of sharp isosbestic points
in a function f (x,p), it is important to note that isosbestic
behavior is usually observed only in a certain parameter range
around some particular value p0 and can be expected to break
down away from p0. Accordingly, the weak p dependence
of x�(p) required for an approximate isosbestic point will
generally be a local phenomenon, i.e., it applies only for a
finite p interval around p0. This observation of the local nature
of isosbestic points motivates the following expansion around
p0:

f (x,p) = f (x,p0) + (p − p0) F1(x,p0) + O[(p − p0)2],

(5)

where Fn(x,p) = ∂nf (x,p)/∂pn. One has F1(x�(p0),p0) = 0,
by virtue of the definition of x�(p) [Eq. (1)]. As a consequence,
the linear approximation of f (x,p),

fapprox(x,p) = f (x,p0) + (p − p0) F1(x,p0), (6)

will exhibit an exact isosbestic point at x = x�(p0) for all
values of p. Since

f (x,p) = fapprox(x,p) + O[(p − p0)2], (7)
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the second term is seen to be responsible for deviations from
the exact isosbestic point described by fapprox(x,p). This result
can be put to a test by checking the validity of the following
approximation:

f̃ (x,p) ≡ f (x,p) − (p − p0)F1(x,p0) (8)

= f (x,p0) + O[(p − p0)2] (9)

� f (x,p0). (10)

The quantity f̃ (x,p) represents the reference curve f (x,p0)
plus all terms which are responsible for the deviations from
the exact isosbestic case. The verification of its approxi-
mate parameter independence, i.e., the verification of the
approximation f̃ (x,p) � f (x,p0), allows one to quantify
the importance of the subleading terms O[(p − p0)2] and
therefore the deviations from the exact isosbestic case.

In general, the value of p0 should correspond to the position
of the weakest p dependence of x�(p) and, without any further
information on the system, is generally hard to determine
unambiguously. Of particular interest, however, are the cases
in which p0 corresponds to an extremum or some higher-order
stationary point of x�(p). These cases lead to locally exact
isosbestic points where p0 is determined by x�′(p0) = 0. The
new variable (p − p0) is then a small parameter of the system,
e.g., an internal frequency scale if p is a frequency. From the
implicit Eq. (1) one obtains

d

dp
x�(p) = − ∂F1(x,p)/∂p

∂F1(x,p)/∂x

∣∣∣∣
x=x�(p)

, (11)

which means that for x�′(p0) = 0 the subleading terms in
Eq. (7) are at least of order (p − p0)3, thus corresponding to
particularly weak deviations from the exact isosbestic point
in fapprox(x,p) in a vicinity of p0. In practice, isosbestic
points corresponding to an extremum of x�(p) are rather
common, as will be discussed in the following sections. A
more mathematical treatment regarding the behavior around
such stationary points of x�(p) is provided in Appendix A. In
the rest of the paper, we will use these results to show that
isosbestic points are indeed connected to a leading parameter
dependence as described by Eq. (6).

Finally, we emphasize that it is not possible to quantify
the sharpness of isosbestic points beyond Eqs. (8)–(10), since
the perceived sharpness always depends on the magnification
of the crossing region, which is not an intrinsic property of
f (x,p) itself (see Appendix B).

III. ANALYSIS OF EXPERIMENTALLY OBSERVED
ISOSBESTIC POINTS

The generality of Eq. (7) allows us to investigate the
sharpness of a whole class of isosbestic points in entirely
unrelated systems within a common framework. An existing
set of theoretical or experimental data of a quantity Q (x,pi)
obtained for a number of different parameters, i = 1,2, . . . ,n

can be analyzed in the vicinity of an isosbestic point x�(p) by
comparing it to

Qapprox (x,p) = Q(x,p0) + (p − p0)Q1(x,p0). (12)

Here the function Q1 (x,p0) is approximated as

Q1(x,p0) � Q(x,pα) − Q(x,pβ)

(pα − p0) − (pβ − p0)
, (13)

with pα,pβ ∈ [p1, . . . ,pn] sufficiently close to p0 to obtain a
proper approximation of Q1(x,p0). As before, the applicability
of Eq. (12) is then tested by verifying the approximate p

independence of

Q̃(x,pi) = Q(x,pi) − (p − p0)Q1(x,p0) (14)

� Q(x,p0). (15)

A. Raman response of HgBa2CuO4+δ

We now apply the scheme to the isosbestic point observed
in measurements33 of the antinodal (B1g) Raman response
χ (ω,T ) of the cuprate compound HgBa2CuO4+δ for various
temperatures at optimal doping (δ = 0.16), which shows a
distinct isosbestic point for up to �100 K. Proceeding as
described above, we make the following Sommerfeld-type
ansatz for the low-temperature dependence of χ (ω,T ):

χ (ω,T ) = χ (ω,0) + T 2χ2(ω) + O[T 3], (16)

where

χ2(ω) � χ (ω,T1) − χ (ω,T2)

T 2
1 − T 2

2

(17)

as in Eq. (13). Again, the validity of Eq. (16) can be tested via
the T independence of the quantity

χ̃(ω,T ) = χ (ω,T ) − T 2χ2(ω) � χ (ω,T = 0). (18)

This is done in Fig. 1, which shows good agreement with
Eq. (18). To determine χ2(ω) we chose T1 = 14 K and T2 =
90 K, which is by no means a unique combination.50
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FIG. 1. (Color online) (a) Antinodal Raman response χ (ω,T )
of HgBa2CuO4+δ

33 at optimal doping and (b) the function χ̃ (ω,T ).
The weak temperature dependence of χ̃ (ω,T ) explains the sharpness
of the isosbestic point and also confirms the validity of ansatz (16)
within the available data.
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FIG. 2. (Color online) Temperature dependence of (a) photoemis-
sion spectra I (ω,T ) of a VO2 thin film51 and (b) the function Ĩ (ω,T )
defined in Eq. (20). The weak temperature dependence of Ĩ (ω,T )
explains the sharpness of the isosbestic point and also supports the
importance of electron-phonon interaction.

It is interesting to note that the isosbestic point and thus the
quadratic T dependence in Eq. (16) are specific features of the
optimally doped system and are absent for other dopings33 (at
least for the provided temperatures). For the case of optimal
doping, we have explained the sharp isosbestic point in χ (ω,T )
by its essentially quadratic temperature dependence.

B. Photoemission spectra of VO2/TiO2(001) thin films

Next we apply the method to explain photoemission
spectra I (ω,T ) of VO2/TiO2 thin films,51 which exhibit
a marked isosbestic (see Fig. 2). The strong temperature
dependence of I (ω,T ) was seen51 as an indication of strong
electron-phonon coupling. Consequently, I (ω,T ) was51 con-
vincingly reproduced through the spectral function A (ω,T )
of the independent boson model through I (ω,T ) ∝ A (ω,T ).
The temperature dependence of A (ω,T ) with A (ω,T ) =
A (ω,0) + T A1 (ω) + O(T 2) justifies the following ansatz:

I (ω,T ) = I (ω,0) + T I1 (ω) + O[T 2], (19)

where

I1 (ω) � I (ω,T1) − I (ω,T2)

T1 − T2

is extracted from the data (T1 = 150 K and T2 = 200 K). The
ansatz (19) is confirmed by the relative T independence (well
within measurement accuracy) of the quantity

Ĩ (ω,T ) = I (ω,T ) − T I1(ω) � I (ω,T = 0) , (20)

plotted in Fig. 2(b). This provides an explanation for the
sharpness of the isosbestic point, and the leading linear
temperature dependence supports the importance of bosonic
excitations along the lines of Ref. 51.
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FIG. 3. (Color online) Temperature dependence of (a) the reflec-
tivity R (ω,T ) of CaCu3Ti4O12

35 and (b) the function R̃ (ω,T ). The
weak temperature dependence of R̃ (ω,T ) explains the origin of the
isosbestic point.

C. Phonon modes in CaCu3Ti4O12

We investigate isosbestic points in reflectivity R (ω,T )
measurements of CaCu3Ti4O12 around phononic excitations.35

Again, assuming the leading T dependence to be linear, we
proceed along the lines of the preceding section and introduce

R̃ (ω,T ) = R (ω,T ) − T R1(ω),

where

R1 (ω) � R(ω,T1) − R(ω,T2)

T1 − T2
(21)

is extracted directly from data. Note that the sensitivity of
Eq. (21) on the quality of the available data required the use of
a comparably large temperature difference (T1 = 40 K, T2 =
175 K). The high quality of the match in Fig. 3 explains the
sharpness of the isosbestic point and also shows that a linear
temperature dependence already provides a proper description
of the available measurement data.

D. Isosbestic points in conductive polymers

Here we analyze the marked isosbestic points in the
optical conductivity of conductive polymers52,53 as observed
in many spectroelectrochemical experiments for different
doping levels. By applying an external bias voltage V , these
experiments allow for direct control of the doping level of the
sample and yield the optical conductivity (absorbance) σ (ω,n)
[A(ω,n)] as a function of doping n.

To demonstrate the general applicability of our scheme, we
specifically consider a subset of the spectroelectrochemical
measurements on poly(3,4-ethylenedioxythiophene) (PE-
DOT) presented in Ref. 54. Note that we consider here
A(ω,V ) instead of A(ω,n) since V is the original parameter
in the measurement. We make the following linear ansatz
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FIG. 4. (Color online) The upper plot shows the marked isosbestic
point in spectroelectrochemical experiments for PEDOT. In the lower
plot we show the corresponding curves Ã(ω,Vi), which (except
for V7 = −0.08 V) essentially all collapse onto a single curve.
We included the curves A(ω,V7) and Ã(ω,V7) to demonstrate that
deviations become important at more extreme parameter values. In
particular, we note that A(ω,V7) does not contribute to the isosbestic
defined by the other curves (Data from Ref. 54.).

for the parameter dependence of A(ω,V ), expanding around
V0 = −0.48 V:

A(ω,V ) = A(ω,V0) + (V − V0)A1(ω), (22)

where

A1(ω) � A(ω,V1) − A(ω,V2)

V1 − V2

with V1 = −0.48 and V2 = −0.38. Again we plot both
A(ω,V ) and Ã(ω,V ) ≡ A(ω,V ) − (V − V0)A1(ω) in Fig. 4,
verifying the applicability of our general scheme and in
particular of Eq. (22). Our analysis thus reveals that the
seemingly complicated behavior of A(E,V ) in Fig. 4 is in
fact due to a linear voltage dependence.

E. Isosbestic point in the dielectric function of LaMnO3

Here we address the conspicuous isosbestic points in
the dielectric function ε1(ω,T ) of LaMnO3 for different
temperatures55 (see Fig. 5). We apply the same analysis as
before, i.e., we use the following Sommerfeld-type ansatz for
the temperature dependence of ε1(ω,T ):

ε1(ω,T ) = ε1(ω,0) + T 2ε
(1)
1 (ω) + O[T 3], (23)

where (T1 = 20 K, T2 = 90 K)

ε
(1)
1 (ω) � ε1(ω,T1) − ε1(ω,T2)

T 2
1 − T 2

2

(24)

as in Eq. (13). Again, the validity of Eq. (16) is tested via the
T independence of the quantity

ε̃1(ω,T ) = ε1(ω,T ) − T 2ε
(1)
1 (ω).

This reveals (i) that the origin of the optical response is
dominated by electronic excitations that are quadratic in T ,
and (ii) that the temperatures are still moderately small as
compared to the electronic low-energy scales of the system.
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FIG. 5. (Color online) Temperature variation of the real part of
the dielectric function spectra ε1(ω,T ) of LaMnO3 between 20 and
140 K in 10 K increments (Data from Ref. 55.).

IV. ISOSBESTIC POINTS IN THE OPTICAL
CONDUCTIVITY OF THE FALICOV-KIMBALL MODEL

A. Model and optical conductivity in DMFT

The Falicov-Kimball model37,56 describes itinerant elec-
trons (c electrons) interacting with localized electrons (f
electrons) by a local Coulomb repulsion. The Hamiltonian
is given by

H = −
∑
i,j

ti,j c
†
i cj − μ

∑
i

(c†i ci + f
†
i fi) + Ef

∑
i

f
†
i fi

+U
∑

i

[
f

†
i fi − 1

2

] [
c
†
i ci − 1

2

]
. (25)

It can be viewed as a Hubbard model with spin-dependent
hopping and two different chemical potentials. The symbols
c
†
i (f †

i ) and ci (fi) denote the itinerant (localized) electron
creation and annihilation operators. The chemical potential
μ constrains the total number of c electrons, while Ef is an
orbital energy of the localized electrons. Here U is an on-site
repulsion between the two electron species.

At low temperatures, the optical conductivity of the Falicov-
Kimball model with the Gaussian density of states (DOS) is
known to exhibit a distinct isosbestic point37 when plotted
for various c-electron densities (Fig. 6). In the following, we
will discuss the existence and sharpness of isosbestic points
and concentrate on the ungapped system at zero temperature
and use the semielliptic DOS ρ(ε) = (2πt)−1

√
4t2 − ε2 with

t = 1.
Within dynamical mean-field theory (DMFT), the model

can be solved exactly for the Green function G(ω) or
the self-energy �(ω) due to the simplicity of the impurity
problem:57

G(ω) = 1 − w1

G−1
0,c (ω)

+ w1

G−1
0,c (ω) − U

, (26)

where G−1
0,c (ω) = �(ω) + G−1(ω) denotes the Green function

of the effective medium (Weiss field). The weight w1 equals
the average f -electron concentration, which will be set to 1/2
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FIG. 6. (Color online) Isosbestic point in the optical conductivity
of the Falicov-Kimball model at T = 037 (Gaussian DOS [Uc � 1.5 ]
with density n of mobile and density w1 = 1/2 of immobile particles).
Spectral weight is transferred from low frequencies to the Hubbard
peak as electron density is increased, producing an isosbestic point at
medium frequencies.

in the following. Due to particle-hole symmetry, it is sufficient
to restrict the treatment to c-electron densities n � 1/2, i.e.,
μ � 0.

The optical conductivity in DMFT is essentially given by
the particle-hole bubble,58 which on the real axis corresponds
to

σ (ω) = σ0

∫ ∞

−∞
dε ρ(ε)v(ε)2

∫
dω′Aε(ω′)Aε(ω′ + ω)

× f (ω′) − f (ω′ + ω)

ω
, (27)

Aε(ω) = −1/π Im [ω + μ − �(ω) − ε]−1 , (28)

where Aε(ω) denotes the spectral density and ρ(ε) the DOS.
We fix the velocity function v(ε) according to the treatment in
Ref. 59.

B. Existence of isosbestic points in σ (ω)

The formation of isosbestic points in the optical conduc-
tivity σ (ω) when plotted for different doping levels of the c

electrons in Fig. 6 can easily be deduced on physical grounds,
viewing the Falicov-Kimball model as a disordered medium
in which spinless electrons interact with localized impurities.
In this picture, the scattering rate τ−1(μ) ∝ −Im�μ(ω = 0)
is monotonically related to the c-electron density through the
chemical potential μ, and reaches a maximum at half-filling
[see Fig. 7(b)]. Since τ−1(0) diverges at the metal-to-insulator
transition, it is always possible to suppress the dc conductivity
of the half-filled FK model simply by increasing U . Thus, in
the intermediate U regime, σdc(U,n) will have a minimum
or a dip37 around half-filling, which means ∂σdc/∂n < 0 for
n < 1/2 [see Fig. 7(a)]. Besides the mathematical reasoning
in Appendix D, a positive sign of ∂σ (ω,n)/∂n for nonzero
frequencies and for sufficiently strong U can be established
by taking into account the formation of the well-known
charge-transfer or Hubbard peak at ωC(U,n) � U (see Fig. 6),
which is a property of the optical conductivity of correlated
systems. Representing a robust indicator of the increasing
correlation between f and c electrons, the peak becomes
increasingly pronounced as the system is doped toward half-
filling. For sufficiently strong U we thus have ∂σ (ωC) /∂n >

U = 1.5
U = 1.0
U = 0.5
U = 0.1

0

0.2

0.4

0.6

0.8

U
2
σ

D
C
(μ

)/
σ

0 (a)

-0.4

-0.2

0

-3 -2 -1 0 1 2 3

I
m

Σ
µ
(0

) /
U

2

μ

(b)

FIG. 7. (Color online) Doping dependence of (a) the rescaled
dc conductivities U 2σdc (μ) and (b) self-energies Im�μ(0)/U 2 for
the semielliptic DOS. With growing interaction, Im�μ(0) becomes
increasingly peaked with an extremum at half-filling (μ = 0).
Therefore, the scattering rate τ−1 ∝ −Im�(0) becomes maximal at
half-filling. The metal-insulator transition at U = 2 is distinguished
by a vanishing dc conductivity and a diverging scattering rate τ−1.
For sufficiently high yet finite U , this generic property of the FK
model leads to the formation of minima in σdc (μ) for μ = 0. This
corresponds to ∂σdc(μ)/∂μ < 0. Note that there exists a one-to-one
mapping between μ and the carrier density n. In Appendix E, we
show that �μ(ω) = �(ω + μ).

0 and ∂σdc/∂n < 0, and as a consequence there exists a
crossing point ω�(n,U ) [cf. Eq. (1)] with 0 < ω� < ωC and
∂σ (ω�,n) /∂n = 0 as depicted in Fig. 6. The formation of
isosbestic points is thus an effect of the correlation associated
transfer of spectral weight from low to higher frequencies as
the system is doped toward half-filling. The argument does
not depend on the specifics of the density of states under
consideration and thus applies to Fig. 6 (Gaussian DOS) as
well as to Fig. 8 (semielliptic DOS).

C. Sharpness of isosbestic points in σ (ω)

The symmetric density dependence of the crossing fre-
quency ω�(n) depicted in Fig. 9 reflects the important role
of particle-hole symmetry for locally exact isosbestic points
in σ (ω,n). Because of the existence of the one-to-one
correspondence between the chemical potential μ and the
carrier density n in the ungapped system, both parameters
are equivalent. The chemical potential, however, represents
the more convenient parameter because of the simple μ

dependence of the self-energy �(ω) (see Appendix E) and of
the spectral densities Aε(ω) in Eq. (27). Thus, concentrating on
ungapped systems, we expand around half-filling, i.e., μ = 0,
taking μ as a small parameter,

σ (ω,μ) = σ (ω,0) + 1

2
μ2 ∂2

∂μ2
σ (ω,μ = 0) + O(μ4). (29)

With Eq. (7) we are directly led to the conclusion that the
first two terms constitute an exact isosbestic point, while
corrections of order O(μ4) introduce the μ dependence into
ω�(μ) [or ω�(n)]. According to Eq. (8), we therefore
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FIG. 8. (Color online) Optical conductivity (a) σ (ω,μ(n)) and
(b) the quantity σ̃ (ω,μ(n)) for the Falicov-Kimball model with the
semielliptic DOS. The curves σ̃ (ω,μ(n)) in (b) essentially lie on top
of σ (ω,μ =) for the substantial density interval n ∈ [0.35, . . . ,0.5].
Thus, the parameter dependence in σ (ω,μ(n)) essentially stems from
the first contribution, which is accompanied by an isosbestic point.
The second derivative of σ (ω,μ) with respect to μ, which is needed
for the calculation of σ̃ (ω,μ), is obtained from the exact solution.60

introduce

σ̃ (ω,μ) = σ (ω,μ) − 1

2
μ2 ∂2

∂μ2
σ (ω,μ = 0)

= σ (ω,μ = 0) + O[μ4],

and test its approximate μ independence in a vicinity of
ω�(μ = 0). This is confirmed graphically in Fig. 8; the obvious
agreement with the reference curve can be seen as a measure
of the weak influence of higher-order contributions. This
provides an especially simple and meaningful interpretation
of the approximate isosbestic points in σ (ω,n): Namely, plots
of the conductivity showing this behavior exhibit a density
dependence which can be treated in perturbation theory for
the parameters under consideration.

1.76
1.53
1.25
1.00

U = 0.85

0

0.25

0.5

0.75

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ω
(n

)

n

FIG. 9. (Color online) Isosbestic points ω� (n,U ) of the ungapped
system using the semielliptic density of states. The symmetry around
half-filling is a consequence of particle-hole symmetry.

V. ISOSBESTIC POINTS IN THE SPECTRAL FUNCTION
OF THE HUBBARD MODEL

We now apply our approach to the prominent isosbestic
point in the spectral function A(ω,U ) of the particle-hole sym-
metric Hubbard model within DMFT for which, employing
symmetry arguments, the crossing frequency was shown39 to
obey the following dependence on U :

ω�(U ) = c0 + c1U
2 + O[U 3]. (30)

For a symmetric DOS with van Hove singularities at the band
edges (at ±b) like the semielliptic DOS, Eq. (30) takes the
more specific form ω�(U ) = b + c1U

2 + O(U 3).
From the infinite slope of the spectral function A(ω,0) at

ω = ω�(0), it then follows that, in the limit U → 0, one can
never obtain a sharp crossing point defined by the coordinates
(x(U ),y(U )) with x(U ) = ω� (U ) and y(U ) = A(ω�(U ),U ).
To avoid this additional mathematical complication, let us
consider here the Gaussian DOS with infinite bandwidth,
since this DOS is a smooth function so that a weak parameter
dependence of ω�(U ) always translates to a sharp isosbestic
point. From particle-hole symmetry, we have the following
perturbative expansion:

A(ω,U ) =
∑
n�0

U 2nA2n(ω) (31)

with

A2(ω) = − 1

π
Im

{∫
dε ρ(ε)

�2(ω)

[ω + i0+ − ε]2

}
. (32)

Here �2(ω) denotes the self-energy in second-order perturba-
tion theory61 in U . We thus obtain from Eqs. (8)–(10)

Ã (ω,U ) = A (ω,U ) − U 2A2(ω) (33)

and again obtain Ã (ω,U ) � A (ω,0), as can be seen from
Fig. 10.

VI. CONCLUSION

In this paper, we developed a framework which allows one
to extract information about a correlated system by analyzing
the sharpness of an approximate isosbestic point in a physical
quantity f (x,p). Our central result is given by Eq. (7), which
corresponds to a straightforward generalization of Eq. (2),
describing exact isosbestic points.1,2 We established a direct
connection between the sharpness of isosbestic points and the
existence of a small parameter δp = p − p0, which can be used
to extract the leading parameter dependence of the system in
the parameter interval under consideration.

For example, our analysis of the Raman response of
HgBa2CuO4+δ showed that it has a quadratic temperature
dependence only for optimal doping, which raises the question
of whether other dynamical quantities exhibit such behavior as
well. Another interesting question is whether other (optimally
doped) cuprate compounds have similar isosbestic points in
their Raman spectra. Furthermore, we deduced a nonobvious
linear voltage dependence for the absorbance of the conductive
polymer PEDOT in a wide frequency range.

In summary, if a sharp isosbestic point is found in
experimental data, an analysis as in Secs. III A–III E should be
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FIG. 10. (Color online) Numerical renormalization group
calculation62,63 of the spectral function for the half-filled Hubbard
model (a) using the Gaussian DOS ρ(ε) = 4/

√
π exp[−(4ε)2]. The

quantity Ã (ω,U ) shows practically no U dependency up to U1 �
0.35 (b). The deviations from the locally exact isosbestic point at
higher U stem from higher order perturbations and become noticeable
only above U1.

performed to extract the leading parameter dependence of the
family of curves.
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APPENDIX A: SIZE OF THE CROSSING REGION AROUND
LOCALLY EXACT ISOSBESTIC POINTS

We quantify the influence of the higher-order contributions,
i.e., the terms responsible for the deviations from x�(p) =
const. For this we investigate the p dependence of an isosbestic
point at (x�(p),p), with x�(p) given implicitly by Eq. (1). We
will estimate the size of the region where the curves of f (x,p)
cross, e.g., for

x = x�(p0) + δx, (A1a)

p = p0 + δp, (A1b)

in the vicinity of a certain parameter value p0.
We first approximate f (x,p) near p0 by a function that is

linear in p,

fapprox(x,p) = f (x,p0) + δp F1(x,p0), (A2)

where Fn(x,p) = dnf (x,p)/dpn. Equation (A2) is exact at
p0: fapprox(x,p0) = f (x,p0). As in the two-fluid model that
was discussed in the Introduction, fapprox(x,p) has an exact
isosbestic point at (x�(p0),p0) because F1(x,p0) vanishes
there.

Next we determine the difference between the function
f (x,p) and the linear approximation fapprox(x,p). For this

purpose, we first expand F1(x,p) near x�(p) for some fixed p

and obtain

F1(x,p) = F1(x�(p),p) +
∞∑

n=1

[x − x�(p)]n

n!

∂nF1

∂xn

∣∣∣∣
x=x�(p)

.

(A3)

By virtue of the definition of x�(p) [Eq. (1), the x-independent
term vanishes, i.e., F1(x�(p),p) = 0, leading to

F1(x,p) = c(p) [x − x�(p)] + O{[x − x�(p)]2}, (A4)

with c(p) = ∂F1(x,p)/∂x|x=x�(p).
The height of the crossing region is thus given by

δf (x,p) = f (x,p) − fapprox(x,p)

= δp2

2
F2(x,p0) + δp3

6
F3(x,p0) + O(p4). (A5)

Using Eq. (A4), we can now express the higher derivatives as
(n � 0)

Fn+1(x,p) = c(n)(p) [x − x�(p)]

−
n∑

k=1

(
n

k

)
c(n−k)(p) x�(k)(p), (A6)

where c(n)(p) = ∂nF1(x,p)/∂nx|x=x�(p).
So far the parameter value p has not been specified. We

now suppose that x�(p) has an extremum at p0, in which
case we term (x�(p0),p0) a first-order isosbestic point. From
x�′(p0) = 0, it then follows that

δf = c′(p)

2
δp2 δx + O(δp3δx0). (A7)

If instead x�(p) has a saddle point at p0 (second-order
isosbestic point), then furthermore x�′′(p0) = 0, yielding

δf =
(

c′(p)

2
δp2 + c′′(p)

6
δp3

)
δx + O(δp4δx0), (A8)

and similar for higher-order isosbestic points. We thus con-
clude that an nth-order isosbestic point, for which the first n

derivatives of x�(p) vanish at p0, will have a narrow crossing
region,

δf = δx

n+1∑
k=2

1

k!
c(k−1)(p) δpk + O(δpn+2δx0), (A9)

= O(δpn+2) if δx = 0, (A10)

i.e., the first n + 1 powers of δp are suppressed by a factor
δx, and the contribution of order δx0 is suppressed by a factor
δpn+2. The last equation applies if we consider the height of
the crossing region δf (x�(p0),p) for various parameters p near
p0, and this height is only of order O(δpn+2) for an nth-order
crossing point. We conclude that the isosbestic point x�(p) of
a function f (x,p) will be particularly sharp in the vicinity of
an extremum or higher-order stationary point of x�(p).

APPENDIX B: QUANTIFICATION OF THE SHARPNESS
OF ISOSBESTIC POINTS

It is not possible to introduce an unambiguous measure
for the sharpness of an approximate isosbestic point because
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of its explicit dependence on the magnification of the crossing
region. This means that the observed sharpness always depends
on the specifics of plotting. For fixed plot parameters, i.e.,
for f (x,p) plotted for x ∈ [xa,xb] and p ∈ [p1,pn], one can,
however, define a measure for the relative sharpness of a
crossing region through the ratio between the area of the plot
and the area of the crossing region. For this we define the
vertical width of the plot as

�f = max
i,x1,x2

|f (x1,pi) − f (x2,pi)| (B1)

with i = 1, . . . ,n and x1,2 ∈ [xa,xb], and correspondingly the
vertical width of the crossing region as

�f � = max
i,j

|f �
i − f �

j |, (B2)

where f �
i = f (x�(pi),pi). With the horizontal width of the

crossing region defined by

�x� = max
i,j

|x�(pi) − x�(pj )|, (B3)

one can introduce a quantity S through

S =
[
�f �

�f

�x�

�x

]−1

, (B4)

where �x = |xa − xb|, which quantifies the sharpness, i.e.,
S = ∞ for an exact isosbestic points and S � 1 for sufficiently
sharp isosbestic points. We stress the explicit dependence of S

on �x and the range of parameters [p1,pn] unless S = ∞. For
finite S, the qualification “sharp” should thus be considered a
relative term and be used with caution.

APPENDIX C: EXISTENCE OF ISOSBESTIC
POINTS IN σ (ω)

First we investigate the system-specific mechanisms that
lead to isosbestic points in σ (ω,n). To allow for a rigorous
analysis, we restrict ourselves only to cases in which there
exists at most one isosbestic point. This applies to the results37

obtained for the Gaussian DOS as well as to our calculations for
the semielliptic DOS. Due to particle-hole symmetry, one has
σ (ω,μ) = σ (ω,−μ). According to Eq. (1), isosbestic points
are determined by

∂σ (ω�(n), n)
∂n

∣∣∣∣
ω�(n)

= 0. (C1)

In view of the one-to-one mapping between the chemical
potential μ and the carrier density n in the ungapped system,
which is a direct consequence of the Green function G(ω,μ)
being a function only of ω + μ (see Appendix E), this is
equivalent to

∂σ (ω,μ)

∂μ

∣∣∣∣
ω�(μ)

= 0. (C2)

Since � (ω) is also only a function of ω + μ (see Appendix E),
we obtain

∂σ (ω,μ)

∂μ
= σ0

∫
dε ρ(ε)v(ε)2

∫
dω′ ∂

∂ω′

×[Aε(ω′)Aε(ω′ + ω)]
f (ω′) − f (ω′ + ω)

ω
.

(C3)

Integration by parts and using the property ∂f (ω)/∂ω =
−δ(ω) of the Fermi function gives

∂

∂μ
σ (ω,μ) = σ0

ω

∫ ∞

−∞
dε ρ̃(ε)Aε(0)[Aε(ω) − Aε(−ω)]

(C4)

at T = 0.
In Appendix D, we show that for less than half-filling,

the derivative ∂σ (ω,μ)/∂μ is positive around a ω0 > 0 and
never becomes negative in the high-frequency limit. Since we
assume the existence of at most one isosbestic point, it follows
that it is exclusively determined by the μ dependence of the
dc conductivity σdc (μ) = σ (ω = 0,μ):

∂

∂μ
σdc(μ) < 0 (C5)

for less than half-filling. This relation expresses the equiv-
alence between the existence of isosbestic points and the
formation of a suppression of dc conductivity [σdc(μ) and
σdc (n), respectively] around half-filling.

APPENDIX D: HIGH-FREQUENCY LIMIT

We determine the sign of ∂σ (ω0)/∂μ in the high-frequency
limit, taking μ < 0. In this case, the Green function and the
self-energy are shifted to higher energies by μ compared
to the half-filled case. For a symmetric DOS with finite
bandwidth (Fig. 11), it follows from Eq. (C4) that there exists
a frequency ω0 > 0 with A(ω0) > 0 and A(−ω0) = 0 (cf.
Fig. 8). This yields ∂σ (ω0)/∂μ > 0 because the contribution
involving Aε(−ω0) in Eq. (C4) must identically vanish due to
the finite support of ρ(ε) and ρ̃ (ε). Symmetric densities of
states with infinite bandwidth behave similarly: There exists
an ω0 with A (ω) > A (−ω) for all ω > ω0 because of the
stronger suppression of the contribution involving A (−ω).
This analogously leads to ∂σ (ω0)/∂μ > 0.

APPENDIX E: SHAPE INVARIANCE
OF SINGLE-PARTICLE QUANTITIES WITH RESPECT

TO DOPING

Within DMFT, the self-energy of the model can be
expressed explicitly in terms of the interacting Green

ω0 ω1

μ

A
(ω

)

0

0.05

0.15

0.1

0.2

0.25

FIG. 11. (Color online) DOS with finite support (μ < 0, the
shaded area indicates filled states): The term involving Aε (−ω) in
Eq. (C4) vanishes for all frequencies ω > ω0, while Aε (ω) > 0 for all
ω0 < ω < ω1. Thus, the derivative ∂σ (ω0) /∂μ will necessarily be
positive for all ω0 < ω < ω1; for even higher frequencies it vanishes
identically.
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function37,57 (w0 = 1 − w1):

�(ω) = U

2
− 1

2

[
1

G(ω)
±

√(
U − 1

G(ω)

)2

+ 4w0U

G(ω)

]
, (E1)

representing the exact summation of the skeleton expansion
for �(ω). In the low-U regime, an expansion of �(ω) in terms
of the small parameter UG(ω) gives (w1 = 1/2)

�(ω) = 1
2U + 1

4 U2G(ω) − 1
16 U4G3(ω) + O[U 6] (E2)

representing the first few terms of its skeleton expansion. As
a consequence of Eq. (26), the model has an especially simple
doping dependence, where a change of μ (for constant w1)
merely shifts the Green function and the self-energy, leaving

their shape invariant. Mathematically, this is expressed by
the fact that ω and μ enter G(ω) and �(ω) only through
ω + μ. To see that, we consider the inverse46 of the Hilbert
transform R [G(ω)], expressing ω + μ − �(ω) exclusively
through G(ω). Equation (26) then takes the form

G(ω) = 1 − w1

ω + μ − R [G(ω)] + G−1(ω)

+ w1

ω + μ − R [G(ω)] + G−1(ω) − U
, (E3)

implicitly defining the Green function as a function of ω + μ,
i.e., G(ω) = F (ω + μ). For the special case of a semielliptic
DOS, Eq. (E3) leads to a cubic equation, which can be solved
explicitly60 for G (ω + μ).
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37J. K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003).
38A. M. Shvaika, O. Vorobyov, J. K. Freericks, and T. P. Devereaux,

Phys. Rev. Lett. 93, 137402 (2004).
39M. Eckstein, M. Kollar, and D. Vollhardt, J. Low Temp. Phys. 147,

279 (2007).
40Of course, this width depends on the linear scale of the axes: only

if the curves cross in one mathematically defined point is the linear
scale irrelevant; see the discussion in Sec. II B and Appendix B.

41In Refs. 13–15, the crossing point observed in the specific-heat
curves C(H,T ), i.e., the near independence of C(H,T ) on the
magnetic field H at some temperature T �, is referred to as “Vollhardt
invariance.”

42W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
43A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
44D. Vollhardt, in Correlated Electron System, edited V. J. Emery

(World Scientific, Singapore, 1993).

195140-10

http://dx.doi.org/10.1002/ange.19370501103
http://dx.doi.org/10.1039/JR9620003044
http://dx.doi.org/10.1021/j100801a511
http://dx.doi.org/10.1103/PhysRevB.43.7942
http://dx.doi.org/10.1103/PhysRevB.64.233114
http://dx.doi.org/10.1103/PhysRevB.64.233114
http://dx.doi.org/10.1103/PhysRevB.27.2747
http://dx.doi.org/10.1103/PhysRevLett.78.1307
http://dx.doi.org/10.1103/PhysRevLett.56.390
http://dx.doi.org/10.1103/PhysRevLett.56.390
http://dx.doi.org/10.1007/BF00681999
http://dx.doi.org/10.1007/BF00681999
http://dx.doi.org/10.1088/0953-8984/21/45/455602
http://dx.doi.org/10.1088/0953-8984/21/45/455602
http://dx.doi.org/10.1103/PhysRevB.82.064404
http://dx.doi.org/10.1103/PhysRevB.87.134407
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1007/BF00685129
http://dx.doi.org/10.1007/BF00685129
http://dx.doi.org/10.1103/PhysRevB.48.7167
http://dx.doi.org/10.1103/PhysRevB.59.10541
http://dx.doi.org/10.1103/PhysRevB.59.10541
http://dx.doi.org/10.1103/PhysRevB.5.1966
http://dx.doi.org/10.1143/PTP.48.2171
http://dx.doi.org/10.1016/S0550-3213(98)00256-9
http://dx.doi.org/10.1016/S0550-3213(98)00256-9
http://dx.doi.org/10.1103/PhysRevB.55.12918
http://dx.doi.org/10.1103/PhysRevB.63.125116
http://dx.doi.org/10.1103/PhysRevB.63.125116
http://dx.doi.org/10.1103/PhysRevB.65.153109
http://dx.doi.org/10.1103/PhysRevB.65.153109
http://dx.doi.org/10.1103/PhysRevB.72.085123
http://dx.doi.org/10.1103/PhysRevLett.68.244
http://dx.doi.org/10.1103/PhysRevB.76.155121
http://dx.doi.org/10.1103/PhysRevB.76.155121
http://dx.doi.org/10.1103/PhysRevB.81.235127
http://dx.doi.org/10.1002/pssb.201200771
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRevB.73.125122
http://dx.doi.org/10.1103/PhysRevB.77.024524
http://dx.doi.org/10.1103/PhysRevLett.93.147204
http://dx.doi.org/10.1103/PhysRevLett.93.147204
http://dx.doi.org/10.1103/PhysRevB.77.045131
http://dx.doi.org/10.1103/PhysRevB.67.155102
http://dx.doi.org/10.1103/PhysRevB.67.155102
http://dx.doi.org/10.1103/RevModPhys.75.1333
http://dx.doi.org/10.1103/PhysRevLett.93.137402
http://dx.doi.org/10.1007/s10909-007-9311-3
http://dx.doi.org/10.1007/s10909-007-9311-3
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevB.45.6479


ISOSBESTIC POINTS: HOW A NARROW CROSSING . . . PHYSICAL REVIEW B 87, 195140 (2013)

45T. Pruschke, M. Jarrell, and J. Freericks, Adv. Phys. 44, 187 (1995).
46A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod.

Phys. 68, 13 (1996).
47G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).
48More generally, this applies in particular also to any kind of

two-fluid model employed, for example, in phenomenological
theories of superconductivity and superfluidity. There the density
of the two components (e.g., the normal and superfluid component)
depend on temperature while the total density is constant: n =
n1(T ) + n2(T ) = const. The properties of the system are then
described by the superposition of the two components, leading
to a special dependence of quantities f (T ,X) on T and X of the
form f (T ,X) = n1(T )f1(X) + [n − n1(T )]f2(X). This implies the
crossing of curves for different temperatures T at a single point X∗

determined by f1(X∗) = f2(X∗).
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Hewson and V. Zlatić (Kluwer, Dordrecht, 2003).

60P. G. J. van Dongen, Phys. Rev. B 45, 2267 (1992).
61H. Schweitzer and G. Czycholl, Z. Phys. B 83, 93 (1991).
62R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
63Here we used the NRG LJUBLJANA package by R. Žitko,
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