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Nonequilibrium transport through magnetic vibrating molecules
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We calculate the nonequilibrium conductance through a molecule or a quantum dot in which the occupation of
the relevant electronic level is coupled with intensity λ to a phonon mode and also to two conducting leads. The
system is described by the Anderson-Holstein Hamiltonian. We solve the problem using the Keldysh formalism
and the noncrossing approximation for both the electron-electron and the electron-phonon interactions. We obtain
a moderate decrease of the Kondo temperature TK with λ for fixed renormalized energy of the localized level
Ẽd . The meaning and value of Ẽd are discussed. The spectral density of localized electrons shows, in addition
to the Kondo peak of width 2TK , satellites of this peak shifted by multiples of the phonon frequency ω0. The
nonequilibrium conductance as a function of bias voltage Vb at small temperatures also displays peaks at multiples
of ω0 in addition to the central dominant Kondo peak near Vb = 0.
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I. INTRODUCTION

Single-molecule electronic devices, such as molecular
transistors, are being extensively studied because they offer
perspectives for further miniaturization of electronic circuits
with important potential applications.1–5 In addition, they
provide realizations of fundamental issues in condensed matter
physics. Examples are the spin- 1

2 (Refs. 6–9) and spin-1
(Refs. 10–12) Kondo effect, which lead to an increased
conductance at low temperatures with different behaviors.
In C60 quantum dots, quantum phase transitions involving
partially Kondo screened spin-1 molecular states were induced
changing the gate voltage.10,12 These experiments could be
explained semiquantitatively using extensions of the impurity
Anderson model treated with either the numerical renormaliza-
tion group12,13 (NRG) or with the noncrossing approximation
(NCA).12,14,15 This approximation allows calculations out of
equilibrium and in particular at finite bias voltage. While
these calculations did not include phonons, the latter are
known to play an important role for molecular transistors
under suitable conditions.16–20 For example (as a rather special
case), evidence for a coupling between the center-of-mass
motion of the C60 molecules with the hopping to the leads
was found in a single-C60 transistor with gold leads.16 Phonon
effects were also observed in other systems. For example,
transport through adatoms on Si surfaces takes place in
particular situations, only when vibrations are excited,18 and
the differential conductance G = dI/dVb through conjugated
molecules shows peaks when the applied bias voltage Vb

matches multiples of a phonon frequency.17

In some molecular transistors based on organometallic
molecules, an anomalous gate-voltage dependence of the
transport properties has been reported.6,7,21 In particular,
Yu et al. found that the Kondo temperature TK depends
weakly on the applied gate voltage and shows a rapid
increase only close to the charge degeneracy points.21 Such
behavior is inconsistent with the usual theory based on
the impurity Anderson model, but could be explained using
the Anderson-Holstein model,22 which is an extension of the
former to include a single-phonon mode coupled linearly with
the charge in the molecule. At equilibrium (Vb → 0), the

Anderson-Holstein model has been studied with NRG,22–24

Monte Carlo,25 a mean-field approach,26 NCA decoupling
phonons,27 an interpolative perturbative approach,28 and the
equation-of-motion (EOM) method.29

For finite bias voltage Vb, the interplay of Kondo
and vibrations has been studied using a real-time di-
agrammatic technique,30 functional renormalizaton group
after a Schriefer-Wolf transformation,31 EOM decoupling
phonons,32 imaginary-time quantum Monte Carlo plus ana-
lytical continuation,33 and NCA decoupling phonons,34,35 For
spinless electrons, for which no Kondo screening is possible,
the nonequilibrium case was analyzed by Monreal et al.36

using EOM and an interpolative self-energy approximation
which is exact for small λ and in the atomic limit, following
similar ideas as those used to study the pure electronic problem
out of equilibrium for small Coulomb repulsion U .37,38

Previous NCA approaches27,34,35 used a Lang-Firsov
canonical transformation, and then decouple the phonons in a
mean-field approach. A problem with this decoupling is that for
a fixed renormalized localized level Ẽd , predicts that the Kondo
temperature changes exponentially with the electron-phonon
coupling λ, which is actually not the case.23,29,31

In this work, we extend the NCA as applied to the infinite-U
limit of the Anderson model39,40 to include explicitly the effect
of the phonons. For the case of one doublet, comparison
of NCA with NRG results41 shows that the NCA describes
rather well the Kondo physics. The leading behavior of the
differential conductance for small voltage and temperature42

agrees with alternative Fermi-liquid approaches,43,44 and
the temperature dependence of the conductance practically
coincides with the NRG result over several decades of
temperature.42 A shortcoming of the NCA is that, at very
low temperatures, it introduces an artificial spike at the Fermi
energy in the spectral density when the ground state of
the system without coupling to the leads is nondegenerate,
although the thermodynamic properties continue to be well
described.39 Another limitation of the method is that it
is restricted to temperatures above ∼TK/20, where TK is
the Kondo temperature. An advantage of the method over
the EOM is that it is a conserving approximation and gives
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the right exponential dependence of TK on the energy of the
localized state Ed , while the EOM has a factor of the order
of 1 in the exponent.45 While the NRG is more accurate at
low energies, the NCA has a comparative advantage that it
can be extended rather easily to nonequilibrium situations. In
addition, it is able to capture features at high energies such as
peaks in the spectral density out of the Fermi level, which might
be broadened or lost in NRG calculations.46 An example is
the plateau at intermediate temperatures observed in transport
through C60 molecules for gate voltages for which triplet states
are important,10,12 which was missed in early NRG studies,
but captured by the NCA.14,15 More recent NRG calculations,
using tricks to improve the resolution,47 have confirmed this
plateau.12

The paper is organized as follows. In Sec. II, we describe
the model and discuss the renormalization of the level energy
due to electron-phonon interaction. In Sec. III, we explain
the modifications of the NCA nonequilibrium formalism to
include the phonon mode and the electron-phonon interaction.
In Sec. IV, we show our main results. Section V contains the
summary and a short discussion. Some details are left to the
Appendix.

II. MODEL

The model describes one level of a molecule at an energy
Ed , with Coulomb repulsion U between electrons at the same
level, coupled to two conducting leads and a Holstein mode of
frequency ω0.22–36 The Hamiltonian is

H = [Ed + λ(a† + a)]nd + Und↑nd↓ +
∑
νkσ

εν
k c

†
νkσ cνkσ

+
∑
νkσ

(
V ν

k d†
σ cνkσ + H.c.

) + ω0a
†a, (1)

where nd = ∑
σ ndσ , ndσ = d†

σ dσ , d†
σ creates an electron with

spin σ at the relevant state of a molecule (or quantum dot), a†

creates the Holstein phonon mode, λ is the electron-phonon
coupling, c†νkσ creates a conduction electron at the left (ν = L)
or right (ν = R) lead, and V ν

k describes the hopping elements
between the leads and the molecular state.

For each energy εL
k = εR

k′ for which there are states at the left
and the right, only the linear combination V L

k cLkσ + V R
k′ cRk′σ

hybridizes with the molecular state. Thus, the model is
effectively a one-channel Anderson-Holstein model.

A. Effective purely electronic model

For λ = 0, the model reduces to the ordinary impurity
Anderson model and its main properties are well known.48 In
particular, in the Kondo regime εF − Ed � VK where εF is the
Fermi energy and K denotes k,ν, the characteristic low-energy
scale is given by the Kondo temperature TK ∼ exp[−1/(ρJ )],
where ρ is the spectral density of the conduction states for
given spin, and for U −→ ∞ (which corresponds to our NCA
calculations) J = 2|VK |2/(εF − Ed ) for constant VK . The half
width at half maximum of the peak near the Fermi energy
in the spectral density ρ(ω) is proportional to TK , as well
as the corresponding widths of the peaks of the conductance
G(T ,Vb) = dI/dVb as a function of temperature T and bias
voltage Vb near T = Vb = 0 (I is the current).49 Any of these

half widths might be used as a definition of TK . Here, we use
that of ρ(ω).

If the electrons could be decoupled from the phonons in
some approximation, one might expect that an effective purely
electronic model Heff of the form of the ordinary impurity
Anderson model, but with renormalized parameters Ẽd , ṼK de-
scribes the electronic motion, leading to a renormalized Kondo
temperature TK ∼ exp{−1/[2ρ|ṼK |2/(εF − Ẽd )]}. How TK

varies with λ will be discussed in Sec. IV A. For this discussion,
it is necessary to define Ẽd in some way. In the rest of this
section, we discuss this definition and some limits of the model.

The model given by Eq. (1) can be solved exactly for
V ν

k = VK = 0. In this case, the total number of electrons
in the molecule nd is a good quantum number and the
electron-phonon interaction λ can be eliminated by a simple
shift in the phonon operator β† = a† + ĉ, where ĉ is an
operator that depends on nd . This simply reflects the fact
that the equilibrium position of the normal-mode coordinate
depends on the occupation. It is easy to see that for each nd ,
one has

ĉ = − λ

ω0
nd, 	E = − (λnd )2

ω0
, (2)

where 	E is the energy gain due to the electron-phonon
interaction. Then, for V ν

k = 0, the Hamiltonian takes the form

H0 = Ẽ0
dnd + Ũnd↑nd↓ +

∑
νkσ

εν
k c

†
νkσ cνkσ

+ω0

(
a† + λ

ω0
nd

) (
a + λ

ω0
nd

)
, (3)

where the subscript 0 reminds us that (for the moment) VK = 0
and the renormalized level energy and Coulomb repulsion are

Ẽ0
d = Ed − λ2

ω0
, Ũ = U − 2

λ2

ω0
. (4)

For very large ω0, the last term of Eq. (3) can be
neglected and H0 reduces to a purely electronic model with
effective parameters. In this antiadiabatic approximation,50

when one includes the hybridization term, it becomes ex-
ponentially reduced due to the fact that it mixes states
with different nd , and the scalar product of the phonon
wave functions with different equilibrium positions leads to
a factor ṼK/VK = exp[−(λ/ω0)2/2].28 Thus, the effective
Hamiltonian for ω0 −→ ∞ becomes

Heff = Ẽdnd + Ũnd↑nd↓ +
∑
νkσ

εν
k c

†
νkσ cνkσ

+ (ṼKd†
σ cKσ + H.c.) (5)

with Ẽd = Ẽ0
d .

The limit ω0 −→ ∞ is, however, not realistic. In the general
case, the electron-phonon interaction can also be eliminated
using a Lang-Firsov unitary transformation.51,52 The price to
pay is that ṼK includes exponentials of phonon operators which
are usually treated in a decoupling approximation, which as
in the antiadiabatic limit, usually leads to an exponential
dependence of TK on λ for fixed Ẽ0

d , which is not found in
more elaborate treatments.23,29,31
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In any case, if the antiadiabatic limit, or a decoupling
approximation leading to a purely electronic Hamiltonian Heff

has to be abandoned, one might ask if the renormalized level
energy Ẽd is still given by Ẽ0

d [first Eq. (4)] in a more elaborate
treatment. This equation comes as a result of optimizing
the energy neglecting the hybridization, leading to a shift
given by the first Eq. (2) in the equilibrium position of the
oscillator. One expects that for large hybridization, a smaller
shift giving rise to a smaller gain of elastic energy but a larger
gain in hybridization energy is more convenient. Here, we
define

Ẽd = 〈g|P1HP1|g〉
〈g|P1|g〉 − 〈g|P0HP0|g〉

〈g|P0|g〉 , (6)

where |g〉 is the ground state and Pn is a projector on the
subspace with nd = n. We have estimated Ẽd using a simple
variational approximation, where ĉ is replaced by a constant
c obtained minimizing the ground-state energy. The details
are given in the Appendix. The first Eq. (A4) shows that the
phonon shift has in fact smaller magnitude than λ/ω0 and
Eq. (A6) gives a smaller shift of Ẽd than the corresponding
one Eq. (4) for zero hybridization. However, the variational
approach is too simple and we do not pretend this result to be
quantitatively valid. Qualitative aspects will be discussed in
Sec. IV B.

III. FORMALISM

Here, we describe briefly the extension of the noncrossing
approximation (NCA) applied before for the Anderson model
with infinite onsite repulsion out of equilibrium39,40 to include
the phonons. As before,39,40 a slave boson b and two slave
fermions fσ are introduced. b†|0〉 represents the state without
particles at the molecular level, and the physical fermions are
given by d†

σ = f †
σ b. These pseudoparticles should satisfy the

constraint

b†b +
∑

σ

f †
σ fσ = Q, (7)

with Q = 1, which is enforced introducing a Lagrange
multiplier 
. A usual trick is to take 
 −→ ∞ at the end,
to make the projection on the physical subspace Q = 1.39

The quantities of interest can be expressed in terms of the
lesser and greater Keldysh Green’s functions for the pseu-
doparticles, which for stationary nonequilibrium processes are
defined as52,53

G<
σ (t − t ′) = +i〈f †

σ (t ′)fσ (t)〉, D<(t − t ′)= − i〈b†(t ′)b(t)〉,
G>

σ (t − t ′) = −i〈fσ (t)f †
σ (t ′)〉, D>(t − t ′)= − i〈b(t)b†(t ′)〉.

(8)

These Green’s functions correspond to the interacting
(dressed) propagators. In the present case, we have to add
the Green’s functions of the phonons:

A<(t − t ′) = −i〈a†(t ′)a(t)〉 = −in(ω0) exp[−i(t − t ′)ω0],

A>(t − t ′) = −i〈a(t)a†(t ′)〉 = −i[n(ω0) + 1]

× exp[−i(t − t ′)ω0]. (9)

Here, we have written in the last member, the result for
noninteracting phonons, where n(ω) = [exp(ω/kT ) − 1]−1 is

=a

= + +

=b

=c

| 0 〉

〉

| k 〉

| N 〉

FIG. 1. Self-energies obtained within the NCA for the electron-
electron and electron-phonon coupling. Full straight (wavy) lines
correspond to fermion (boson) pseudoparticle propagators. Dashed
lines represent conduction electrons and curly lines phonons. The first
two diagrams vanish in the NCA treatment (see text). The diagram
for the Hartree term is in Fig. 1(c) of Ref. 28.

the Bose-Einstein distribution function. This is because the
diagram of order λ2, which corrects the noninteracting result,
contains two pseudofermion lines (see diagram for �a in
Fig. 1). These diagrams vanish in the limit 
 −→ ∞ (as
the corresponding one for the self-energy of the conduction
electrons). Therefore, the phonon Green’s functions are not
corrected within the NCA.

The retarded and advanced fermion Green’s functions are
Gr

σ (t) = θ (t)[G>
σ (t) − G<

σ (t)], Ga
σ = Gr

σ + G<
σ − G>

σ , and
similarly for the bosonic Green’s functions. Within the NCA,
the self-energy diagrams are calculated as in second order
in the boson-fermion interaction

∑
νkσ (V ν

k f †
σ bcνkσ + H.c.)

and the electron-phonon interaction λ(a† + a)
∑

σ f †
σ fσ , but

replacing the bare propagators by the dressed ones, which are
determined self-consistently. This is equivalent to a partial
sum of diagrams to all orders in perturbation theory (all the
noncrossing ones).

Most of the self-consistent integral equations take the same
form as those of the case λ = 0.39 In Fig. 1, the diagrams for
the different self-energies are shown. The only difference is
that the lesser and greater self-energies for the pseudofermions
include the electron-phonon corrections �

≶
ph,σ given below,

and the retarded self-energy contains the Hartree term EH =
−2

∑
σ 〈f †

σ fσ 〉λ2/ω0, which is independent of frequency.28

However, this term vanishes for 
 −→ ∞.
The corrections of �≶ due to phonons are

�
≶
ph,σ (ω) = iλ2

2π

∫
dω′G≶

σ (ω + ω′)[A≶(−ω′) + A≷(ω′)].

(10)

Adding this to the contribution of the hybridization and using
Eqs. (9), one obtains

�<
σ (ω) = λ2{n(ω0)G<

σ (ω − ω0) + [n(ω0) + 1]G<
σ (ω + ω0)}

−
∑

ν

�ν

∫
dω′

2π
fν(ω − ω′)D<(ω′), (11)

�>
σ (ω) = λ2{n(ω0)G>

σ (ω + ω0) + [n(ω0) + 1]G>
σ (ω − ω0)}

+
∑

ν

�ν

∫
dω′

2π
[1 − fν(ω − ω′)]D>(ω′), (12)
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where fν(ω) = {exp[(ω − μν)/kT ] + 1}−1, μν is the chemi-
cal potential of the lead ν, and

�ν(ω) = 2π
∑

k

∣∣V ν
k

∣∣2
δ
(
ω − εν

k

)
(13)

assumed independent of ω.
With the exception of Eqs. (11) and (12), the rest of the

formalism, including the equation for the current,54,55 has the
same form as for the case without phonons, explained in detail
in previous works,39,40 and we do not reproduce them here.

IV. NUMERICAL RESULTS

For the numerical calculations, we assume a constant
density of states per spin of the leads ρ between −D and D. We
take the unit of energy as the frequency of the phonon ω0 = 1
and D = 10. We also take �L = �R = 	, where 	, called the
resonance level width, is half the width at half maximum of the
spectral density of states in the noninteracting case. Without
loss of generality, we assume εF = 0, where εF is the Fermi
level of the leads without applied bias voltage Vb. For finite Vb

we assume a symmetric voltage drop, leading to chemical
potentials of the leads μL = eVb/2, μR = −eVb/2, unless
otherwise stated. At the end of this section, the nonequilibrium
conductance for a case with asymmetric voltage drop and �ν

is shown.

A. Spectral density

In order to test the NCA for the phonons, we represent in
Fig. 2 the spectral density of the physical fermion ρdσ (ω) in
the particular case of zero hybridization V ν

k = 0, for several
values of the electron-phonon interaction λ, and compare it
with the exact result.36 We used a logarithmic scale to render

FIG. 2. (Color online) Comparison of NCA and exact results for
the electronic spectral density per spin as a function of frequency
for V ν

k = 0 and two values of λ. Other parameters are ω0 = 1,
Ed = −0.5, and T = 0. An imaginary part of magnitude 0.01 was
added to broaden the different peaks.

-3 -2 -1 0 1 2 3
ω/ω0

0

0.1

0.2

0.3

0.4

ρ(
ω

)

λ=0.7
λ=0.5
λ=0.3
λ=0.0

FIG. 3. (Color online) Electronic spectral density per spin as
a function of frequency for temperatures well below the Kondo
temperature, ω0 = 1, 	 = 0.2ω0, Ẽ0

d = −0.6, and several values of λ.

visible the second replica of the main peak. For V ν
k = 0, nd is a

good quantum number and the problem can be solved exactly
shifting the phonon operators depending on the occupation
[see Eq. (3)]. This shift is not explicit in the NCA and it
is not obvious that the correct physics is reproduced by the
NCA for large λ. For Ẽd < εF = 0, and temperature T = 0,
one has nd = 1. Thus, for infinite U as we assume, electrons
can only be destroyed at the dot, and from the Lehman
representation of the Green’s function,52 it is clear that the
spectral density has components only at negative frequencies.
The main peak should be at ω = Ẽd , where for V ν

k = 0,

Ẽd = Ẽ0
d = Ed − λ2/ω0, and its intensity is proportional

to the square of the overlap between the ground state of
the phonon wave functions for nd = 0 (vacuum of phonon
operator a) and nd = 1 (vacuum of phonon operator β).
There are more peaks shifted at lower energies by nω0

with amplitude reduced by the overlap between the phonon
ground state |0β〉 for displaced phonons and the state |na〉
with n undisplaced phonons. As seen in the figure, the NCA
reproduces very well the intensity and position of the main
peak. For large λ, the position of this peak is slightly displaced
from Ẽd . The shift λ2/ω0 is overestimated by about 5% for
λ = 0.5ω0. The replicas are shifted to lower energies by the
NCA, and their intensities are underestimated, but the NCA
results remain semiquantitatively valid.

From now on, we discuss the results for VK �= 0. In Fig. 3,
we show the spectral density of the physical fermion ρdσ (ω)
for several values of the electron-phonon interaction λ. This
figure has the same parameters as Fig. 6 of Ref. 29. The case
λ = 0 is known, and one can see the usual narrow Kondo
peak at the Fermi energy εF = 0 and the broad charge-transfer
peak near the energy Ẽ0

d . Both peaks clearly narrow with
increasing λ. In addition, for λ �= 0, both peaks have replicas
with lower intensity shifted to negative frequencies by the
phonon energy ω0. The replicas of the charge-transfer peak
can just be interpreted as a broadening of the peaks shown in
Fig. 2 as a consequence of the hybridization. In agreement
with the EOM results of Ref. 29, we do not see replicas
of the charge-transfer peak at positive frequencies. This is
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FIG. 4. (Color online) Scheme of the eigenstates of the system
for λ = 0.

expected since this peak is due to annihilation of the occupied
molecular state, and the spectral weight of this peak at positive
frequencies (creation of this state) is very small for U → ∞.

The replicas of the Kondo peak are more subtle. The Kondo
peak is due to small charge fluctuations near the Fermi level
and has contributions at both positive (creation of an electron at
the localized level d†

σ ) and negative (annihilation) frequencies.
From the Lehman representation of the Green’s function,52

the spectral density at ω = −ω∗
0, with ω∗

0 near ω0, at zero
temperature, is given by

ρdσ (−ω∗
0) =

∑
e

|〈e|dσ |g〉|2δ(ω∗
0 − εe), (14)

where the states here are eigenstates of the complete Hamil-
tonian with electrons and phonons. |g〉 is the ground state and
|e〉 are excited states with excitation energy εe (the difference
between the energy of the state |e〉 and the ground-state
energy Eg).

We denote as |e0
n〉 the eigenstates for λ = 0 with n phonons

added to the vacuum of the uncharged system (|0a〉). |g0
0〉 is

the ground state for λ = 0 (see Fig. 4). Note that the electronic
part of these states is independent of n, the phonon part of the
energy is just nω0 and 〈e0

n|dσ |g0
n〉 is independent of n. We also

call |eK
n 〉 the states |e0

n〉 with very small electronic excitation
energy and n phonons, which for n = 0 are responsible for
the Kondo peak when λ = 0. For finite λ, the electron-phonon
interaction mixes the states |e0

n〉 and |g0
n〉 (which are no longer

eigenstates) with those with n ± 1 phonons. In particular,
the ground state |g〉 which for λ = 0 is |g0

0〉 acquires some
component of |g0

1〉 (and smaller ones of |g0
n〉). In turn, the states

|e〉, which for λ = 0 are |eK
1 〉 (with energy near Eg + ω0),

obtain some amount of |eK
0 〉 after turning on λ. These new

components of the eigenstates lead to contributions to the
matrix elements entering Eq. (14), which are similar to those
of the Kondo peak and increase linearly with λ/ω0 for small
λ. In addition, the states |e0

0〉 with energy near Eg + ω0 which
have a large contribution to Eq. (14) for λ = 0 are expected to
have a large mixing with |eK

1 〉 for finite λ because they have
nearly the same energy. Both effects contribute to “translate”
the electronic structure of the Kondo effect contained in |eK

n 〉
to the spectral density at ω ≈ −nω0.

-3 -2 -1 0 1 2 3
ω/ω0

0

0.1

0.2

0.3

0.4

0.5
ρ(ω)

E
d
 = -0.7

E
d
 = -0.5

~
~

0

0

FIG. 5. (Color online) Electronic spectral density per spin as a
function of frequency for 	 = 0.2ω0, λ = 0.7, two values of Ẽ0

d , and
temperatures well below the Kondo temperature.

An analogous reasoning can be followed for ρdσ (ω∗
0)

(positive frequencies) changing dσ by d†
σ in Eq. (14). For

ω > ω0, we obtain broad structures centered slightly below
ω = nω0 + λ2/ω0, with n integer. An observation of the first
one (n = 1) indicates a small jump with increase in intensity at
ω = ω0 and a smooth evolution of the intensity with increasing
ω. While we have not reached a complete understanding,
several pieces of evidence (given below) indicate that this
peak is a broadened replica of the Kondo peak. The shift in
position with respect to ω0 seems to be related with a loss
of the energy gain 	E [see Eq. (2)] in most of the excited
states involved in the spectral decomposition of d†

σ |g〉. The
broadening of the peak seems to be related in the uncertainty
in the equilibrium position of the oscillator since nd is not well
defined. The position of this peak does not change with Ed as it
might be expected for a feature related with the charge-transfer
peak. This is shown in Fig. 5. From the figure, one also sees
that as Ed decreases, the weight of this peak decreases. This
is what is expected for a Kondo peak since its total weight is
proportional to TK , which decreases with decreasing Ed (see
Sec. II A).

As discussed in more detail below, the evolution with
temperature of the peak (see Fig. 6) also suggests that it
is related with the Kondo one, which in contrast to the
charge-transfer peak decreases in intensity as the temperature
is increased. The replica of the Kondo peak at ω = −ω0 is
quite sharp. This is due to the fact explained in the previous
section that the phonon spectral density is not renormalized
within the NCA. Therefore, the softening and damping of
the phonon mode due to its interaction with the electrons is
absent. The phonon damping would broaden the replicas of
the Kondo effect, in a more realistic description. However, it
remains unclear to us why the replicas at negative frequencies
are quite sharp, while those at positive frequency are broadened
by some energy related with 	E [see Eq. (2)]. Further studies
with a technique that allows finite U might shed light on this
issue.

The results displayed in Fig. 3 are qualitatively similar to
those obtained previously using equations of motion (Fig. 6 of
Ref. 29), but there are quantitative differences. The replica of
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FIG. 6. (Color online) Electronic spectral density per spin as a
function of frequency for Ẽ0

d = −0.6, 	 = 0.2ω0, and λ = 0.7, and
several temperatures. The inset is a detail of the peak near ω = ω0.

the Kondo peak at ω near ω0 is sharper in their work and located
exactly at ω = ω0. Instead, the replica of the Kondo peak near
−ω0 seems absent in Ref. 29 and for larger λ, the spectral
density seems to approach vanishing values near ω = ±ω0.

In Fig. 6 we show the evolution of the spectral density
ρdσ (ω) with temperature. As it is known for the case with
λ = 0, there is a strong temperature dependence of the peak
at the Fermi energy (the Kondo peak) at temperatures of the
order of the Kondo temperature TK . We define TK as the half
width at half maximum of the Kondo peak at zero temperature.
We observe a similar strong dependence of the satellite peaks
near ω = ±ω0, suggesting that these peaks are replicas of the
low-energy Kondo screening of the local magnetic moment
combined with the effect of one virtual phonon. For example,
while the intensity of the charge-transfer peak near Ẽd or its
replica at Ẽd − ω0 hardly changes for temperatures of the
order of TK , the other peaks strongly lose intensity (for ω ∼
1.34ω0) or disappear (for ω ∼ 0, − ω0, − 2ω0) for T = 0.1 >

TK ≈ 0.01ω0. In any case, the fact that a broad structure near
1.35 ∼ ω0 remains at that temperature is rather unexpected.

B. Dependence of TK with the renormalized localized level

In presence of the electron-phonon interaction λ, for a
fixed renormalized localized level Ẽd , TK is expected to
decrease with increasing λ due to the renormalization of
the hybridization V . However, an exponential decrease (as
predicted using simple decouplings of electrons and phonons)
is not expected.23,29

The inset of Fig. 7 displays our results for TK as a function of
λ for fixed Ẽ0

d . As in Ref. 29, we obtain a moderate decrease of
TK as the electron-phonon interaction λ increases. However, in
our case we find a plateau between 0.6 < λ/ω0 < 0.7, which
at fist sight seems surprising. We ascribe this effect to the fact
that while Ẽ0

d is constant, the real effective localized level Ẽd

increases with λ in this interval and there is a compensation
of this effect (which tends to increase TK ) with the monotonic
decrease of TK with λ for fixed Ẽd . Following, we provide
several arguments and calculations to support our conclusion.
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FIG. 7. (Color online) Spectral density for several values of λ,
ω0 = 1, 	 = 0.2, and Ẽ0

d = −0.5. The inset shows the width of
the peak near ω = 0 (two times the Kondo temperature TK ) as a
function of λ.

One of them is that the maximum of the charge-transfer peak
near ω ≈ −0.4ω0 in Fig. 7 moves to the right as lambda
decreases. Note that the usual upward shift in the renormalized
localized level (	/π )ln(D/	) calculated with poor man’s
scaling58 leads to a shift in the opposite direction because
the effective resonant level width decreases.

In Fig. 8 we show 	Ed = Ẽd − Ẽ0
d as a function of λ with

Ed calculated variationally as discussed in Sec. II A. With
respect of the parameters of Fig. 7, we have multiplied 	

by a factor 2 because it leads approximately to the correct
occupancy of the localized level when compared with NRG
results.59 Although the variational calculation can provide only
qualitative results, one can see that it predicts the steepest
increase of 	Ed with λ near λ/ω0 = 0.5 and a saturation for
larger λ, which is consistent with the existence of the plateau
in Fig. 7. Further evidence for a shift in 	Ed as a cause of
this plateau is provided by the dependence of the occupancy
of the localized level with λ (calculated with NCA). This is
displayed in Fig. 9 and shows a behavior which is reminiscent
of that of 	Ed with a maximum near λ/ω0 = 0.5.

FIG. 8. Difference between the renormalized localized level and
the bare one as a function of the electron-phonon interaction for
ω0 = 1, 	 = 0.4, and Ẽ0

d = −0.5.
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FIG. 9. Occupancy of the localized level as a function of electron-
phonon interaction for the same parameters as Fig. 7.

As a final analysis of this situation, we have repeated several
NCA calculations for each value of the electron-phonon
interaction λ, shifting the bare level Ed in such a way that
the maximum of the charge-transfer peak (near ω ≈ −0.4ω0

in Fig. 7) lies at the same position as for λ = 0, with an
error smaller than a fraction of TK . This procedure is very
time consuming, but since the NCA is much superior than
the variational calculation, it ensures that we are working
at constant effective renormalized localized level Ẽd with
reasonable accuracy.

The results are displayed in Fig. 10. In contrast to Fig. 7, one
can see that the position of the charge-transfer peak remains
constant, while it narrows as λ increases. Now, we obtain
a nice monotonic decrease of TK with λ as expected. Also,
the occupancy of the localized level (not shown) has now a
monotonic increase with λ from 0.79 for λ = 0 to 0.87 for
λ = 0.87ω0.

A quantitative analysis of the narrowing of the charge-
transfer peak is complicated by the presence of the side Kondo
peaks and is beyond the scope of this work. In any case, it seems
that the NCA does not give an exponential reduction of this
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FIG. 10. (Color online) Same as Fig. 7 but with constant renor-
malized localized level Ẽd = −0.5ω0 (see text).
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FIG. 11. (Color online) Electronic spectral density per spin as
a function of frequency ω for 	 = 0.2ω0, λ = 0.7, Ẽ0

d = −0.3,
T = 0.05TK , and several bias voltages. The inset shows details for
ω ∼ ω0. The arrows indicate small steps at the left of the peak near
ω ∼ 1.35ω0.

width with increasing electron-phonon interaction λ for fixed
renormalized localized level Ẽd . Although an exponential
renormalization factor is a common feature of strongly coupled
electron-phonon couplings, as stressed by Hewson and Mayer,
the exponential reduction does not in general occur in the
strong-coupling regime of the model, but only in a certain
parameter regime.23

C. Nonequilibrium spectral density and conductance

In Fig. 11, the evolution of ρdσ (ω) with applied bias voltage
Vb is displayed. We see that in addition of the known splitting
of the Kondo peak with Vb,39,40 also the replica of the Kondo
peak near ω = −ω0 splits, a fact which again supports the
notion that this satellite peak is related with the Kondo peak at
the Fermi energy. For ω ≈ 1.35ω0, a splitting also takes place,
but only for bias voltage large enough so that eVb overcomes
the intrinsic width of this feature. The inset shows that the onset
of this peak at ω = ω0 is also split by the bias voltage, and the

0.01 0.1 1
eV

b
/ω0

0

0.1

0.2

0.3

0.4

0.5

dI
/d

V
(2

e2 /h
)

λ=0.7
λ=0.3
λ=0.0

FIG. 12. Conductance as a function of the applied bias voltage
for ω0 = 1, T = 0.02, Ẽ0

d = −0.6, 	 = 0.2, and several values of λ.

195136-7



P. ROURA-BAS, L. TOSI, AND A. A. ALIGIA PHYSICAL REVIEW B 87, 195136 (2013)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
eV

b
/ω0

0

0.05

0.1

0.15

0.2
dI

/d
V

( 
x1

0 
2e

2 /h
)

T=0.10
T=0.03
T=0.01

FIG. 13. (Color online) Conductance as a function of the applied
bias voltage for asymmetric couplings and voltage drops (see text).
Parameters are ω0 = 1, T = 0.02, Ẽ0

d = −0.6, 	 = 0.2, and λ = 0.7.

splitting is clearly visible already for small bias voltages, of
the order of a few times TK/e.

In Fig. 12, we display the conductance G = dI/dVb, where
I is the current as a function of a applied bias voltage Vb

for a temperature slightly above the Kondo temperature and
several values of the electron-phonon interaction. In addition
to the Kondo peak at Vb = 0 and the charge-transfer peak near
Vb = ±Ẽd , replicas of the Kondo peak with smaller intensity
appear for eVb = ±2ω0 reflecting the inelastic processes in
which a phonon is created or destroyed. Since the curve is
symmetric with respect to a change of sign of the bias voltage
[G(−Vb) = G(Vb)], only positive Vb are shown. In general,
further peaks at eVb = ±2nω0 with n > 1 are expected, as
observed experimentally.17 These are difficult to capture within
NCA due to the limitations of the numerical procedure at very
low temperatures.

For experiments of transport through molecules, the cou-
plings to the leads �ν are very asymmetric in general. In
Fig. 13, we show the nonequilibrium conductance for a
case in which �L = 30�R (typical of experiments with C60

quantum dots12), keeping �R + �L = 2	, and the voltage
drop is inversely proportional to the corresponding �ν : μL =
(1/31)Vb, μR = (−30/31)Vb. In this case, the spectral density
at the molecule for finite bias voltage Vb is similar to that
in which the dot is at equilibrium with the lead for which
the coupling is the largest, and is not strongly modified by
Vb. Since most of voltage drop falls between the system and
the other lead, the situation is similar to that in scanning
tunneling microscopy (STM), in which the spectral density
is little affected by the less coupled lead (or STM tip) and
the spectral density is reflected in the differential conductance
G(Vb).57 Therefore, the resulting conductance is qualitatively
similar to the spectral density as a function of frequency, shown
before in Fig. 6.

V. SUMMARY AND DISCUSSION

Using the NCA, we have calculated the spectral density
and nonequilibrium conductance of the Holstein-Anderson

model, which describes a molecule or a quantum dot with
a singly occupied localized (magnetic) level and a single
relevant phonon mode with frequency ω0 coupled to the
occupancy of the localized level. The spectral density shows
interplay of the usual Kondo physics in which the magnetic
moment is screened by conduction electrons at low energies,
and the vibrations. As a consequence of the latter, peaks
appear in the spectral density at frequencies near multiples
of ±ω0, which reflect the physics of both Kondo screening
and the effect of vibrations. However, the nature of these
replicas of the Kondo effect, its exact position, and width
deserve further study. In particular, it would be interesting
to include a finite Coulomb repulsion U and study the
evolution of the replicas above and below the Fermi level,
as the model evolves from the symmetric Anderson model to
infinite U .

The characteristic energy scale TK decreases slightly (not
in an exponential form) with increasing electron-phonon
coupling λ for fixed effective level energy Ẽd . We find that
this effective level Ẽd is slightly larger than Ẽ0

d = Ed − λ2/ω0

and this difference has important consequences, for example,
when the Kondo temperature for different λ is compared.

The conductance through the system at small temperatures
shows not only a central peak at small applied bias voltages
Vb due to the Kondo peak, but also additional peaks that
correspond to inelastic processes involving creation and
destruction of phonons. In our calculation, for a symmetric
voltage drop we only see marked peaks near ω = ±2ω0,
but additional peaks are expected for larger λ or smaller
temperatures.

We have limited our calculations to λ < 0.7. We do not
expect the NCA to be valid for large λ. For small λ, the
NCA is of course valid because it reduces to second-order
perturbation theory in λ. For the extreme polaronic regime
λ � 1 at equilibrium, other techniques should be used,22–25,29

such as NRG. The nonequilibrium problem is more difficult
and few alternative approaches exist, as discussed in the
Introduction.
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APPENDIX: VARIATIONAL ESTIMATE
OF THE EFFECTIVE LEVEL ENERGY

In this appendix, we describe our estimate of the renormal-
ized energy level Ẽd using a simple variational wave function

|ψσ 〉 = A

{
|ψdσ 〉|0β〉 +

∑
K

αK |ψKσ 〉|0a〉
}

, (A1)

where |ψdσ 〉 = d†
σ |F 〉, |ψKσ 〉 = c

†
Kσ |F 〉, |F 〉 is the filled

Fermi sea of conduction electrons, c
†
Kσ (K = νk) creates

a conduction state above the Fermi energy, and |0a〉 is the
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vacuum of phonons a (a|0a〉 = 0) while |0β〉 is the vacuum of
a displaced phonon defined by β† = a† + c, where c is a real
variational parameter, like A and αK , which will be determined
by minimizing the energy.

Note that this wave function, in contrast to that proposed
by Varma and Yafet (VY),56 is not a singlet but a doublet.
While the VY choice leads to an energy gain of the order
of the Kondo temperature, which depends exponentially on
the hybridization VK , and the correct spin (S = 0) of the
ground state, our doublet gains more energy, with a difference
proportional to |VK |2 in the Kondo limit. In this limit, a
comparison of the local occupation 〈nd〉 = ∂E/∂Ed , where
E is the total energy, with NRG results suggests that the
energy gain is qualitatively correct (about half the correct
value) and much better than that predicted by the slave-boson
approximation in mean-field level.59

Expanding |0β〉 = ∑
n cn(a†)n|0α〉 in a basis of occupations

of the phonons a, using the equation β|0β〉 = (a − c)|0β〉 = 0,
it is easy to see that 〈0a|0β〉 = exp(−c2/2). Using this and
minimizing 〈ψσ |H |ψσ 〉 − E(〈ψσ |ψσ 〉 − 1) with respect to
A one obtains

E = 〈ψσ |H |ψσ 〉
〈ψσ |ψσ 〉 = EF + Ed + 2λc + ω0c

2

+ 2e−c2/2
∑
K

αKVK +
∑
K

α2
K (EF + εK − E), (A2)

where EF is the energy of |F 〉.

Minimization with respect to αK and c leads to

αK = − VKe−c2/2

EF + εK − E
,

(A3)
c = − λ

ω0 − e−c2/2
∑

K αKVK

.

Using the first equation to eliminate αK , assuming for
simplicity constant VK = V , constant density of conduction
states ρ extending up to εF + D, and calling 	 = πρV 2, one
obtains the following system of equations:

c = − λ

ω0 + e−c2
γ (ε)

, ε = 2λc + ω0c
2 − e−c2

γ (ε), (A4)

where we have defined ε = E − EF − Ed , γ (ε) = (	/π )
ln |1 − D/(Ed + ε)|.

After solving the system, using Eq. (6) and taking into
account that in the Kondo limit the significant αK are those
with εK very near εF , we can write

Ẽd = 〈ψdσ | 〈0b|H |0b〉 |ψdσ 〉 − 〈ψKσ | 〈0a|H |0a〉 |ψKσ 〉 ,

(A5)

with K = KF on the Fermi shell. The result can be written as

Ẽd = Ed − λ2

ω0
(2c̃ − c̃2), (A6)

where c̃ = −ω0c/λ is an adimensional number, with
0 � c̃ � 1. From the first Eq. (A4), it is clear that c̃ = 1 for
VK = 0 as expected.
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26M. D. Núñez Regueiro, P. S. Cornaglia, G. Usaj, and C. A. Balseiro,
Phys. Rev. B 76, 075425 (2007).

27H.-C. Yong, K.-H. Yang, and G.-S. Tian, Commun. Theor. Phys.
48, 1107 (2007).

28A. Martin-Rodero, A. Levy Yeyati, F. Flores, and R. C. Monreal,
Phys. Rev. B 78, 235112 (2008).

29R. C. Monreal and A. Martin-Rodero, Phys. Rev. B 79, 115140
(2009).

30J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 76, 1715
(1996).

31J. Paaske and K. Flensberg, Phys. Rev. Lett. 94, 176801 (2005).
32M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 76, 035301

(2007).
33J. E. Han, Phys. Rev. B 81, 113106 (2010).
34K. H. Yang, Y. P. Wu, and Y. L. Zhao, Europhys. Lett. 89, 37008

(2010).
35A. Goker, J. Phys.: Condens. Matter 23, 125302 (2011).
36R. C. Monreal, F. Flores, and A. Martin-Rodero, Phys. Rev. B 82,

235412 (2010).
37A. Levy Yeyati, A. Martin-Rodero, and F. Flores, Phys. Rev. Lett.

71, 2991 (1993).
38A. A. Aligia, Phys. Rev. B 74, 155125 (2006).
39N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1994).
40M. H. Hettler, J. Kroha, and S. Hershfield, Phys. Rev. B 58, 5649

(1998).
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