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Detecting classical phase transitions with Renyi mutual information
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By developing a method to represent the Renyi entropies via a replica trick on classical statistical mechanical
systems, we introduce a procedure to calculate the Renyi mutual information (RMI) in any Monte Carlo
simulation. Through simulations on several classical models, we demonstrate that the RMI can detect
finite-temperature critical points, and even identify their universality class, without knowledge of an order
parameter or other thermodynamic estimators. Remarkably, in addition to critical points mediated by symmetry
breaking, the RMI is able to detect topological vortex-unbinding transitions, as we explicitly demonstrate on
simulations of the XY model.
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I. INTRODUCTION

The universality and importance of the concept of infor-
mation is exploited widely in mathematics and the physical
sciences. Information sets the fundamental limits in commu-
nication (or uncertainty), regardless of system, technology,
or physical material. Shannon was the first to quantify
information using the concept of entropy—a quantity that has
its roots in thermodynamics.1 It is therefore not surprising that
deep ties exist between the measurement of thermodynamic
quantities and concepts associated with information theory.

There is already a rich cross-fertilization between ideas in
condensed matter physics and the information sciences. Most
recently, information measures have been used to quantify
“hidden” correlations in materials—exchanges of information
that can occur between two parts of a system that are not
manifest in traditional condensed-matter estimators (such as
correlation functions).2 For example, in spin liquid phases,
correlation functions can rapidly decay as a function of spatial
separation; however, due to constraints, hidden correlations
exist across vast distances in the sample.3 These can be
manifest in entropy quantities measuring the amount of
communication between two regions of the sample—resulting
in a practical estimator for, among other things, topological
order in condensed matter systems.4,5

Phase transitions offer another testing ground for the use of
information quantities in condensed matter systems. Critical
points are associated with a diverging correlation length, sug-
gesting the existence of long-range channels for information
transfer. However, it is not obvious that measurable quantities
associated with this information can be exploited to tell us
anything about these phase transitions.

In this paper, we examine the Renyi mutual information
(RMI), a measure that quantifies the amount of information
contained in some region of a statistical mechanical system,
about the rest of the system. Numerical measurements of
classical mutual information6,7 typically calculate the reduced
density matrix explicitly, a computationally expensive task,
and use that to calculate the von Neumann entropy and
mutual information directly. The RMI, on the other hand,
is easily measured in standard Monte Carlo routines via a
replica trick,8,9 rather than the calculation of a reduced density

matrix, making it immediately amenable to measurement on
a vast number of models of interest to condensed matter,
biophysics, and physical chemistry. We show that this RMI can
be used in a practical way to identify phase transitions through
finite-size scaling analysis on lattices of different sizes, without
knowledge of an order parameter or any other thermodynamic
quantity. We use the standard two-dimensional Ising model
as a test case, demonstrating universality when results are
compared to vastly different (even quantum mechanical10)
models that exhibit the same universality class. Finally, we
establish the ability of the RMI to detect the Berezinskii-
Kosterlitz-Thouless (BKT) transition, without relying on
knowledge of any thermodynamic estimator such as the spin
stiffness. This suggests the power of the RMI for detecting
hidden transitions in a variety of other statistical mechanical
models in the future.

II. INFORMATION, ENTROPY, AND THE REPLICA TRICK

Given a random variable X one can quantify its associated
uncertainty, or equivalently, the amount of information one
is missing by not knowing the state of X. There are various
ways that this information can be embodied, for example, in
the generalized Renyi entropies11

Sα(X) = 1

1 − α
ln

( ∑
i∈X

pα
i

)
, (1)

where pi is the probability of outcome X = i. Taking the
limit α → 1, one recovers Shannon’s familiar entropy S1 =
−∑

i pi ln(pi), which can be related to the thermodynamic
entropy of a statistical mechanical system S = ln �, where
� is the number of microstates, assuming all occur with
equal probability. This relationship is often exploited in the
study of real physical systems through microscopic statistical
mechanical models.

In such systems, one may also ask how much knowledge
of a subsystem (call it A) is possible, assuming complete
knowledge of another subsystem B. Correlation functions are
a common example that incompletely quantify this knowledge.
In this paper, let us instead define a spatial subregion A as the
complement of B, so that A ∪ B is the complete system; we
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could say that piA is the probability of state iA occurring in
region A. The state iA can be any classical (or even quantum)
state: We will restrict our focus mainly to classical spin
systems.

From Boltzmann, the probability of a state occurring is
piA,iB = e−βE(iA,iB )/Z, where E(iA,iB) is the energy associated
with states iA in region A and iB in region B, and Z =∑

iA,iB
e−βE(iA,iB ) is the partition function. To obtain only

the probability of a certain state in A, we can instead sum
over all possible states in B, piA = ∑

iB
e−βE(iA,iB )/Z. The

appropriate sums of piA,iB or piA , raised to the power α, give
the Renyi entropies in a straightforward way. In equilibrium
statistical mechanical systems, estimators based on sums such
as these are commonly calculated using importance sampling
techniques, i.e., Markov chain Monte Carlo.

In this paper we mostly restrict our discussion to the second
Renyi entropy, which requires sums of the probabilities piA,iB

or piA squared. For example, to get the entropy of region A we
use, p2

iA
= (

∑
iB

e−βE(iA,iB ))(
∑

jB
e−βE(iA,jB ))/Z2, leading to

S2(A) = − ln

(
Z−2

∑
iA

∑
iB

∑
jB

e−β[E(iA,iB )+E(iA,jB )]

)
,

= − ln(Z[A,2,T ]) + 2 ln(Z[T ]), (2)

where we have defined a “replicated” partition function
Z[A,2,T ] (Ref. 12), which can be sampled via a Monte Carlo
simulation procedure described in the next section.

Note that, while the Renyi entropies tell us about uncer-
tainty in the full system or part of the system, they do not
reveal the correlations or information between two regions of
a system. For this we introduce the RMI

Iα(A;B) = Sα(A) + Sα(B) − Sα(A ∪ B). (3)

This measure defines in a precise way the information that a
full knowledge of B gives us about A, or vice versa. From
Eq. (2), the RMI can be related to a difference in free energies.
Note, the free energy in a typical condensed-matter system
with a D − 1-dimensional boundary generally13–15 behaves as

F = aLDf (T ) + b�fB (T ) + · · · , (4)

where f and fB are the size-independent free energy densities,
� ∝ LD−1, and the ellipses indicate terms that scale away as
O(LD−2) or faster, as well as additive constants that we discuss
below. The thermodynamic behavior of the RMI, which is
constructed to cancel contributions arising from the bulk,
is determined by this boundary free energy—restricting it to at
most “area law” scaling Iα ∝ � (Ref. 16). As we will see next,
the subleading constants make the RMI an extremely useful
tool for detecting phase transitions in finite-size systems.

III. THERMODYNAMIC BEHAVIOR

A key observation that enables the widespread utility of the
RMI for integer α � 2 is that, for any physical system, the
calculation of Sα(A) can be accomplished via the replicated
system geometry Z[A,α,T ] (Fig. 1). For S2(A), the form of
the Boltzmann factor effectively constrains states in A to be
equal between the two replicas, while the states in B are
unconstrained between replicas. This replica trick12 leads to
the practical method for the measurement of S2 in the Monte

FIG. 1. (Color online) A representation of the replicated partition
function Z[A,2,T ] used for calculating S2(A) in a one-dimensional
system with ten spins. In region A (the left five spins), replicas are
constrained to always be identical. In region B, configurations are
sampled independently in the two replicas. The constraints on spins
in A effectively halve its temperature, such that when the replicated
system has temperature Tc < T < 2Tc, the spins in this region are
below critical, while in B the spins are above critical (illustrated).

Carlo simulations discussed in the next section. In addition,
it facilitates the general understanding of the RMI in the
thermodynamic limit, as we now discuss.

We observe that, in addition to the area law term discussed
above, important subleading constant corrections may occur
in the RMI. In the simplest case, where �0 symmetry-broken
ground states exist at a temperature far below Tc, both Z[T ] =
�0 and Z[A,2,T ] = �0, ignoring terms ∝ � in the entropy
which arise as the temperature is increased. Generalizing
Eq. (2), the RMI for T < Tc is then

Iα = 1

1 − α
{ln(Z[A,α,T ]) + ln(Z[B,α,T ])

−α ln(Z[T ]) − ln(Z[A ∪ B,α,T ])}
= ln �0 + O(�), (5)

i.e. some positive constant c = ln(�0) independent of Renyi
index, and an area law piece from Eq. (4).

Next, in the intermediate temperature range Tc < T < αTc,
the “unconnected” region (B) of the replicated system is
above criticality, whereas the “connected” part (A) of the
simulation is effectively below Tc due to the constraint on
A. If each above-critical degree of freedom in the system
can realize σ different states, coarse-graining on the length
scale of the correlation length in that region ξB results in
a contribution to the entropy proportional to ln[σN/ξD

B ]. The
replicated partition function, on the other hand, has a reduction
in the number of accessible states since the α above-critical
regions are connected to a below-critical region through the
boundary of size �, which eliminates O(�ξB) lattice degrees
of freedom in each of the unconstrained regions, giving an
entropy contribution ln[�0σ

(αNB−α�ξB )/ξD
B ]. This implies

Iα = 1

1 − α

(
ln �0σ

(αNB−α�ξB )/ξD
B + ln �0σ

(αNA−α�ξB )/ξD
B

−α ln σN/ξD
B − ln �0 + O(�)

)
= 1

1 − α

(
ln �0 − 2α�/ξD−1

B ln σ + O(�)
)
. (6)

This gives a constant part of the RMI, c = − ln �0/(α − 1)
and a positive area law piece that contributes to the O(�) terms
that arise in Eq. (4).

Importantly, we see that the constant part of the RMI
changes sign as we pass through Tc. It can be seen in our
finite-size Monte Carlo data that the presence of this constant
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c will cause the Iα/� curves to “fan out” away from Tc for
different �, while c = 0 precisely at Tc, producing a striking
crossing in the curves.

IV. MONTE CARLO ALGORITHM

The form of the replica trick suggests a straightforward
way to measure the Renyi entropy using a modified simulation
geometry (Fig. 1). The constraint on region A demands that, to
be accepted, an update must affect states on the same physical
lattice site in all replicas—effectively reducing the temperature
of region A by a factor of α, as discussed above.

Using this modified simulation we can generate states
according to the probability p2

iA
. In general, generating states

from a partition function via Monte Carlo does not allow direct
calculation of the partition function (or the free energy) itself
in an efficient manner. To overcome this, one approach used
previously12 is to integrate the energy estimator starting from
T → ∞, obtaining the Renyi entropy at some finite T from
both a replicated simulation and an unreplicated simulation.
This necessitates a schedule of simulations over a large range
of temperatures to gather enough detailed knowledge of the
energy for an accurate integration.17

V. RESULTS ON MODELS

Using conventional Monte Carlo simulations of several
models, we demonstrate the use of the second RMI to detect
finite-temperature phase transitions. In the following, we use
I2(A;B) where A and B are complementary regions, each
defined as an L × L/2 cylinder embedded in the L × L torus.

The first model we examine is the classical Ising model on
a two-dimensional square lattice H = −J

∑
〈ij〉 S

z
i S

z
j , where

Sz
i = ±1/2. There exists a transition to an ordered phase at a

temperature Tc/J = 2/ ln(1 + √
2) ≈ 2.269 (Ref. 13), which

offers us the simplest test for the RMI. Figure 2 illustrates
I2(A;B)/� where � is the length of the boundary between
the regions (in all cases hereafter, � = 2L). Close inspection

FIG. 2. (Color online) Left: The RMI per boundary length (I2/�)
as a function of temperature for the Ising model. Dashed lines indicate
Tc and 2Tc. Upper right: The first derivative of the RMI for each
system size as a function of temperature, with a fit to a logarithmic
divergence shown in Eq. (7). Lower right: The temperature of the
lower crossings of the RMI for sizes L and 2L as a function of
1/L. Dashed line indicates Tc. Finite-size scaling gives us Tc =
2.2683(17).

indicates approximate crossings of the I2(A;B)/� curves at
Tc and 2Tc. Examining the crossings as we move to larger
system sizes we see that they extrapolate towards the transition
temperature. Knowing that the correlation length at the Ising
transition behaves as ξ ∼ |t |−ν with t=|T − Tc|/Tc and ν = 1,
one can derive a finite-size scaling behavior for the crossing
temperature T (L) − Tc ∝ 1/L. This is confirmed by the data
in the lower panel of Fig. 2.

Remarkably, this behavior mimics the crossing seen previ-
ously in the analogous RMI quantity based on the entangle-
ment entropies in a quantum spin-1/2 XXZ model.12,18 That
model also realizes a finite-temperature critical point, in the
two-dimensional (2D) Ising universality class (however, at a
different Tc, which is nonuniversal). There, it has been argued
that the crossings were a manifestation of criticality, with the
scaling form10

I2(A;B) = [c1(t) + t ln t] · � + c2(t) + O(1/�). (7)

It is important to note that c1(t) can be polynomial in t , where
the strict “area law” at t = 0 is caused entirely by its constant
piece crossing zero [�0 = 2 in Eqs. (5) and (6) results in
c2 = ln(2) below Tc, and c2 = − ln(2) for Tc < T < 2Tc].
Divergences in derivatives of I2(A;B) are caused by the t ln t

contribution. This term is known from the t ln t divergence in
the boundary free energy as t → 0 for the square lattice Ising
model with a field applied to the boundary on an infinite half
plane;19,20 we can thus use it as a test of universality in this
model. In Fig. 2, ∂I2/∂t shows the predicted ln t singularity,
confirming that this critical point lives within the the 2D Ising
universality class.

We turn now to Monte Carlo simulations of the classical 2D
XY model on a square lattice, H = −JXY

∑
〈ij〉 cos(θi − θj ).

This is a model with continuous spin variable 0 � θi < 2π that
undergoes a BKT21 transition from a phase with free vortices
to one with bound vortex-antivortex pairs. Numerically, the
detection of the BKT transition is much more subtle than the
Ising phase transition since it has no local order parameter
and standard scaling theory on thermodynamic estimators
(such as the specific heat) does not work. In two dimensions,
this is circumvented by measuring the “spin stiffness” and
making use of a special universal jump condition, TBKT =
πρs/2 (Ref. 22)—a procedure that has recently found TBKT =
0.89274(1) (Ref. 23). However, one may wonder if the RMI
can detect this phase transition without any need for such
specialized measurements.

To address this, we examine the RMI for the classical XY

model, shown in Fig. 3. One can clearly see the development
of crossings in the quantity I2/� near the value of TBKT and
2TBKT—strong indication that universal scaling is coming into
play. To examine this further, in the inset we illustrate the
RMI for a completely different model, the quantum XY model
H = −t

∑
〈ij〉(b

†
i bj + bi b

†
j ), computed using stochastic series

expansion quantum Monte Carlo (QMC) where the quantum
RMI is generated using a broad histogram approach.18 In this
case, similar crossings appear at the (nonuniversal) TBKT ≈
0.343, giving strong evidence in support of the universality of
our result that the RMI can detect the BKT transition.

However, unlike the relatively “clean” crossing of the 2D
Ising critical point, these crossings have a larger finite-size
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FIG. 3. (Color online) The RMI per boundary length (I2/�) as
a function of temperature for the classical XY model, dashed lines
indicate TBKT and 2TBKT. Inset: Data for the quantum spin-1/2 XY

model, obtained using a Wang-Landau technique (Ref. 18). Note
that classically we reach much larger systems (only the smallest and
largest sizes are labeled).

scaling component. Figure 4 contains a detailed finite-size
scaling analysis for the XY model. This shows fits to two finite-
size scaling forms which are derived by setting the correlation
length near the critical temperature, ξ = e−b/

√
t [1 + O(t)]

(Ref. 24), equal to the linear system size L/L0 with t =
(T − TBKT)/TBKT. Then by relating the temperature T with
the finite-size transition temperature T (L), we derive

TBKT(L) = TBKT(∞)

[
1 + b2

ln2(L/L0)
+ c

ln5(L/L0)

]
. (8)

Note, typical finite-size scaling analyses set the coefficient c

equal to zero, effectively ignoring subleading O(t) corrections
to the correlation length. Using this finite-size scaling form,
the data for the crossing of I2/� convincingly approach TBKT

in the limit of L → ∞.

VI. DISCUSSION

The Renyi mutual information (RMI) is a quantity able
to detect all correlations in a physical system, even those
missed by traditional connected correlation functions. We have
introduced a practical method to calculate the RMI using a
modification of standard Monte Carlo techniques for classical
statistical mechanical systems. We demonstrated that the RMI
associated with the second Renyi entropy, I2, is able to identify
both conventional critical points, as well as the BKT transition
where standard scaling theory breaks down. A straightforward
finite-size scaling analysis of I2 is sufficient to identify each

FIG. 4. (Color online) The crossing of the RMI for the classical
XY model between sizes L and 2L as a function of 1/ ln(L)2. Fit 1 fits
the points to Eq. (8) assuming c = 0 and using the largest six systems
while Fit 2 uses the full equation and all of the data. They give TBKT

estimate of 0.912(4) and 0.899(9), respectively. Inset: Close-up of the
lower crossing (only the smallest and largest sizes are labeled). The
arrows indicate the eight crossing values used in the main figure.

phase transition, without knowledge of an order parameter,
broken symmetry, or critical theory.

The ease of the implementation of the RMI measurement
in any standard Monte Carlo routine could stimulate adoption
to simulation studies in many fields of the physical sciences
and beyond. The RMI will likely find great utility in many
classes of classical models, such as generalized XY models
with “hidden” transitions,25 or loop26,27 and dimer models28,29

where the universal properties of exotic criticality may be
manifested.30 Also particularly pressing is the question31

of whether RMI can detect unconventional transitions in
disordered or glassy systems.32–35 Finally, the ubiquity of the
Monte Carlo method in such far-reaching fields as humanities
or finance may precipitate the use of RMI in a host of
unforeseen applications, such as detecting transitions linked
to financial market crashes.36
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