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Ferromagnetism and Fermi surface transition in the periodic Anderson model:
Second-order phase transition without symmetry breaking
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We study ferromagnetism in the periodic Anderson model with and without a magnetic field by the Gutzwiller
theory. We find three ferromagnetic phases: a weak ferromagnetic phase (FM0), a half-metallic phase without
Fermi surface for the majority spin (FM1), and a ferromagnetic phase with almost completely polarized f

electrons (FM2). The Fermi surface changes from the large Fermi surface in the paramagnetic state to the small
Fermi surface in FM2. We also find that the transitions between the ferromagnetic phases can be second-order
phase transitions in spite of the absence of symmetry breaking. While we cannot define an order parameter for
such transitions in an ordinary way, the topology of the Fermi surface characterizes the transitions, i.e., they are
Lifshitz transitions.
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I. INTRODUCTION

In heavy-fermion systems, external perturbations, such as
a magnetic field H and pressure, can change the electronic
state drastically, since the energy scale in the heavy-fermion
systems is very low due to the renormalization by the strong
electron correlation.

The metamagnetic behavior in CeRu2Si21–4 under a mag-
netic field and the magnetic field induced transitions in
YbRh2Si25–8 are typical examples of such effects. At the
transition field, the magnetization deviates substantially from
a linear dependence on H observed in lower fields.1,2,5 Such an
anomaly in the magnetization indicates that the electronic state
is changed drastically at the transition. Indeed, the effective
mass deduced from the specific heat3 and from the de Haas-van
Alphen effect4 enhances around the metamagnetic field in
CeRu2Si2. In YbRh2Si2, change in the Fermi surface from
the de Haas-van Alphen experiment6 and anomaly in the
thermoelectric power7,8 around 10 T have been reported.

Another examples are magnetic transitions and supercon-
ductivity under pressure, such as ferromagnetic transitions9

and superconductivity10 in UGe2. There are two ferromagnetic
phases in UGe2: the strongly polarized ferromagnetic phase
under low pressure, called FM2, and the ferromagnetic phase
under high pressure, called FM1. Under higher pressures,
UGe2 becomes paramagnetic. The superconducting transition
temperature becomes maximum around the pressure where
the FM1-FM2 transition temperature becomes zero.11 The
coefficient A of T 2 term in the electrical resistivity,

√
A is

proportional to the effective mass, enhances in FM1.10–13 The
de Haas-van Alphen experiments show that the Fermi surface
changes at the ferromagnetic transitions.13–17 These observa-
tions indicate that the electronic state changes drastically at
the ferromagnetic transitions.

To understand such phenomena, we need a theory that
can describe the heavy-fermion state and the magnetically
polarized state, and can evaluate physical quantities that reflect
the change in the electronic state, such as the effective mass.
To describe the heavy-fermion state, the periodic Anderson
model has been employed as a typical model. While several
approximations have been applied to the model, the Gutzwiller
method is a useful approximation and succeeded in describing

the heavy-fermion state.18,19 Thus it is natural to extend the
Gutzwiller method for the model with magnetic polarization.
In fact, a similar approximation, that is, the slave-boson
mean-field theory of the Kotliar-Ruckenstein type, has been
applied to study the magnetization of the model.20–22 However,
the effects of magnetism and a magnetic field on the effective
mass have not been explored by these studies.

In this study, we extend the Gutzwiller method for the
magnetically polarized states and investigate ferromagnetic
states at zero temperature. We evaluate the magnetization
and the effective mass. We also investigate the Fermi surface
change by ferromagnetism and a magnetic field. Preliminary
results on the magnetic field effect have been reported in
Ref. 23.

This paper is organized as follows. In Sec. II, we explain
the periodic Anderson model. In Sec. III, we introduce the
variational wave function and the Gutzwiller approximation.
In Sec. IV, we show the calculated results of physical quantities
and phase diagrams. We also discuss Fermi surface states
and the order of the phase transitions. In Sec. V, we discuss
the antiferromagnetic states of the model. In Sec. VI, we
summarize the paper.

II. MODEL

The periodic Anderson model is given by

H =
∑
kσ

εkc
†
kσ ckσ +

∑
iσ

εf nf iσ

−V
∑
kσ

(f †
kσ ckσ + c

†
kσ fkσ ) + U

∑
i

nf i↑nf i↓, (1)

where c
†
kσ and f

†
kσ are the creation operators of the conduction

and f electrons, respectively, with momentum k and spin σ .
nf iσ is the number operator of the f electron with spin σ at
site i. εk is the kinetic energy of the conduction electron, εf

is the f -electron level, V is the hybridization matrix element,
and U is the on-site Coulomb interaction between f electrons.
The spatial extent of the f -electron wave function is narrow
and the Coulomb interaction between f electrons is large, and
thus, we set U → ∞ for simplicity. We set the energy level
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of the conduction electrons as the origin of energy, that is,∑
k εk = 0.
Under a finite magnetic field H , we replace εf by εf σ =

εf − σH , where σ = +1 (−1) for ↑ (↓) spin in the right-hand
side of the equation. Here, we have set the Bohr magneton
μB = 1 as the unit of magnetization. We have set the g factors
gf = 2 for f electrons and gc = 0 for conduction electrons,
that is, we ignore the Zeeman term for the conduction
electrons. As we will show later, the polarization of the
conduction electrons is small even in ferromagnetic phases,
and this assumption is justified as long as the magnetic field is
not very large.

Experimentally, magnetic anisotropy is important in
f -electron systems, while it is not included in the present
model. To interpret experimental results, we should regard the
magnetization and magnetic field of the present theory as being
along the easy axis of the materials.

III. METHOD

In this study, we focus on ferromagnetism and magnetic
field effects on the paramagnetic state, and then, we assume a
spatially uniform state. The variational wave function is given
by

|ψ〉 = P |φ↑〉 ⊗ |φ↓〉, (2)

where P = ∏
i[1 − nf i↑nf i↓] excludes the double occupancy

of the f electrons at the same site. For the one-electron part of
the wave function, we consider the following form:

|φσ 〉 =
∏

k<kFσ

[c†kσ + aσ (k)f †
kσ ]|0〉, (3)

for nσ < 1, where nσ is the total number of the spin-σ electrons
per site and kFσ is the Fermi momentum for spin σ . aσ (k)
are spin-dependent variational parameters. For nσ > 1, both
the hybridized bands are filled below kFσ and only the lower
hybridized band is filled above kFσ for U = 0, and thus, we
consider the one-electron part given by

|φσ 〉 =
∏

p<kFσ

c†pσ f †
pσ

∏
k>kFσ

[c†kσ + aσ (k)f †
kσ ]|0〉. (4)

By using the Gutzwiller approximation,19,24,25 we evaluate
the expectation values of physical quantities of the variational
wave function. The f -electron number nf σ per site with spin
σ is given by

nf σ = 1

L

∑
k<kFσ

a2
σ (k)

q−1
σ + a2

σ (k)
, (5)

for nσ < 1, and

nf σ = 1

L

∑
k>kFσ

a2
σ (k)

q−1
σ + a2

σ (k)
+ nσ − 1, (6)

for nσ > 1, where L is the number of the lattice sites and

qσ = 1 − nf

1 − nf σ

, (7)

with nf = ∑
σ nf σ . nσ − 1 in Eq. (6) is the f -electron number

with spin σ inside the Fermi momentum kFσ .

We evaluate the momentum distribution functions ncσ (k) =
〈c†kσ ckσ 〉 = 〈ψ |c†kσ ckσ |ψ〉/〈ψ |ψ〉 of the conduction electrons
and nf σ (k) = 〈f †

kσ fkσ 〉 of the f electrons. For nσ < 1, we
obtain

ncσ (k) =
{
�ncσ (k) for k < kFσ ,

0 for k > kFσ ,
(8)

with

�ncσ (k) = q−1
σ

q−1
σ + a2

σ (k)
, (9)

and

nf σ (k) =
{

(1 − qσ )nf σ + �nf σ (k) for k < kFσ ,

(1 − qσ )nf σ for k > kFσ ,
(10)

with

�nf σ (k) = qσ

a2
σ (k)

q−1
σ + a2

σ (k)
. (11)

For nσ > 1, we obtain

ncσ (k) =
{

1 for k < kFσ ,

1 − �ncσ (k) for k > kFσ ,
(12)

with

�ncσ (k) = a2
σ (k)

q−1
σ + a2

σ (k)
, (13)

and

nf σ (k) =
{
qσ + (1 − qσ )nf σ for k < kFσ ,

qσ + (1 − qσ )nf σ − �nf σ (k) for k > kFσ ,

(14)

with

�nf σ (k) = qσ

q−1
σ

q−1
σ + a2

σ (k)
. (15)

Energy per site is given by

e = 〈H〉
L

=
∑

σ

eσ , (16)

where

eσ = 1

L

∑
k<kFσ

εk + 1

L

∑
k<kFσ

(εf σ − εk)a2
σ (k) − 2V aσ (k)

q−1
σ + a2

σ (k)
,

(17)

for nσ < 1, and

eσ = εf σ (nσ − 1) + 1

L

∑
k>kFσ

(εf σ − εk)a2
σ (k) − 2V aσ (k)

q−1
σ + a2

σ (k)
,

(18)

for nσ > 1.
Now, we minimize the energy with respect to the variational

parameters aσ (k). From ∂e/∂aσ (k) = 0, we obtain

aσ (k) = 2V

ε̃f σ − εk +
√

(ε̃f σ − εk)2 + 4Ṽ 2
σ

, (19)
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where Ṽσ = √
qσ V and ε̃f σ is the renormalized f level. The

renormalized f -level ε̃f σ satisfy

εf σ − ε̃f σ = −
∑
σ ′

Ṽ 2
σ ′I2σ ′qσ ′

∂q−1
σ ′

∂nf σ

. (20)

The integral is defined by

Ilσ = 1

L

∑
k

′ (εk − ε̃f σ )l−2√
(εk − ε̃f σ )2 + 4Ṽ 2

σ

, (21)

where
∑

k
′ means that the summation runs over k < kFσ for

nσ < 1 and k > kFσ for nσ > 1. We can rewrite Eqs. (5) and (6)
by using Eqs. (19) and (21):

nf σ = nσ + I3σ

2
. (22)

We solve Eqs. (20) and (22) with respect to ε̃f σ and
nf σ for each value of the total polarization M ′ = n↑ − n↓
fixing the total number n = n↑ + n↓ of electrons per site,
and evaluate the energy. nσ can be tuned by varying the
Fermi momentum kFσ . Then, we determine M ′ for which
the energy is the lowest, and evaluate physical quantities.
Here, we note that Eqs. (20) and (22) can be derived also by
the slave-boson mean-field theory of the Kotliar-Ruckenstein
type,21 and several physical quantities, such as magnetism,
are equivalent between the slave-boson mean-field theory and
the Gutzwiller method. However, some quantities are difficult
to be determined within the slave-boson mean-field theory.
For example, for nσ < 1, the electron distribution function is
always the Fermi distribution function, that is, unity below
the Fermi momentum and zero above the Fermi momentum,
since the slave-boson mean-field theory is a one-particle
approximation. Thus we obtain �ncσ (kFσ ) + �nf σ (kFσ ) = 1.
On the other hand, we can deal with the renormalization effect
on the electron distribution by the Gutzwiller method as shown
in Eqs. (8)–(15).

IV. RESULTS

Before presenting our calculated results, we discuss possi-
ble ferromagnetic states of the model by using schematic band
structures shown in Fig. 1.

In the paramagnetic phase (PM), Fig. 1(a), the numbers
of up- and down-spin electrons are the same. The effective
f -level ε̃f ↑ = ε̃f ↓ is renormalized to a value around the kinetic
energy ε

k
(S)
F

at the Fermi momentum for the small Fermi surface
as long as εf � ε

k
(S)
F

, and the Fermi level is also near ε
k

(S)
F

.
Here, the small Fermi surface is defined as the Fermi surface
for the state where the f orbital with nf = 1 is assumed to
be decoupled from the conduction electrons. However, the
f -electron state contributes to the band, and the large Fermi
surface realizes with the Fermi momentum k

(L)
F which includes

the f -electron contribution. As a result, the dispersion around
Fermi momentum k

(L)
F is weak, and a heavy-electron state

realizes. Note that if εf � ε
k

(S)
F

, the renormalization is weak
and ε̃f ↑ = ε̃f ↓  εf .

In a state with weak polarization, by a spontaneous phase
transition or by a magnetic field, the band structure will become
like Fig. 1(b). Here, we call this state FM0.

E k
σ

εkF
(S)

(a) PM

updown

(b) FM0

updown

E k
σ

k
kF

(S)−kF
(S) kF

(L)−kF
(L)

(c) FM1

updown

k
kF

(S)−kF
(S) kF

(L)−kF
(L)

εkF
(S)

ε∼f ↑ ∼− εf ↑

ε∼f ↓

(d) FM2

updown

FIG. 1. (Color online) Schematic band structures of paramag-
netic and ferromagnetic phases in the periodic Anderson model.
(a) Paramagnetic phase (PM), (b) weakly polarized ferromagnetic
phase (FM0), (c) half-metallic phase (FM1), and (d) ferromagnetic
phase with an almost completely polarized f -electron state (FM2).
Ekσ denotes the quasiparticle energy. Right (left) part of each figure
shows the up- (down-) spin band. The occupied states are represented
by the bold lines.

When the polarization becomes larger, the lower hybridized
band will be filled up by the up-spin electrons as shown in
Fig. 1(c). We call this state FM1. In this state, the Fermi surface
for the up-spin states disappears, that is, this is a half-metallic
state. There is a hybridization gap, and this state will be stable
in some degree. This half-metallic state has been obtained by
the slave-boson mean-field theory20–22 and in the Kondo lattice
model.26–32

When the polarization increases further, the up-spin elec-
trons start to fill the upper hybridized band as in Fig. 1(d). We
call this state FM2. In FM2, the f electrons will polarize almost
completely, that is, nf ↑  1 and nf ↓  0. Since nf ↓  0, the
up-spin electrons can move almost freely, and the effective
f level for up spin should be near the bare f level. On the
other hand, the down-spin electrons experience the Coulomb
interaction strongly for nf ↑  1, and the effective f level
for down spin becomes much higher than the Fermi level.
As a result, the electronic state around the Fermi surface
is composed mostly of the conduction-electron states, and
the Fermi surface is similar to that expected for the small
Fermi surface state. Such a small Fermi surface induced by
ferromagnetism and/or magnetic field has been discussed in
Refs. 33 and 34.

Now, we show the calculated results in the following
subsections. In the present study, we consider a simple model
for the conduction band. The density of states of the conduction
electrons is given by ρ(ε) = 1/(2W ) for |ε| < W and ρ(ε) = 0
otherwise. We expect that a change in the form of ρ(ε) will
affect the results little unless ρ(ε) has some characteristic
structures, such as strong peaks.

A. Phase diagram

In Fig. 2, we show the phase diagrams for the total number
of electrons n = 1.25, 1.55, and 1.75 per site. All the three
ferromagnetic phases discussed above: FM0, FM1, and FM2,
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n↑ =1

FM2
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(c)

FIG. 2. (Color online) Phase diagrams (a) for n = 1.25, (b) for
n = 1.55, and (c) for n = 1.75. The solid lines indicate second-order
phase transitions and the dashed lines indicate first-order phase
transitions. The circle in (b) represents the end point of the first-order
phase transition. In (b), we also show the Fermi surface structures in
these phases schematically. The lower hybridized band is occupied
by electrons in the lightly shaded area. In the darkly shaded area,
both the lower and upper hybridized bands are filled by electrons.
The bold arrow in (c) indicates the parameters for which physical
quantities shown in Figs. 3 and 4 are calculated. The circle in (c)
indicates the parameter set for which the magnetic field dependences
of the physical quantities are calculated (Figs. 5 and 6).

appear. For n = 1.25, Fig. 2(a), all the phase transition are of
second order. On the other hand, the FM1-FM2 transition is
of first order for n = 1.75 [see Fig. 2(c)]. Here, we discuss
the reason why the order of the FM1-FM2 transition changes
with n. As we will show later [see Fig. 3(a)], the polarization
of the conduction electrons Mc = nc↑ − nc↓ = (n↑ − nf ↑) −
(n↓ − nf ↓) is small even in the ferromagnetic phases. Thus
the magnetization in FM1 (n↑ = 1) is approximated as M =
nf ↑ − nf ↓  n↑ − n↓ = 2n↑ − n = 2 − n, and M is smaller
for larger n. In FM2, M is almost 1, irrespective of n. Then,
the change in M at the FM1-FM2 transition is larger for
large n. Such a large change in the electronic state may not
occur continuously but tends to occur through a first order
transition, as for n = 1.75. A similar discussion has been
applied for the valence transition in the periodic Anderson
model with an interorbital Coulomb interaction.24 For an
intermediate value of n, we find the end point of the first

order transition as shown in Fig. 2(b). On the second order
transition line, the magnetic susceptibility diverges. At the
end point, the valence susceptibility dnf /dεf also diverges.
Such fluctuations of various kinds may induce interesting
phenomena, e.g., unconventional superconductivity.

From these phase diagrams, we gain an insight into the
effects of pressure on Ce and Yb compounds. εf describes
the one-electron level for a Ce compound and one-hole level
for an Yb compound. Then, εf will increase by pressure
for a Ce compound, but will decrease for an Yb compound,
since negatively charged ions surrounding a positively charged
rare-earth ion will become close to the rare-earth ion. On the
other hand, V and W increase under a pressure irrespective
of compounds. Thus, it is not obvious whether the effect of
pressure is opposite or not between Ce and Yb compounds.
In the present model, there are two independent parameters
εf /W and V/W except for the overall energy scale. From
the above phase diagrams, we observe that we can change the
electronic state easier by varying εf /W , e.g., along the bold
arrow in Fig. 2(c), than by varying V/W , and we may ignore
the change in V/W under pressure as an approximation.

Here, we further assume that the changes by a pressure
p are approximated linear in p. Then, we can express εf =
ε

(0)
f + aεf

p and W = W (0) + aWp, where ε
(0)
f is the f level

at p = 0, W (0) is the band width at p = 0, aεf
> 0 for Ce

compounds, aεf
< 0 for Yb compounds, and aW > 0. The

ratio εf /W under pressure is given by

εf

W
= ε

(0)
f + ãεf

p

W (0)
, (23)

with ãεf
= aεf

− aWε
(0)
f /W (0). For Ce compounds with

ε
(0)
f < 0, typical for magnetically ordered materials at ambient

pressure, we obtain ãεf
> 0. For Yb compounds with ε

(0)
f >

0, typical for paramagnetic materials at ambient pressure,
ãεf

< 0. Thus magnetically ordered states of Ce compounds
will be destabilized by pressure, and paramagnetic Yb com-
pounds may become magnetic under pressure. In the above
sense, the pressure effects on Ce and Yb compounds are
opposite.

However, the pressure effects on Ce compounds with
ε

(0)
f > 0 and on Yb compounds with ε

(0)
f < 0 depend on the

details of the parameters. Thus, in principle, paramagnetic Ce
compounds can become magnetic and magnetically ordered
states of Yb compounds can become paramagnetic under
pressure, when the effect of pressure on the band width is
large.

B. ε f dependence

Next, we show εf dependences of physical quantities. In
Fig. 3, we show the magnetization, the kinetic energy εkFσ

of the
conduction electron at the Fermi momentum, and the effective
mass for n = 1.75 and V/W = 0.2. εf is varied along the bold
arrow in Fig. 2(c).

The magnetization [see Fig. 3(a)] is almost 1 in FM2,
decreases by increasing εf , and the state changes to the FM1,
FM0, and PM states. Even in the ferromagnetic phases, the
polarization of the conduction electrons Mc is small, since the
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FIG. 3. (Color online) Physical quantities as functions of εf

for n = 1.75 and V/W = 0.2. (a) magnetization M = Mf and
polarization of the conduction band Mc, (b) kinetic energy εkFσ

of
the conduction electron at the Fermi momentum, and (c) effective
mass m∗

σ . In (b), we show the Fermi surface (FS) structure in each
phase schematically.

loss of the kinetic energy is large for a large polarization of the
conduction electrons.

In Fig. 3(b), we show εkFσ
. In the present theory, physical

quantities depend on momentum k only through εk, and here
we show εkFσ

instead of the Fermi momentum kFσ itself. If the
explicit form of the dispersion εk is given, we can extract kFσ

from εkFσ
. In FM2, εkFσ

has a value around that for the small
Fermi surface state. In FM1, the Fermi surface for the up-spin
state disappears. In PM, the large Fermi surface state realizes.

Figure 3(c) shows the effective mass. For the periodic
Anderson model, the effective mass is usually defined by the
inverse of the renormalization factor for the f electrons. This
is reasonable as long as the Fermi surface is composed mainly
of f electrons as in a state with very large effective mass.
However, in magnetically ordered states and in a state under a
magnetic field, the f -electron contribution to the Fermi surface
can become small. Thus we should better to define the effective
mass by the renormalization of the hybridized band. In this
study, we define the spin-dependent effective-mass m∗

σ by the
jump in the momentum distribution at the Fermi momentum:

m∗
σ

m
= 1

�ncσ (kFσ ) + �nf σ (kFσ )
, (24)

where m is the bare electron mass.
The effective mass in FM2 becomes small by decreasing

εf , since the magnetization becomes large and the correlation
effects become weaker. In the PM phase, the number of f

electrons decreases as εf increases, and then, the correla-
tion effects becomes less significant and the effective mass

0.0

0.5

1.0

1.5

n
σ

, n
fσ

n↑

n↓

nf ↑

nf ↓

(a)

−1.0

−0.5

0.0

0.5

−0.8 −0.6 −0.4 −0.2  0  0.2  0.4

ε∼ f σ
 /W

εf /W

ε∼f ↑ εf

ε∼f ↓

(b)

FIG. 4. (Color online) Physical quantities as functions of εf for
n = 1.75 and V/W = 0.2. (a) nσ and nf σ and (b) ε̃f σ . The dotted
line in (b) indicates the bare f level εf .

decreases. In between, in FM1, the effective mass for the
down-spin electrons has a peak. Note that we cannot define
the effective mass for the up-spin state in FM1, since there is
no Fermi surface for the up-spin states.

Figure 4(a) shows the number of electrons nσ with spin σ

and the number of f electrons nf σ with spin σ . In FM2, the
polarization of f electrons is almost complete, that is, nf ↑  1
and nf ↓  0. In FM1, i.e., the half-metallic state, n↑ = 1.

Figure 4(b) shows the renormalized f level. In FM2, ε̃f ↓
is much larger than ε

k
(S)
F

= −0.25W and ε̃f ↑  εf . In FM1,
FM0, and PM, εf is larger than ε

k
(S)
F

, and the renormalization
effect is weak, that is, ε̃f σ  εf .

The overall behaviors of the magnetization [see Fig. 3(a)]
and the effective mass [see Fig. 3(c)] as functions of εf

are similar to those as functions of pressure in UGe2.9–13

However, further efforts are necessary to understand the
experimental results based on the present theory. For example,
we should calculate the electrical resistivity to discuss directly
the effective mass deduced from A coefficient, since we cannot
resolve the spin components of the effective mass from A.

C. Magnetic field effect

Now, we discuss the magnetic field effect. We choose
n = 1.75, V/W = 0.2, and εf /W = 0.3, which are indicated
by the circle in Fig. 2(c). For this parameter set, the system
is paramagnetic without a magnetic field, but near the
ferromagnetic phase boundary. The effective mass is not
large for this parameter set [see Fig. 3(c)]. If we assume
a paramagnetic state with a much deeper f level, we can
obtain a large effective mass, but such a paramagnetic state
is unstable against magnetic order due to the large Coulomb
interaction U . Thus we have chosen the above parameter set.
We believe that the qualitative aspects of f -electron systems
under a magnetic field are still captured by the present simple
model with U → ∞.

Figure 5 shows the H dependences of the magnetization,
the kinetic energy εkFσ

of the conduction electron at the Fermi
momentum, and the effective mass. The polarization of the
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FIG. 5. (Color online) Physical quantities as functions of H for
n = 1.75, V/W = 0.2, and εf /W = 0.3. (a) magnetization M = Mf

and polarization of the conduction band Mc, (b) kinetic energy εkFσ

of the conduction electron at the Fermi momentum, and (c) effective
mass m∗

σ . In (b), we show the Fermi surface structure in each phase
schematically.

conduction band Mc is always small as in the ferromagnetic
phases without magnetic field. The magnetization M = Mf

increases continuously as a function of H . The magnetization
curve is similar to that in YbRh2Si2,5 if we regard the anomaly
around 10 T in YbRh2Si2 at ambient pressure as the transition
to FM1. The Fermi surface structure changes continuously
from the large Fermi surface in PM to the small Fermi surface
in FM2. The effective mass decreases by a magnetic field
except for a small-H region, since a magnetic field polarizes
the f electrons and the correlation effect becomes weak. In
the small-H region, nf ↑ increases by H but nf ↓ is not very
small [see Fig. 6(a)], and the effect of the Coulomb interaction
becomes stronger for the down-spin state. Then, the effective
mass for the down-spin electrons increases as H in the small-H
region, and has a peak.

Figure 6 shows the magnetic field dependences of nσ , nf σ ,
and ε̃f σ . By increasing H , the system turns into FM1 with n↑ =
1. By increasing H further, the system turns into FM2, and
the polarization of f electrons approaches the saturation value
asymptotically, i.e., nf ↑ → 1 and nf ↓ → 0. The renormalized
f -level changes monotonically. ε̃f ↑ becomes very close to εf ↑
by increasing H , since the correlation effects on the up-spin
electrons are weak for nf ↓ → 0.

There are kinks in all the above quantities at the transition
points to FM1 and from FM1 to FM2. The kinks in ε̃f σ

[see Fig. 6(b)] are weak and invisible on this scale. While
these ferromagnetic transitions are continuous, they are not
crossovers even under magnetic fields. We discuss this issue
in the next subsection.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

n
σ

, n
fσ

n↑

n↓

nf ↑

nf ↓

(a)

0.0

0.2

0.4

0.6

 0  0.05  0.1  0.15  0.2

ε∼ f σ
 /W

H/W

ε∼f ↑
εf ↑

ε∼f ↓

εf ↓

(b)

FIG. 6. (Color online) Physical quantities as functions of H for
n = 1.75, V/W = 0.2, and εf /W = 0.3. (a) nσ and nf σ and (b) ε̃f σ .
The dotted lines in (b) indicate the bare f levels εf σ = εf − σH .

D. Order of the ferromagnetic phase transitions

In this section, we discuss the order of the phase transitions.
It is usual that between ferromagnetic states, the transition
is a first-order phase transition or just a crossover, not a
phase transition, since the symmetry is the same between
the ferromagnetic states. However, in the present model, the
transitions between the ferromagnetic phases, FM0, FM1, and
FM2, can be phase transitions even if they are continuous.
To explicitly demonstrate it, we show the energy e per site
in Fig. 7 as a function of εf for n = 1.75 and V/W = 0.2
without a magnetic field, around the phase transition points.
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FIG. 7. (Color online) Energy e per site as a function of εf for
n = 1.75 and V/W = 0.2. (a) energy in a wide range of εf . Arrows
indicate the phase transition points. (b)–(d) show energy around each
phase transition point: (b) between FM2 and FM1, (c) between FM1
and FM0, and (d) between FM0 and PM. Energy in phase X is fitted
by a polynomial function eX(εf ) and we subtracted eX(εf ) from e in
(b)–(d). This difference is linear in εf in (b) and is quadratic in εf in
(c) and (d) as indicated by the dotted lines.
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The first derivative of e has a jump at the FM2-FM1 boundary
as shown in Fig. 7(b), and it is a first-order phase transition. The
second derivative of e has a jump at the FM1-FM0 boundary
as shown in Fig. 7(c), and it is a second-order phase transition,
not a crossover. The FM0-PM phase transition is also of second
order.

We can show that when the magnetization M changes its
slope but is continuous at a point, as in Figs. 3(a) and 5(a),
it is a second-order phase transition point (see Appendix).
That is, to cause a second-order phase transition, it is not
necessary to break symmetry. Behind such a second-order
phase transition between ferromagnetic states in the present
model, the topology of the Fermi surface changes, i.e., it is a
Lifshitz transition. Note that while the originally proposed
Lifshitz transition is of 2.5 order,35 the present Lifshitz
transition accompanying magnetism is of second order.

Note also that the transitions to FM1 and from FM1 to
FM2 under magnetic fields shown in Figs. 5 and 6 are second-
order phase transitions, while, in ordinary cases, a continuous
ferromagnetic transition becomes a crossover under a finite
magnetic field. These transitions under magnetic fields are
possible even for U = 0.

At finite temperatures, the second-order phase transitions
between ferromagnetic phases would become crossovers,
since the Fermi surface is not well defined at finite temper-
atures. On the other hand, first-order phase transitions are
possible even at finite temperatures.

V. ANTIFERROMAGNETIC STATES

In the present study, we have assumed uniform states: para-
magnetic and ferromagnetic. The calculated results have been
interpreted with the aid of the schematic bands shown in Fig. 1.
A similar discussion may be applicable to antiferromagnetic
states.

We show the schematic bands expected in antiferromag-
netic states with a two-sublattice structure in Fig. 8. In a weak
antiferromagnetic state, the difference of the renormalized f

level between A and B sublattices is small, and we may obtain
the band structure by simply folding the Brillouin zone as
shown in Fig. 8(a1). In a strongly polarized antiferromagnetic
state, the renormalized f levels will be much different between
A and B sublattices. We show a schematic band structure in
such a state in Fig. 8(b), by assuming that the f orbitals on
the A sublattice are mainly occupied by up-spin electrons and
the f orbitals on the B sublattice are mainly occupied by

E k

k

εkF
(S)

(a1)

k

(a2)

k

ε∼fA↑ ∼− εf

ε∼f B↑

(b)

FIG. 8. (Color online) Schematic band structures expected in
antiferromagnetic phases. In a weakly polarized state, the band
structure like (a1) or (a2) will realize. In a strongly polarized state, the
band structure shown in (b) will realize. Ek denotes the quasiparticle
energy. The bold lines indicate the states occupied by electrons.

down-spin electrons. The effective f -level ε̃f A↑ for up spin on
the A sublattice is almost the same as the bare f -level εf and
the effective f -level ε̃f B↑ for up spin on the B sublattice is
much higher than the Fermi level [cf. the ferromagnetic case
Fig. 1(d)]. Note that ε̃f A↑ = ε̃f B↓ and ε̃f B↑ = ε̃f A↓. In the
strongly polarized state, the electronic state around the Fermi
surface is mainly composed of the conduction-electron states.

Since the topology of the Fermi surfaces are different
between (a1) and (b), a phase transition takes place as
the antiferromagnetic moment develops provided the system
first turns into the antiferromagnetic state with the band
structure (a1) from the paramagnetic state. Indeed, such a
phase transition in the antiferromagnetic phase has been
found in the Kondo lattice model36–38 and in the periodic
Anderson model,39 and possibility to explain the Fermi surface
reconstruction in CeRh1−xCoxIn5

40 and in YbRh2Si2 with
chemical pressure41 has been discussed.

In addition, the direct transition from the paramagnetic
state to the antiferromagnetic state with the band structure
shown in Fig. 8(a2), which has the same topology of the Fermi
surface as in (b), is possible, since the band originates from
the f orbital is very flat. Note that the band structure (a2)
is not obtained by simply folding that in the paramagnetic
state, and the effects of the change in the Fermi surface
would be drastic. This transition has also been found in
the Kondo lattice model36,37 and in the periodic Anderson
model,39 and has been proposed as a possible mechanism
to explain the change in the Hall coefficient of YbRh2Si2 at
the antiferromagnetic quantum critical point.42 Note that we
expect a mass enhancement around such a magnetic transition
point as we have shown for the ferromagnetic case. Thus this
transition may also be a candidate for the mechanism of the
Fermi surface change and the enhancement of the effective
mass around the antiferromagnetic transition point observed
by the de Haas-van Alphen experiments under pressure on
CeRh2Si2,43 CeRhIn5,44 and CeIn3.45

VI. SUMMARY

We have studied the ferromagnetism and the magnetic field
effect in the periodic Anderson model by using the Gutzwiller
theory. There are three ferromagnetic phases, FM0, FM1, and
FM2. The Fermi surface structure changes according to the
magnetic state. The PM state has a large Fermi surface, the
FM0 state is a weak ferromagnetic state, the FM1 state is a half-
metallic state without a Fermi surface for up-spin electrons,
and the FM2 state has a small Fermi surface. The effective
mass has a peak in the FM1 phase as a function of εf .

The transitions between these ferromagnetic phases can
be second-order phase transitions, while we cannot define
the order parameter in an ordinary way due to the absence
of symmetry breaking. These second-order phase transitions
originate from the change in the Fermi surface topology and
are called Lifshitz transitions. We have found that the present
Lifshitz transitions accompanying magnetism are of second
order, while the originally proposed Lifshitz transition is of
2.5 order.35

According to the theory of phase transitions, if the sym-
metry is broken spontaneously, a phase transition takes place.
However, the converse is not necessarily true. For example, the

195127-7



KATSUNORI KUBO PHYSICAL REVIEW B 87, 195127 (2013)

liquid-vapor transition of water is a first-order phase transition
without symmetry breaking. In the present paper, we have
shown that a second-order transition is also possible without
symmetry breaking.

In the present model with U → ∞, a paramagnetic state
with a large mass enhancement is not attained, since the
magnetically ordered state becomes stable against the para-
magnetic state before the effective mass becomes very large.
Thus we should revise the present model to describe the
heavy-fermion state quantitatively, e.g., by using a finite value
of U and/or by introducing the orbital degrees of freedom of
f electrons.18 It is an important future problem.
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APPENDIX: SUFFICIENT CONDITION FOR A
SECOND-ORDER PHASE TRANSITION

A second-order phase transition is defined by a jump in
the second derivative of the free energy (or energy at zero
temperature). We consider the system described by the free
energy F (x,M). x is a controlling parameter such as magnetic

field, pressure, f -electron level, and temperature. M represents
a physical quantity such as magnetization and f -electron
number. The physical quantity M(x) at x is determined by
minimizing F (x,M) with respect to M:

∂F (x,M)

∂M

∣∣∣∣
M=M(x)

= 0. (A1)

Then, the first derivative of the free energy F (x,M(x)) at x is

dF (x,M(x))

dx
= ∂F (x,M)

∂x

∣∣∣∣
M=M(x)

. (A2)

If M(x) changes discontinuously at a point, the first derivative
has a jump at this point and it is a first-order phase transition.
The second derivative is given by

d2F (x,M(x))

dx2
= ∂2F (x,M)

∂x2

∣∣∣∣
M=M(x)

+ ∂2F (x,M)

∂x∂M

∣∣∣∣
M=M(x)

dM(x)

dx
. (A3)

Then, if M(x) is continuous and dM(x)/dx is discontinuous
at a point, it is a second-order phase transition.

We have not assumed that M(x) = 0 below or above the
transition point. Thus the above discussion does not require
that M is an order parameter to describe symmetry breaking.
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