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Quantum impurity in the bulk of a topological insulator
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We investigate physical properties of an Anderson impurity embedded in the bulk of a topological insulator.
The slave-boson mean-field approximation is used to account for the strong electron correlation at the impurity.
Different from the results of a quantum impurity on the surface of a topological insulator, we find for the
band-inverted case that a Kondo resonant peak and in-gap bound states can be produced simultaneously. However,
only one of them appears for the normal case. It is shown that the mixed-valence regime is much broader in the
band-inverted case, while it shrinks to a very narrow regime in the normal case. Furthermore, a self-screening of
the Kondo effect may appear when the interaction between the bound-state spin and impurity spin is taken into
account.
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I. INTRODUCTION

A topological insulator (TI) is insulating in the bulk,
but hosts conducting edge or surface states near the system
boundary. It has attracted attention in the community of
condensed matter physics due to its potential application in
spintronics and quantum computation.1–3 A class of materials
such as Bi2Se3 and Bi2Te3 has been found to possess surface
states which form a single Dirac cone.4–6 Suppression of
backscattering inside the Dirac cone guarantees that the Dirac
dispersion remains essentially unperturbed for weak pertur-
bation that preserves time-reversal symmetry.7,8 So far, the
effects of impurity scattering on the surface of TIs have been
investigated extensively.9–22 In the presence of classical spins
which break time-reversal symmetry, it was predicted that the
impurity could open up a local gap and suppress the local
density of states.9,10 The suppression of backscattering around
nonmagnetic impurities on surfaces with strong spin-orbit cou-
pling has been confirmed by scanning tunneling miscroscope
experiments.11–14 However, strong nonmagnetic scattering,
such as that from electrostatic potentials, may disrupt the
Dirac cone and create low-energy impurity resonances.15 For
a quantum impurity on the surface of a TI, the Hamiltonian
for the impurity can be mapped to the conventional pseudogap
Anderson model. The impurity is fully screened at low tem-
peratures when the Fermi level is located away from the Dirac
point.16,17

Although there are theoretical and experimental studies
on the quasiparticle states around an impurity, most of them
focus on the impurity on the surface of the TI. Essentially,
the topological nature of TIs is determined by the electronic
structure of the bulk bands instead of the surface states. On the
other hand, the TI samples available nowadays are always
poorly insulating in the bulk, owing to a large amount of
vacancies and defects.23–27 For these reasons, it is important to
study how the quasiparticle states are affected when vacancies
or impurities are localized in the bulk of the system. It has
been shown that classical spins18 or vacancies19,20 localized
in the bulk of TIs could result in the coexistence of in-gap
bound states and boundary states. For a quantum impurity,
the quantum fluctuations of its internal degree of freedom

play an important role, making it significantly differ from
classical impurities.28 However, it remains unknown how a
quantum impurity in the bulk of a TI affects the electronic
states.

The study of quantum impurities in TIs is also related to the
problems of impurities in unconventional density waves,28–31

gapped systems,32,33 or spin-orbit-coupled systems.34–36 For
instance, in a gapped system, the Kondo effect breaks down
when the energy gap exceeds a critical value.32 In the
presence of Rashba spin-orbit interaction, a parity-breaking
Dzyaloshinsky-Moriya term could be induced, resulting in a
possible change of the Kondo temperature.34–36 Since there are
strong spin-orbit couplings and unconventional gaps in the TIs,
it becomes interesting to investigate the differences between
the Kondo effects in conventional insulators and TIs.

In this paper, we investigate the effects of a quantum
impurity embedded in a TI with the help of the slave-boson
mean-field approach. We show that in-gap bound states and
Kondo effect could coexist in TIs, while only one of them
appears for conventional insulators. If the bound states are
singly occupied, the Kondo resonance could be screened by the
exchange interaction between the impurity spin and the spin of
the impurity-induced bound states, leading to a self-screened
Kondo effect. The paper is organized as follows. In Sec. II
we introduce a model Hamiltonian of an impurity in a TI and
the slave-boson mean-field approach. In Sec. III we discuss
the Kondo effect and the formation of the in-gap bound states
in both band-inverted and normal cases. In Sec. IV, we show
the self-screening of the Kondo effect. Finally, a summary is
presented in Sec. V.

II. MODEL HAMILTONIAN AND SLAVE-BOSON
APPROACH

A. Model

The effective model to describe the bulk states of TIs with
an impurity is written as

H = H0 + Hd + Ht. (1)
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The part for the bulk electrons of the TI is given by the modified
Dirac model37–39

H0 = �
†
k

[
h̄vF

�k · �α + (
mv2

F − Bh̄2k2
)
β
]
�k

with αi = σx ⊗ σi and β = σz ⊗ σ0, where σi (i = x,y,z) are
the Pauli matrices and σ0 is the 2 × 2 unit matrix. ki = −i∂i

(i = x,y,z) is the momentum operator, k2 = k2
x + k2

y + k2
z , and

vF and m have the dimensions of speed and mass, respectively.
Different from the surface Hamiltonian, a quadratic correction
in momentum −Bh̄2k2 and a gap term mv2

F are introduced
in the bulk Hamiltonian. The sign of mB determines whether
the system is topologically trivial or not: it is nontrivial for
mB > 0 (i.e., the band-inverted case), and trivial for mB < 0
(i.e., the normal case).37–39 The energy spectra have a finite
energy gap. Here the basis vectors are chosen as

�
†
k = (a†

k↑,a
†
k↓,b

†
k↑,b

†
k↓),

where a
†
kσ and b

†
kσ are creation operators of electrons with spin

σ on two different orbits. In this representation, we can rewrite
the total Hamiltonian in the second-quantized form

H0 =
∑
kσ

(
mv2

F − Bh̄2k2
)
(a†

kσ akσ − b
†
kσ bkσ )

+ h̄vF

∑
k

[kz(a
†
k↑bk↑ − a

†
k↓bk↓)

+ (kx − iky)(a†
k↑bk↓ + b

†
k↑ak↓) + H.c.]. (2)

The Hamiltonian that describes the Anderson impurity is

Hd = εd (c†d↑cd↑ + c
†
d↓cd↓) + Uc

†
d↑cd↑c

†
d↓cd↓, (3)

where εd is the impurity energy level and U is the on-site
Coulomb interaction. The coupling Hamiltonian between the
impurity and electrons in TI has the form

Ht =
∑
kσ

(Vaka
†
kσ cdσ + Vbkb

†
kσ cdσ + H.c.), (4)

where Va(b)k represents the overlap or hybridization matrix
element between the magnetic impurity and conduction
electrons in two bands.

B. Slave-boson mean field

Here we consider a strong on-site Coulomb interaction on
the impurity, i.e., U → ∞. In this limit, no double occupancy
on the impurity is allowed. We introduce the auxiliary fields

c
†
dσ = d†

σ b, cdσ = b†dσ ,

where the boson operator b† creates an empty state and
the fermion operator d†

σ creates a singly occupied state on
the impurity. These two fields obey the local constraint
b†b + ∑

σ d†d = 1.40 In the mean-field approximation, both
the annihilation and creation boson operators b and b† are
replaced by a complex number b0 and its complex conjugate
b∗

0, and the local constraint is realized by introducing a
Lagrangian multiplier λ0. Substituting the auxiliary fields in
the original Hamiltonians (3) and (4), one can get

Hd = ε̃d (d†
↑d↑ + d

†
↓d↓) + λ0

(
b2

0 − 1
)

and

Ht =
∑
kσ

(Ṽaka
†
kσ dσ + Ṽbkb

†
kσ dσ + H.c.)

with the renormalized parameters ε̃d = εd + λ0 and Ṽa(b)k =
b0Va(b)k . The slave-boson mean-field approximation was
first introduced to describe the low-energy physics of
the conventional Anderson impurity model in the mixed-
valence regime.41 This method may produce the low-energy
physics in unconventional density waves (e.g., d-wave
superconductors,42 graphene electron systems,43 etc.).

C. Green’s functions

Utilizing the method of the equation of motion for the
impurity electron, one finally obtains the retarded Green’s
function of the impurity electron,

〈〈dσ |d†
σ 〉〉 = ω − ε̃d − 
0(ω) + σ
z(ω)

[ω − ε̃d − 
0(ω)]2 − ∑
i [
i(ω)]2 , (5)

where the self-energy functions are defined as


0(ω) =
∑

k

(ω + Ak)Ṽ 2
ak + (ω − Ak)Ṽ 2

bk

ω2 − h̄2v2
F k2 − A2

k

,

(6)


i(ω) =
∑

k

2h̄vF kiṼakṼbk

ω2 − h̄2v2
F k2 − A2

k

,

(i = x,y,z), and Ak = mv2
F − Bh̄2k2.

It is assumed that the hybridization strength Va(b)k does not
depend on momentum, Va(b)k = Va(b). In the absence of an
external magnetic field, the interaction self-energy 
i(ω) = 0
and the electronic Green’s function can be simplified as

〈〈dσ |d†
σ 〉〉 = 1

ω − ε̃d − 
0(ω)
, (7)

which has the same form as those of the conventional Anderson
impurity model. Additionally, we consider the case that the
impurity is symmetrically coupled with two orbits, i.e., V0 =
Va = Vb, and the self-energy 
0(ω) in d dimensions (d = 2,3)
is thus simplified as


0(ω) = ω
∑

k

2Ṽ 2
0

ω2 − h̄2v2
F k2 − A2

k

= dωṼ 2
0 N0

kd
F

∫ ∞

0
dk

kd−1

ω2 − h̄2v2
F k2 − A2

k

, (8)

where N0 is the number of lattice sites and kF is the Fermi
wave vector for the bulk of a TI.

D. Normal and band-inverted regimes

From the poles of self-energy function 
0(ω), one obtains
the energy spectrum of the bulk,

ξ (k) = ±
√

h̄2v2
F k2 + (

mv2
F − Bh̄2k2

)2
.

The energy spectrum shows a complex dependence on the
energy gap and momentum. Such energy spectra can be
mapped onto many important cases of impurity problems. Near
the band edges, the model reduces to the Anderson problem
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FIG. 1. (Color online) The energy spectrum εk for different mB

values: (a) mB = −1.0, −0.4, 0.4; (b) mB = 0.4, 1.0, 3.0. Here mv2
F

is taken as the energy unit. For mB < 1/2, the energy gap is located
at k = 0 and equals �N ≡ 2|m|v2

F . For mB > 1/2, the energy gap is

located at a finite k and equals �I ≡
√

4mB−1
|B| v2

F .

in normal insulators or semiconductors.32,33 The quantum
impurity model in graphene or surface states of the TIs can
be recovered by setting m = 0 and B = 0.16,17,22,43

In Fig. 1 we present the energy spectra as a function of
k for different values of mB. It can be seen from the energy
spectrum that, for mB < 1/2, the band edges are located at
k = 0 and the energy gap is

�N ≡ 2|m|v2
F

as in normal insulators. However, for the case of mB > 1/2,
the band edges appear at a finite k with a gap

�I ≡
√

4mB − 1

|B| v2
F .

For convenience, one defines

g0(ε) =
dN0Ṽ

2
0 ε

[√
ε2 − �2

I

/
4 − 1−2mB

2|B| v2
F

] d−2
2

4
(|B|h̄2k2

F

) d
2

√
ε2 − �2

I /4
(9)

when ε > �N/2, and

g1(ε) =
dN0Ṽ

2
0 ε

[√
ε2 − �2

I

/
4 + 2mB−1

2|B| v2
F

] d−2
2

4
(|B|h̄2k2

F

) d
2

√
ε2 − �2

I

/
4

(10)

when both �I/2 < ε < �N/2 and mB > 1/2 are satisfied.
For the case of mB < 1/2, one gets


0(ω) =
∫ ∞

�N
2

dξg0(ξ )

[
1

ω − ξ
+ 1

ω + ξ

]
. (11)

After analytical continuation, 
0(ω) = Re
0(ω) + Im
0(ω)
with

Re 
0(ω) = P
∫ ∞

�N
2

dξg0(ξ )

[
1

ω − ξ
+ 1

ω + ξ

]
(12)

and

Im 
0(ω) = −g0(ω)


(
|ω| − �N

2

)
(13)

with P denoting the principal value.
For the case of mB > 1/2, the real and imaginary parts of

the self-energy are given by

Re 
0(ω)

= P

[∫ �N
2

�I
2

dξg2(ξ ) +
∫ ∞

�N
2

dξg0(ξ )

](
1

ω − ξ
+ 1

ω + ξ

)

(14)

and

Im 
0(ω) = −
[
g2(ω)


(
|ω| − �I

2

)



(
�N

2
− |ω|

)

+ g0(ω)


(
|ω| − �N

2

)]
, (15)

where g2(ω) = g0(ω) + g1(ω). Because Im 
0 is proportional
to the density of states of the bulk electrons, the density of
states is discontinuous at the point �N/2. For a relatively
large B and small m, the energy gap reduces to a value much
smaller than �N .

The free energy F of the system is given by the partition
function

F = − 1

β
ln Z = − 1

β

∫ ∞

−∞
ln(1 + e−β(ω−μ))ρ̄(ω)dω,

where ρ̄(ω) = 
kδ(ω − εk), εk are the one-electron energies
of the system, μ is the chemical potential of the TI, and β =
1/kBT is the system temperature. ρ̄(ω) can be calculated from
the poles of the one-electron Green’s function and is given by

ρ̄(ω) = Im

π

∑
k

4ω

ω2 − h̄2v2
F k2 − A2

k

+ 2
Im

π

∂

∂ω
ln〈〈dσ |d†

σ 〉〉.

Minimizing the free energy of the system with respect to
λ0 and b0, one obtains a set of self-consistent equations

2
∫ ∞

−∞
dωf (ω)ρd (ω) + b2

0 − 1 = 0,

(16)

2
∫ ∞

−∞
dωf (ω)(ω − ε̃d )ρd (ω) + λ0b

2
0 = 0,

where f (ω) = [1 + e(ω−μ)/kBT ]−1 is the Fermi distribution
function and the density of states ρd (ω) of the impurity is
given by

ρd (ω) = − 1

π

Im 
0(ω)

[ω − ε̃d − Re 
0(ω)]2 + Im 
0(ω)2
.

In the calculation, it is limited to zero temperature, i.e.,
kBT = 0. �N/2 is taken as the energy unit and �0 =
πρ0V

2
0 represents the hybridization strength between the

impurity and the bulk electrons, where ρ0 = N0/2D is the
density of states per spin at the chemical potential and D =√

(h̄vF kF )2 + (mv2
F − Bh̄2k2

F )2 is a cutoff of the band width.
In the following, we show the results of quantum impurity in
three-dimensional TIs for �0 = 0.5 and D = 30.0.
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FIG. 2. (Color online) The real and imaginary parts of the self-energy 
0(ω) for different mB values. The shaded part represents the region
of energy gap.

III. IN-GAP BOUND STATES AND THE KONDO EFFECT

A. Self-energy

First, we discuss the self-energy 
0(ω), which depends on
the energy spectrum of the bulk bands. In the bulk of the
TI, the strong spin-orbit coupling couples the conduction and
valence bands, leading to the nonparabolic energy spectrum.
The self-energy 
0(ω) reveals not only the poles of the Green’s
function, but also the inhomogeneous density of states due to
the impurity-induced states.

Figure 2 shows the real and imaginary parts of 
0(ω) versus
ω for different values of mB. Previous studies based on the
Chern number and Z2 invariant indicate that the band-inverted
case with mB > 0 is topologically nontrivial, while the normal
case with mB < 0 is topologically trivial.37–39 It is shown that
in Fig. 2 both the real and imaginary parts of 
0(ω) are quite
different for opposite signs of mB. The real part Re 
0(ω)
determines the level positions of both the Kondo resonance
and the bound states, according to the solutions to the equation

ω = ε̃d + Re 
0(ω). (17)

For mB > 1/2, Re 
0(ω) diverges rapidly near the edges of the
gap, thus there always exist bound states within the gap. When
the impurity level |εd | is much larger than �I/2 , the bound
states are very close to the bottom of the conduction bands for
εd 
 �I/2 or the top of the valence band for εd � −�I/2,
which is similar to the case of s-wave superconductors.44 More
importantly, Eq. (17) has an extra solution in the band region,
corresponding to the coexisting Kondo resonance. For mB <

0, there is only one solution to Eq. (17), so the Kondo effect
and the bound states do not appear simultaneously.

The imaginary part Im 
0(ω) is proportional to the density
of states of bulk electrons. For mB > 1/2, the energy gap is
�I , thus Im 
0(ω) = 0 in the region of ω ∈ [−�I/2,�I /2].
At the band edges ±�I/2, Im 
0(ω) shows divergences. In
the region |ω| ∈ [�I/2,�N/2], the divergences drop rapidly
with the increasing |ω|. For |ω| > �N/2, Im 
0(ω) begins
to increase as a function of

√
ω. For 0 < mB < 1/2, the

divergences at the band edges ±�N/2 disappear gradually
with decreasing mB. For mB < 0, Im 
0(ω) at the band

edges is always zero and increases as a function of
√

ω for
|ω| > �N/2.

B. Density of states of the impurity

From the self-energy, the Kondo resonance and the bound
states have been discussed qualitatively. The density of states
ρd (ω) of the impurity for the cases that the chemical potential
μ lies in the gap and in the valence bands are presented in
Figs. 3 and 4, respectively. It is demonstrated that in both cases
the Kondo resonance and bound states coexist for mB > 0,
while only one of them appears for mB < 0. For mB > 0, the
bound states are very close to the band edges when ε̃d is far
away from the energy gap. In the previous studies,31–33 it has
been argued that, when the energy gap exceeds a critical value
(�/TK = 2.0 predicted by slave-boson mean-field theory32

and TK is the Kondo temperature), the Kondo effect no longer
appears in insulators with an energy-independent density of
states. However, for a complex dispersion relation, the density
of states is strongly energy resolved and quite different near
the band edges for the band-inverted and normal cases. In
the band-inverted case, ρd (±�I/2) equals zero exactly, due
to the divergence of Im 
0(ω) near the band edges. For
|ω| 
 �I , ρd (ω) also approaches zero. Therefore, no matter
how μ lies in the gap or in the bands, there are always two
low-energy resonance peaks lying near the band edges for
mB > 1/2, as shown in the upper panels of Figs. 3 and 4.
When the chemical potential μ lies in the valence band, the
low-energy resonance peak becomes narrow and its position
moves to μ with decreasing εd . Near the critical point εdc, the
resonance peak becomes very sharp and close to the chemical
potential.

In Fig. 5 we present the positions of the in-gap bound
states and low-energy Kondo resonance as functions of the
impurity level εd in the normal and band-inverted cases.
The bound states show quite different behaviors in the two
cases. For the normal case, the position of the bound states
is almost linear in εd . The in-gap bound states start from
the point εdc = −�N/2, corresponding to the top of the
valence bands. At the bottom of the conduction bands, the
bound states enter the conduction bands continuously, and
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FIG. 3. (Color online) The density of states of the impurity electron is shown for different impurity levels εd = −2.0, −1.0, −0.5, 0.5,
1.0, and 2.0 (from left to right) in (a) topological nontrivial case mB = 1.0 and (b) topological trivial case mB = −1.0, where the chemical
potential μ = 0.0 lies in the gap.

then the low-energy Kondo resonance peak appears. However,
for the band-inverted case, the bound states in the gap and the
Kondo resonance can form simultaneously for the impurity
level εd > εdc. In this case, the positions of these two states
do not connect at any point. For an εd far away from the
chemical potential, the in-gap bound states are very close to
the band edges. Thus they are vulnerable to small perturbation
or thermal fluctuation, and may merge into the conduction
bands easily.

Above we demonstrate that the presence of the in-gap
bound states is determined by the topological nature of
the TI. For real TI materials such as Bi2Se3 and Bi2Te3,
the system parameters from first-principles calculations4 are
(mv2

F ,h̄vF ,B) = (0.28 eV, 3.2 eV Å, 33 eV Å2) and (0.30 eV,
2.9 eV Å, 57 eV Å2), respectively. Correspondingly, mB ∼ 0.9
for Bi2Se3 and 2.0 for Bi2Te3. Therefore, it is expected that
the coexistence of in-gap bound state and Kondo effect could
be observed in these two materials.

C. Broadened mixed-valence regime for the band-inverted case

The mean field b2
0 introduced in Sec. II B gives the probabil-

ity that the impurity is empty. Figure 6 presents the dependence
of b2

0 on the impurity energy level εd for different values of
mB. b2

0 = 0 when the impurity level εd is much lower than the
chemical potential, which means that the impurity is singly
occupied. In this case, the charge fluctuation between the
impurity and the bulk bands is suppressed. When εd exceeds
a threshold value, b2

0 begins to increase from 0 and saturates
at 1 when εd 
 μ. The mixed-valance regime is defined as
where b2

0 changes from 0 to 1. Figure 6 presents b2 when the
chemical potential lies in the gap and in the valence bands.
As shown in Fig. 6, the mixed-valence regime is broader for
the band-inverted case with mB > 0. For the normal case with
mB < 0, b2

0 increases more rapidly, and the mixed-valence
regime shrinks into a very narrow regime. This kind of narrow
mixed-valence regime has also been found in unconventional
density waves and d-wave superconductors.28,31 For mB < 0,

FIG. 4. (Color online) The density of states of the impurity electron is shown for different impurity levels εd = εdc (εdc is the critical point
at which ε̃d = μ), −2.5, −0.5, 0.5, and 2.0 (from left to right) in (a) topological nontrivial case mB = 1.0 and (b) topological trivial case
mB = −1.0, where the chemical potential μ = −2.0 lies in the valence band.
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FIG. 5. (Color online) The positions of the bound states and low-
energy Kondo resonance peak as functions of impurity level εd in (a)
the topological nontrivial case mB = 1.0,0.4 and (b) the topological
trivial case mB = −1.0, −0.4. The chemical potential is taken as
μ = 0.0.

the density of states of bulk electrons vanishes at the band
edges. The reduction of the density of states at the band edges
implies that the Kondo resonance peak is narrower and b2

0
decreases to zero faster than those in the conventional case.
From the self-consistent equations, near the critical point, the
critical value of εd is determined by

εdc = 2
∫ μ

−D

dω
g(ω)

ω − ε̃d

,

where g(ω) is proportional to the density of states of the
background electrons. In the band-inverted case, g(ω) diverges
near the band edges, which results in a large integral value as
well as large |εdc|. In contrast, g(ω) reduces to zero near the
band edges in the normal case. In this case, |εdc| is smaller and
the mixed-valence regime becomes narrower.

D. In two dimensions

The preceding sections present the numerical results in
three dimensions. In this section, we briefly discuss the behav-
iors of the quantum impurity in the bulk of two-dimensional
TIs. In practice, the two-dimensional case is more accessible
by the scanning tunneling miscroscope.14 At the mean-field
level, the difference between two and three dimensions arises
from the self-energy 
0(ω), which in two dimensions can be

FIG. 6. (Color online) The dependence of the order parameter b2
0

on the impurity energy level εd for (a) the chemical potential in the
gap μ = 0.0 and (b) in the valence band μ = −2.0. Here mB = −2.0
and −0.2 represent the topological nontrivial case and mB = 0.2, 0.5,
and 1.0 correspond the topological trivial case.

expressed as


0(ω) = 2ωṼ 2
0 N0

kd
F

∫ ∞

0
dk

k

ω2 − h̄2v2
F k2 − A2

k

.

A detailed discussion about the properties of 
0(ω) in two
dimensions is presented in Ref. 45, in which a δ-impurity
scattering is considered. It can be deduced that, at the point
ω = �N/2, the self-energy 
0(ω) is finite in three dimensions,
while in two dimensions 
0(ω) has logarithmic divergence to
−(+)∞ at ω → +(−)|m| for TIs and has logarithmic diver-
gence to +(−)∞ at ω → −(+)|m| for normal insulators.45

This means that, when the Anderson impurity couples only to
one band, the topological phase transition can be seen from
the position of impurity bound states as the system changes
from normal insulator to TI. Besides, the physical properties
of the quantum impurity are similar qualitatively in two and
three dimensions; e.g., the mixed-valence regime in both cases
is much broader for mB > 0 than the case of mB < 0.

IV. SELF-SCREENING OF THE KONDO EFFECT

We have shown that the quantum impurity may induce
in-gap bound states in the band-inverted case, leading to the
coexistence of the Kondo resonance and the bound states. This
indicates that the Kondo resonance and bound state originate
from two different mechanisms. The singly-occupied quantum
impurity behaves like a single spin, and gives the Kondo
resonance when the system is in the Kondo regime. The
bound state, on the other hand, is induced when the system
is topologically nontrivial. Even a potential scattering18 or a
vacancy19 could produce the in-gap bound state in the bulk
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FIG. 7. (Color online) Illustration of the Kondo effect for
(a) topological nontrivial case and (b) trivial case.

of TIs. Therefore, the in-gap bound state could be considered
as a degree of freedom, while its energy is determined by
the impurity. When the chemical potential of the TI lies in
the conduction bands, both the bound states and the impurity
level are occupied, and each of them behaves like a single
localized spin (as illustrated in Fig. 7). It is quite natural
to expect the exchange interaction between two quantum
spins, which is usually due to second-order virtual hopping
or the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism
mediated by itinerant electrons. If the interaction is antiferro-
magnetic, the two spins form a singlet, which will compete
with the many-body singlet formed by the impurity spin and
conduction electrons, quenching their Kondo effect. Different
from the intensively studied two-impurity Kondo problem,46,47

here the quenched Kondo effect is induced by the spin of the
bound states rendered by the impurity itself. Therefore, we
refer to this effect as the self-screening of the Kondo effect.

A. Exchange interaction between impurity spin and
impurity-induced bound-state spin

The self-screened Kondo effect can be illustrated by the
model Hamiltonian as follows:

H = H0 +
∑

σ

εdd
†
σ dσ +

∑
σ

εf f †
σ fσ + JSd · Sf

+
∑
kσ

(Vdbda
†
kσ dσ + Vdbdb

†
kσ dσ + H.c.)

+
∑
kσ

(Vf bf a
†
kσ fσ + Vf bf b

†
kσ fσ + H.c.)

+ λd

(∑
σ

d†
σ dσ + b2

d − 1

)
+ λf

(∑
σ

f †
σ fσ + b2

f − 1

)
,

(18)

where εf is the impurity-induced bound-state level and H0 is
the Hamiltonian for the bulk of the TI [Eq. (2)]. The term JSd ·
Sf describes the exchange interaction between the impurity
spin and bound-state spin. It is noted that here the quantum
impurity and its induced in-gap bound state are considered as
two degrees of freedom.

The above effective Hamiltonian describes the low-energy
behavior of the Anderson impurity in the nontrivial TI phase
of the system. It can be derived from a renormalization-group
approach where the high-energy degree of the system is

integrated out systematically. The derivation of the effective
coupling between the bound state and Kondo resonance
requires a technique beyond the slave-boson mean-field theory,
which was presented recently.48 Using a weak coupling
renormalization group analysis, it has been shown that the
exchange interaction J between the d and induced f spins
may be renormalized dynamically to either positive or negative
values. In the regime where charge fluctuations in both
d and f states are quenched, the system is in the self-
screened Kondo regime for J > 0 and in the SO(3) Kondo
regime for J < 0,48 respectively. Here we introduce the
exchange interaction J and perform the slave-boson approach
to describe the Kondo physics for small charge fluctuations in
the regime of J > 0.

B. Order parameter for the exchange interaction

Similar to the treatment in Sec. II B, two slave-boson
operators bd and bf are introduced to replace cd(f )σ by
b
†
d(f )d(f )σ in the large-U limit. The spin exchange term JSd ·

Sf = J
∑

σ,σ ′ d†
σ dσ ′f

†
σ ′fσ can be decoupled by introducing

a valence-bond field �0 = − ∑
σ 〈d†

σ fσ 〉. In the mean-field
approximation47

JSd · Sf → J�0

∑
σ

(d†
σ fσ + f †

σ dσ ) + J�2
0,

the Hamiltonian becomes quadratic in the fermion operators.
The problem is still far from trivial as bd , bf , λd , λf , �0,
and εf need to be determined self-consistently. Different from
the ordinary Kondo problem, here the bound-state energy
εf also enters the self-consistent equations. By minimizing
the ground-state energy, one obtains a set of nonlinear self-
consistent equations,

∑
σ

〈d†
σ dσ 〉 + b2

d − 1 = 0,

∑
σ

〈f †
σ fσ 〉 + b2

f − 1 = 0,

∑
σ

(〈d†
σ fσ 〉 + 〈f †

σ dσ 〉) + 2�0 = 0, (19)

∑
k,σ

(Vd〈a†
kσ dσ 〉 + Vd〈b†kσ dσ 〉 + H.c.) + 2bdλd = 0,

∑
k,σ

(Vf 〈a†
kσ fσ 〉 + Vf 〈b†kσ fσ 〉 + H.c.) + 2bf λf = 0.

To simplify the calculation, we assume that the bound states
are always singly occupied (bf = 0) and decoupled from the
conduction electrons. In this case, the in-gap bound states
act like a single spin. Correspondingly, the constraints for the
bound states becomes λf (

∑
σ 〈f †

σ fσ 〉 − 1) and λf is contained
in the related Green’s functions.

C. Green’s functions

Performing the equation-of-motion procedure, we can
obtain the Green’s functions for the impurity and the bound
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states,

〈〈dσ |d†
σ 〉〉 = 1

ω − ε̃d − J 2�2
0

ω−ε̃f
− 
0(ω)

,

(20)

〈〈fσ |f †
σ 〉〉 = 1

ω − ε̃f − J 2�2
0

ω−ε̃d−
0(ω)

,

where ε̃d = εd + λd , ε̃f = εf + λf , and 
0(ω) =
ω

∑
k

2Ṽ 2
0

ω2−h̄2v2
F k2−A2

k

.

In the limit �0 → 0, the impurity and the bound states
are decoupled and the results reduce to those when J = 0.
When the spin exchange interaction exceeds a critical Jc, a
nonzero order parameter �0 appears and the Kondo peak near
the chemical potential is expected to split. From the Green’s
functions 〈〈dσ |d†

σ 〉〉, one obtains the self-consistent equation
for the bound states,

εf − ε̃d − J 2�2
0

εf − ε̃f

− 
0(εf ) = 0.

Defining α(ω) = [ω − ε̃d − Re 
0(ω)](ω − ε̃f ) − J 2�2
0 and

β(ω) = Im 
0(ω)(ω − ε̃f ), the self-consistent equations are
derived as

− 2

π

∫ μ

−∞
dω

(ω − ε̃f )β(ω)

α(ω)2 + β(ω)2
+ b2

d − 1 = 0,

− 2

π

∫ μ

−∞
dω

J 2�2
0Im 
0(ω)

α(ω)2 + β(ω)2
= 1,

− 2

π

∫ μ

−∞
dω

J�0β(ω)

α(ω)2 + β(ω)2
+ �0 = 0, (21)

2

π

∫ μ

−∞
dω

[
(ω − ε̃d )(ω − ε̃f ) − J 2�2

0

]
β(ω)

α(ω)2 + β(ω)2
= λdb

2
d ,

α(εf ) = 0.

This set of equations can be solved numerically.

D. Self-screened Kondo effect

Figure 8 presents the effects of bound-state spin on the
Kondo effect for different exchange interaction strength J .
The chemical potential of the bulk of the TI is tuned into the
conduction bands, so there is a Kondo peak near the chemical
potential and the bound states are occupied by a single electron.
When J exceeds a critical value Jc, the order parameter �0

begins to increase from zero, then quickly to 1 with the increase
of J . Figure 8(b) shows the density of states of the impurity
as a function of energy for J = 0.0, 0.04, and 0.08. With the
increase of J , the resonance peak splits. The splitting of the
Kondo peak increases with J . As a result, the density of states
near ε̃d reduces to a very small value, corresponding to the
self-screening of the Kondo resonance.

It should be noted that the strength of exchange interaction
between the impurity and the in-gap bound state is the key
parameter of the predicted self-screened Kondo effect. The
exchange strength should be evaluated subtly; for instance,
from the first-principles calculation. Our calculation indicates
that a small exchange interaction could make the Kondo effect
break down.

FIG. 8. (a) The order parameter �0 as a function of J . Parameters:
εd = 1.0, μ = 2.0, and mB = 1.0. (b) The density of states of the
impurity for J = 0.0, 0.04, and 0.08.

Above we assumed that the bound states are singly-
occupied in the large-U limit. If the Coulomb repulsion energy
on the bound states is finite and the chemical potential is high
enough, it is possible that the bound states are occupied by two
electrons, and they form a singlet due to the Pauli exclusion
principle. In this limit, the bound-state spin is decoupled from
the impurity spin, and the Kondo effect originating from the
interaction between the impurity spin and conduction electrons
can recover.

An impurity- or vacancy-induced in-gap bound state is a
special feature of TIs, which is absent in normal insulators.
Therefore, the bound state may play an important role when
the Kondo physics is considered in TIs. For a strong exchange
interaction between impurity and in-gap bound state, the
Kondo effect may be broken down when the chemical potential
is tuned properly. Actually, several experiments have been
performed to investigate the physical properties of magnetic
impurity-doped topological materials, such as Mn-doped
BiTe.49 The self-screening effect is expected to be observed in
these systems.

V. SUMMARY

In summary, we have studied the Kondo effect and the
formation of in-gap bound states induced by an Anderson
impurity coupled with the bulk states of topological insulators.
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It is demonstrated that the positions of the Kondo peak and
bound states strongly depend on the topological properties,
the chemical potential, and other parameters of the system.
The behaviors of the resonance level in the bulk of TIs differ
from those for simple metals and normal insulators. Due to
the divergence of the density of states near the band edges, the
mixed-valence regime is much broader in the band-inverted
case, while it shrinks to a very narrow regime in the normal
case. For the band-inverted case, the in-gap bound states and
the Kondo resonance can coexist. However, only one of them
exists in the normal insulators. When the impurity energy
level is far away from the chemical potential, the in-gap
bound states are very close to the band edges and can be
considered as merging into the bulk. Furthermore, we show

that a self-screening Kondo effect may be induced by taking
the interaction between the impurity spin and bound-state spin
into account.

Note added: While this manuscript was under review, we
became aware of a work50 wherein the scattering of dilute mag-
netic impurities placed on the surface of TIs is investigated.
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