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Mean-field theory on a coupled system of ferromagnetism and electronic nematic order
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We analyze an effective model on a square lattice with two types of forward scattering interactions, which,
respectively, drive ferromagnetism (FM) and electronic nematic order via a d-wave Pomeranchuk instability
(dPI). The FM and dPI in general compete with each other and they are typically separated by a first-order phase
boundary in the plane of the chemical potential and temperature. Nevertheless, there is a parameter region where
the dPI occurs inside the FM phase, leading to their coexistence. We also study the effect of a magnetic field
by choosing a chemical potential where the ground state is paramagnetic without a field. In this case, instead of
FM, the dPI competes with a metamagnetic instability. The latter occurs above a threshold strength of the FM
interaction and otherwise the dPI is stabilized with a dome-shaped phase diagram in the plane of a magnetic field
and temperature. The FM interaction shifts the center of the dome to a lower field, accompanied by a substantial
reduction of the field range where the dPI is stabilized and by an extension of the first-order part of the transition
line, although the maximal critical temperature does not change. Our results indicate that proximity to the FM
instability can be important to understand the experimental phase diagram observed in the bilayer ruthenate
Sr3Ru2O7.
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I. INTRODUCTION

In the nematic liquid crystal,1 rodlike molecules have a
preferred orientation. This state is characterized by breaking
of orientational symmetry, retaining other symmetries of the
system. Electronic analogs of the nematic liquid crystal attract
much interest. Electrons have spin and the direction is defined
in spin space. Using spin degrees of freedom, a spin nematic
state is studied in quantum spin systems.2,3 Electrons also
have orbital degrees of freedom. With orbital order such as an
occupation difference between the dyz and dzx orbitals in a d-
electron system, electrons may break orientational symmetry
without any additional symmetry breaking, leading to an
orbital nematic state.4,5 Ferropnictides are possible materials
for such a state.6,7 On the other hand, the orientation can not
be defined for charge itself. However, a nematic state can
be realized by using a charge degree of freedom. Two routes
toward a charge nematic state are proposed. When the system is
close to a charge stripe order, namely one-dimensional charge
order, where both translational and orientational symmetry are
broken, fluctuations of charge stripes may restore the former
but the latter may be still broken.8 The charge nematic order
can be obtained also without invoking charge stripes. It was
found theoretically that the two-dimensional t-J (Ref. 9) and
Hubbard (Ref. 10) models exhibit a tendency toward a d-wave
Pomeranchuk11 instability (dPI). In this state, the Fermi
surface expands along the kx direction and shrinks along the ky

direction, or vice versa, whereas in a real-space representation
the nearest-neighbor hopping is effectively enhanced along
one direction and suppressed along the other direction.

The dPI was extensively studied not only in the t-J (Refs. 9
and 12–14) and Hubbard (Refs. 10 and 15–19) models, but
also in phenomenological models,20,21 a model with central
forces,22,23 general Fermi-liquid schemes,24,25 and continuum
(not lattice) models.26–31 Mean-field theory of the dPI (Refs. 20
and 21) showed that the dPI occurs around van Hove filling
with a dome-shaped transition line. Typically, the transition is

second order at high temperature and changes to first order
at lower temperature. The end points of the second-order
line are tricritical points. The mean-field phase diagram is
characterized by a single energy scale in the weak-coupling
limit, similar to the BCS theory of superconductivity, and thus
various universal numbers were found.21

Fluctuations of the dPI suppress the first-order transition
obtained in mean-field theory and when they are strong
enough, the transition changes to be continuous even at zero
temperature, leading to a quantum critical point.32,33 At the
quantum critical point, dPI fluctuations lead to a non-Fermi-
liquid ground state.34,35 At finite temperatures close to the
dPI, thermal fluctuations become dominant. They turned out to
truncate the original Fermi surface, leading to a Fermi-arc-like
feature.36

Signatures of nematicity were observed in cuprate su-
perconductors. Neutron scattering measurements revealed
a strong anisotropy of magnetic excitations in momentum
space.37–39 The anisotropy showed strong temperature and
doping dependencies, which are well captured in terms of
the competition of the dPI and singlet pairing formation.40,41

Transport measurements also revealed a very strong anisotropy
of the Nernst coefficient,42 which was interpreted as a signature
of charge nematic order.43

There is growing evidence that the bilayer ruthenate
Sr3Ru2O7 (Sr327) exhibits a dPI in a strong magnetic
field.44–46 In fact, many features observed in experiments
were well understood in terms of the dPI, for example, the
metamagnetic transition,47 the enhancement of the residual
resistivity,48 the bilayer effect,49,50 the suppression of the
critical temperature by impurities,51 and the spin-orbit effect.52

Furthermore, the experimental phase diagram is very similar
to that obtained in mean-field theory.53 In particular, it was
found that the mean-field phase diagram is characterized by
a single energy scale even in the presence of a magnetic
field.54 Therefore, there exist various universal ratios for a
given chemical potential, which can be compared directly
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with experimental data. Although several universal ratios
agree with the experimental data, ratios of the characteristic
temperature and field give one order of magnitude smaller than
the experimental ones.54

This apparent inconsistency can not be resolved by invoking
different choices of parameters. The key may lie in the set
of experimental indications that Sr327 is located close to a
ferromagnetic instability: a large Wilson ratio,55 a uniaxial-
pressure-induced ferromagnetic transition,56 and the presence
of ferromagnetic fluctuations observed by the inelastic neutron
scattering,57 the nuclear spin-lattice relaxation rate,58 and
thermal expansion measurements.59 Moreover, several band
calculations60,61 for Sr327 (without a field) suggested that the
system is close to ferromagnetism (FM). Hence, the presence
of a ferromagnetic interaction is quite plausible in Sr327. In
fact, several theoretical studies62–64 for Sr327 focused on the
role of ferromagnetic interactions, especially in the context of
a metamagnetic transition observed in experiments.65

In this paper, we develop a mean-field theory by taking two
types of forward scattering interactions, which drive the dPI
and FM, respectively, into account. In the context of Sr327,
it is interesting to explore how the mean-field phase diagram
of the dPI obtained previously is modified by the presence
of a ferromagnetic interaction and how well the experimental
phase diagram of Sr327 is captured. Furthermore, the interplay
of the dPI and FM is interesting in its own right. While FM is an
instability in the spin channel whereas the dPI is in the charge
channel, both are instabilities in the particle-hole channel
of q = 0 and do not break translational symmetry. Several
theoretical analyses of microscopic models52,66,67 actually
suggested the presence of a ferromagnetic instability, which
competes with the dPI. Therefore, in a more general setting
we study the interplay of the dPI and FM, and clarify possible
scenarios in such a coupled system.

We propose an effective model, suitable to address the
interplay of the dPI and FM, and derive resulting phase
diagrams. In Sec. II, we introduce a forward scattering model
and present results in Sec. III by separating two cases: (i) zero
magnetic field (h = 0) and (ii) finite magnetic field (h �= 0).
The latter case is relevant to Sr327. Conclusions follow in
Sec. IV.

II. MODEL

To analyze a coupled system of the dPI and FM, we consider
the following Hamiltonian on a square lattice:

H = H0 + Hφ + Hm + HZ. (1)

The first term H0 is the kinetic term

H0 =
∑
kσ

(
ε0

k − μ
)
c
†
kσ ckσ , (2)

where c
†
kσ (ckσ ) is a creation (annihilation) operator of an

electron with spin σ and momentum k; μ is the chemical
potential. The electron dispersion is given by

ε0
k = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky (3)

with t and t ′ being the nearest- and second-nearest-neighbor
hopping amplitudes, respectively.

The second term Hφ is a forward scattering interaction
driving a dPI,

Hφ = − gφ

2N

∑
kk′σσ ′

dkdk′c
†
kσ ckσ c

†
k′σ ′ck′σ ′ , (4)

where the coupling constant gφ is positive, dk is a d-wave form
factor such as dk = cos kx − cos ky , and N is the total number
of lattice sites. This term describes the d-wave weighted
density-density interaction with zero momentum transfer,
which was obtained in microscopic models such as the t-J
(Ref. 9) and Hubbard (Refs. 10 and 66) models.

The third term Hm describes an Ising ferromagnetic
interaction

Hm = − gm

2N

∑
kk′
σσ ′

(
c
†
kσ

σ

2
ckσ

)(
c
†
k′σ ′

σ ′

2
ck′σ ′

)
, (5)

where gm(>0) is a coupling constant and σ = +1 and −1
for up spin and down spin, respectively. This interaction is
obtained by focusing on the spin-spin interaction with a spin
quantization axis parallel to the z direction and by extracting
a scattering process with zero momentum transfer. Therefore,
the interaction described byHm is appropriate when the system
has a strong spin anisotropy as well as dominant forward
scattering processes of electrons. The interaction of Hm is also
obtained by considering a mean-field analysis of spin rotational
invariant interactions. For instance, in the case of the Hubbard
onsite interaction U

∑
i ni↑ni↓, our coupling constant is given

by gm = 2U .
The last term HZ is the Zeeman energy

HZ = −h

2

∑
kσ

σc
†
kσ ckσ . (6)

Here, h is an effective magnetic field given by h = gμBH ,
with g being a g factor, μB is the Bohr magneton, and H is a
magnetic field.

Our Hamiltonian (1) can be considered as an effective
model at a low-energy scale, where two different interactions,
each of which drives the dPI and FM, respectively, become
dominant. The terms of Hφ and Hm describe pure forward
scattering interactions of electrons. Thus, fluctuations around
the mean field vanish in the thermodynamic limit. In other
words, mean-field theory solves our Hamiltonian exactly in
the limit of N → ∞.

The order parameter of the dPI is defined by

φ = gφ

N

∑
kσ

dk〈c†kσ ckσ 〉. (7)

This quantity becomes finite only if the system breaks square
lattice symmetry because of the presence of the d-wave form
factor. FM order is defined by

m = gm

2N

∑
kσ

σ 〈c†kσ ckσ 〉, (8)

where we include the coupling constant gm in the definition
of m; while the magnetization is then given by m/gm, we may
refer to m as magnetization, as long as no confusion occurs.
We decouple the interaction terms (4) and (5) by introducing
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the order parameters φ and m, and obtain the mean-field
Hamiltonian

HMF =
∑
kσ

ξkσ c
†
kσ ckσ + N

2gm

m2 + N

2gφ

φ2, (9)

where the renormalized dispersion is given by

ξkσ = ε0
k − σ

2
(m + h) − dkφ − μ. (10)

The grand canonical potential per site at temperature T is
obtained as

ω = − T

N

∑
kσ

ln(1 + e−ξkσ /T ) + 1

2gm

m2 + 1

2gφ

φ2. (11)

The stationary condition of ω with respect to φ and m leads to
the self-consistent equations

φ = gφ

N

∑
kσ

dkf (ξkσ ), (12)

m = gm

2N

∑
kσ

σf (ξkσ ), (13)

which we solve numerically. Here, f (ξkσ ) is the Fermi
function.

III. RESULTS

We fix gφ/t = 1 throughout this paper unless otherwise
noted and explore how the phase diagram of the dPI changes
with increasing the FM interaction gm. We first study the case
of h = 0 and then that of h �= 0. As a band parameter, we
choose t ′/t = 0.35, which was used for the study of Sr327.53,54

Since the presence of t ′ turns out to play a crucial role to
understand phase diagrams for h = 0, we also study the case
of t ′ = 0 for h = 0. Hereafter, we set t = 1 and all quantities
with dimension of energy are in units of t .

A. Results for h = 0

1. Evolution of phase diagrams with increasing FM interaction

Figure 1 shows a sequence of phase diagrams for gm � 7.0
in the plane of the chemical potential μ and temperature T .
Because of the competition with the dPI, no FM instability
occurs at least up to gm = 6.0 [Fig. 1(a)] and the phase
diagram is occupied only by the dPI. As already clarified
previously,20,21 the dPI occurs below a dome-shaped transition
line, with a maximal Tc near the van Hove energy (μvH =
4t ′ = 1.4); a deviation from μvH is due to the presence of t ′,
which breaks particle-hole symmetry. The phase transition is
of second order at high temperature (T 2nd

c ) and of first order
at low temperature (T 1st

c ). The end points of the second order
line are tricritical points (T tri

c ).
For gm = 6.5, the FM interaction becomes strong enough

to realize FM near the edge on the side of a high chemical
potential [Fig. 1(b)]. The transition from the paramagnetic to
FM phase is second order at high temperature, but the second-
order line ends at a tricritical point and changes to a first-
order line at low temperature. This feature is the same as
the transition between the paramagnetic and dPI phases. The
boundary of the dPI and FM is characterized by a first-order
transition (T 1st

φm).
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FIG. 1. Phase diagram in the (μ,T ) plane for a sequence of
couplings gm. Transition from the paramagnetic to ordered phase
is a second order (T 2nd

c ) at high T and a first order (T 1st
c ) at low T ; T tri

c

is the temperature at a tricritical point. A dashed line (T 1st
φm) denotes the

first-order phase boundary between the dPI and FM, which appears
in (b) and (c).

As shown in Fig. 1(c), this first-order phase boundary shifts
to the middle of the phase diagram for gm = 7.0 and the FM
becomes more stable. The order parameters are plotted as a
function of μ in Figs. 2(a) and 2(b) at T = 0.01 and 0.20,
respectively. At a low temperature (T = 0.01), φ and m show
a jump at μ ≈ 1.05 and 1.81, respectively, because of a first-
order transition from the paramagnetic phase. The dPI changes
to the FM via a first-order transition at μ ≈ 1.45 and there is
no mixing of φ and m. At a high temperature (T = 0.20), on
the other hand, φ and m develop continuously at μ ≈ 1.10 and
1.72, respectively. The transition between the dPI and FM is,
however, still of first order.

As expected, with further increasing gm, the first-order
boundary between the dPI and FM shifts to a lower chemical
potential. In fact, as shown in Fig. 3(a), the dPI is realized only
near the edge of the dome for gm = 7.8. However, qualitative
changes occur in the phase diagram. First, the coexistence
of the dPI and FM is stabilized inside the FM phase near
the edge of the first-order line of the FM around μ = 2.04.
This region is magnified in Fig. 3(b). The transition from the
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FIG. 2. (Color online) μ dependence of φ and m at T = 0.01
(a) and 0.20 (b) for gm = 7.0.

FM to the coexistence is first order at low temperature and
becomes second order at high temperature. While one end
point of the second-order line at μ ≈ 2.037 is a tricritical
point, the other end point at μ ≈ 2.045 is just a point touching
the first-order line of the FM. There is a direct first-order
transition from the paramagnetic phase to the coexistence
around μ = 2.05. Second, an additional FM phase appears
in 2.52 � μ � 2.6 as shown in Figs. 3(a) and 3(c). This FM
comes from the enhancement of the density of state at the
band edge of μ = 2.6. A first-order transition occurs only on
the side of a lower chemical potential and the second-order line
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FIG. 3. Phase diagram in the (μ,T ) plane for gm = 7.8. The
regions near μ = 2.04 and 2.55 are magnified in (b) and (c),
respectively.
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FIG. 4. (a) Phase diagram in the (μ,T ) plane for gm = 8.0. The
region of the coexistence around μ = 2.06 is magnified in (b). (c)
μ dependence of m at T = 0.001. Two successive jumps around
μ = 2.06 are magnified in the inset.

disappears at the band edge. This band-edge FM is realized
for 7.6 � gm � 8.0.

For gm = 8, as shown in Fig. 4(a), the FM becomes
dominant and a pure dPI phase is not stabilized. Instead, the
dPI is realized in coexistence with the FM around μ = 2.06,
as magnified in Fig. 4(b). In contrast to the case of gm = 7.8
[Fig. 3(b)], the phase boundary of the coexistence is well
separated from the first-order line of the FM, leading to a
phase diagram very similar to that of the pure dPI [Fig. 1(a)],
but with a significant extension of the first-order portion of the
transition line; the reason for this will be explained later in
terms of Eq. (21). The magnetization m is plotted as a function
of μ in Fig. 4(c) at low temperature. After the first-order FM
transition at μ ≈ 1.05, the value of m increases with increasing
μ and forms a cusp at μ ≈ 1.45 where the density of states of
up-spin electrons is fully occupied and the system changes to a
half-metallic state. For μ � 1.45, m decreases since electrons
with down spin increase whereas the electron density of up spin
remains unity. At μ ≈ 2.05 and 2.07, m exhibits a jump [see
the inset of Fig. 4(c)] because of the presence of the coexistence
of the dPI and FM, which occurs via a first-order transition
at low T . The magnetization m vanishes discontinuously at
μ ≈ 2.15, but appears again with a jump at μ ≈ 2.42 because
of a first-order transition associated with the band-edge FM.
The magnitude of m decreases monotonically and vanishes
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FIG. 5. (a) Phase diagram in the
(μ,T ) plane for gm = 9.0. The region
of the coexistence is magnified in (b).
(c) Phase diagram for gm = 10. T meta de-
notes the position where a metamagnetic
transition occurs. (d) μ dependence of m

at T = 0.001 for gm = 10.

at the band edge of μ = 2.6. The system becomes a band
insulator for μ > 2.6.

With further increasing gm (Fig. 5), the band-edge FM is
absorbed into the main FM phase. A first-order phase transition
then occurs only on the lower side of μ. Inside the FM, the
coexistence of the dPI and FM is stabilized up to gm = 9.8.
Figure 5(a) is the representative phase diagram computed for
gm = 9. In Fig. 5(b), the region of the coexistence of the dPI
and FM is magnified. This phase diagram is very similar to
that for gm = 8 [Fig. 4(b)] with the same maximal Tc, but
with a further extension of the first-order transition line. For
gm � 9.8, however, the coexistence is replaced by a first-order
transition associated with a jump of the magnetization, namely,
a metamagnetic transition inside the FM, as denoted by solid
squares in Fig. 5(c). The magnetization is potted as a function
of μ at low T in Fig. 5(d). The jump at μ ≈ 2.23 comes from
the metamagnetic transition. The cusp at μ ≈ 0.81 indicates
that the up-spin band is fully occupied in μ � 0.81, where the
system becomes half-metallic.

2. Discussions

The coexistence of the dPI and FM is stabilized even for
gm � gφ (Figs. 3–5). This is because of the presence of the
van Hove singularity. After performing explicit calculations
up to gm = 10, we confirm the van Hove singularity due to
the down-spin band (m > 0 is assumed) inside the FM phase
for gm � 7.8. Around the van Hove filling, either the dPI or
a metamagnetic transition occurs in our model, depending on
energetics. We find that the coexistence of the dPI and FM
is more favorable for 7.8 � gm � 9.8 and the metamagnetic
transition for gm � 9.8.

The results shown in Figs. 1–5 are very asymmetric with
respect to the van Hove energy of the bare dispersion, which
is given by μvH = 4t ′ = 1.4. This is because the presence
of t ′ breaks particle-hole symmetry. In fact, for t ′ = 0, the
phase diagram becomes symmetric with respect to the axis of
μ = 0. For 0 � gm � 8.84, the dPI is stabilized and no FM

is realized [Fig. 6(a) ]. For gm � 8.85, however, the dPI starts
to be replaced by the FM phase from a higher temperature
[Fig. 6(b)] and is stabilized only around μ = 0 at low T for
gm = 8.86 [Fig. 6(c)]. The dPI disappears already for gm =
8.87. The change from the dPI [Fig. 6(a)] to the FM phase
[Fig. 6(d)] occurs in a very small range of gm. In contrast to
the case of Figs. 3–5, no coexistence of the dPI and FM is
stabilized. Furthermore, a band-edge FM does not appear.

Our results for h = 0 are summarized as follows:
(i) in 0 � gm � gm1, only the dPI phase is realized, (ii) in
gm1 � gm � gm3, both dPI and FM are stabilized, but they
are separated from each other by a first-order transition line,
(iii) in gm2 � gm � gm4, the coexistence with dPI occurs
inside the FM phase, and (iv) in gm4 � gm, only the FM is
realized. We have obtained gm1 ≈ 6.5, gm2 ≈ 7.8, gm3 ≈ 7.9,
and gm4 ≈ 9.8 for t ′ = 0.35, leading to rich phase diagrams
as shown in Figs. 1 and 3–5. For t ′ = 0, on the other hand,
we have obtained gm1 ≈ 8.84, gm2 = gm3 = gm4 ≈ 8.87. As a
result, a phase diagram is occupied by either the dPI or FM
except for a tiny range of gm.

B. Results for h �= 0

Next, we examine the effect of a magnetic field, motivated
by the experimental indication that Sr327 is paramagnetic in
zero field and exhibits a nematic instability around 8 T.44–46

Fixing the chemical potential μ = 1 and taking the field as a
tuning parameter, we study how the phase diagram of the dPI
evolves with increasing the ferromagnetic interaction.

Figure 7(a) is a set of phase diagrams of the dPI in the
plane of a magnetic field and temperature for a sequence of
gm, showing four characteristic features: with increasing gm,
(i) the dPI occurs in a lower field, (ii) the field range where the
dPI is stabilized shrinks substantially, (iii) the first-order part of
the transition line extends and tricritical points are pushed up to
higher temperatures, but (iv) the maximal Tc does not change.

To understand these features, we consider a magnetic field
hvH, at which the σ -spin band touches the van Hove energy,
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FIG. 6. Phase diagram in the (μ,T )
plane for a sequence of couplings gm by set-
ting t ′ = 0. The phase diagram is occupied
by the dPI in gm � 8.84 (a) and by the FM
in gm � 8.87 (d). In a tiny range of gm [(b)
and (c)], both FM and dPI are realized, but
separated from each other by a first-order
boundary; the line of T 1st

φm appears only in
(b) and (c).

and the dPI is expected around that. From Eq. (10), hvH fulfills
for φ = 0 the relation

σ (m + hvH)

2
+ μ = μvH, (14)

and the corresponding relation for the other spin band should
be −σ (m + hvH)/2 + μ = 2μ − μvH, where μvH = 4t ′. Since
μ is fixed in our case, we obtain

hvH = 2|μ − μvH| − m. (15)

While the magnetization is not fully linear in field in the entire
field range we consider, we may invoke the equation obtained
in linear response theory

m/gm ≈ χhvH (16)

= χ0

1 − gmχ0
hvH, (17)

where χ is the full magnetic susceptibility, which is expressed
by the noninteracting magnetic susceptibility χ0 as shown in
the second line; the presence of gm on the left-hand side is due
to our definition of m [see Eq. (8)]. We then obtain

hvH = 2(1 − gmχ0)|μ − μvH|, (18)

that is, the value of hvH is reduced with increasing gm. Since
the dPI occurs around the van Hove energy, the dPI should be
realized around a lower field with increasing gm.

Equation (16) is a rough approximation especially near
a metamagnetic transition and the resulting Eq. (18) should
be taken as qualitative understanding. To get quantitative
understanding, we solve Eq. (13) numerically under the
condition of φ = 0 and Eq. (14). We then obtain hvH ≈
0.61,0.41,0.22,0.12 for gm = 2,4,6,7, respectively; for gm =
0, on the other hand, hvH = 2|μvH − μ| = 0.8 since m = 0.
The dPI indeed occurs around those fields in Fig. 7.

The range of a magnetic field where the dPI is stabilized
becomes narrower for a larger gm. As seen in Eq. (10), the
sum of m and h plays a role as an effective field. Since m

becomes more susceptible to a field as gm becomes larger and
furthermore m is proportional to gm in our definition [Eq. (8)],
the value of h to stabilize the dPI is necessarily reduced.

The first-order transition line extends with increasing gm.
To understand this, we expand the free energy Eq. (11) with
respect to the order parameter of the dPI around φ = 0,

ω(φ; m) − ω(0; m) = 1

2
a2φ

2 + 1

4!
a4φ

4 + · · · . (19)

The coefficients of a2 and a4 are obtained as

a2 = 1

gφ

(
1 + gφ

N

∑
kσ

d2
kf ′(ξ 0

kσ

))
, (20)

a4 = 1

N

∑
kσ

d4
kf ′′′(ξ 0

kσ

) − 3gm

[
1

2N

∑
kσ σd2

kf ′′(ξ 0
kσ

)]2

1 + gm

4N

∑
kσ f ′(ξ 0

kσ

) ,

(21)

where ξ 0
kσ = ε0

k − σ (m+h)
2 − μ and f ′,f ′′,f ′′′ are the first,

second, third derivatives of the Fermi function. When a4

becomes negative, a first-order transition can occur. The
second term on the right-hand side of Eq. (21) originates
from the φ dependence of m. The denominator of this term is
positive close to the dPI and the numerator becomes in general
finite when the spin symmetry is broken. Hence, the second
term is negative for h �= 0. Furthermore, the second term is
proportional to gm. Therefore, the presence of the second term
in Eq. (21) leads to an extension of the first-order transition line
of the dPI and this effect becomes stronger for a larger gm. The
same argument explains the extension of the first-order portion
of the transition line in Figs. 4(b) and 5(b) since the second
term of Eq. (21) becomes negative also in the FM phase.

A second-order transition is given by the condition a2 = 0.
Since μ is fixed, the quadratic term a2 is a function of h̃ =
m + h. Suppose the maximal Tc is obtained at h̃max, there can
exist a field h and a magnetization m, which give the same value
of h̃max for a different gm, although the values of m and h them-
selves depend on gm. This is actually the case up to gm = 7.8,
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FIG. 7. (Color online) (a) Phase diagram in the (h,T ) plane for
a sequence of couplings gm; the value of gm is indicated near the
maximal Tc. The dPI is stabilized inside the dome for each gm. (b) h

dependence of φ at T = 0.001 for a sequence of gm. (c) h dependence
of m for gm = 7 at T = 0.001. The corresponding result for gφ = 0
is also plotted.

leading to the same maximal Tc in Fig. 7(a). A similar
consideration also explains the same maximal Tc in Figs. 4(b)
and 5(b). Keeping in mind that our system is half-metallic in
the range of μ where the coexistence is stabilized [see the
discussion about Fig. 4(c)] and thus only the down-spin band
is active, the coefficient a2 becomes a function of the quantity
μ̃ = −m

2 + μ for h = 0. We confirm the same value of μ̃ at
the maximal Tc in Figs. 4(b) and 5(b), respectively, which
necessarily yields the same maximal Tc.

In Fig. 7(b), the order parameter of the dPI is plotted as a
function of h for a sequence of gm at low T . Because of two
first-order transitions at low T [Fig. 7(a)], the order parameter
exhibits two jumps. Interestingly, the maximal value of φ does
not depend on gm. This feature is easily understood from
Eqs. (10) and (12). The right-hand side of Eq. (12) depends on

h
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FIG. 8. (Color online) (a) h dependence of m for gm = 8 at T =
0.001. (b) Free energy as a function of m at h = 0.023 and T = 0.001
for gm = 8. The value of φ which minimizes the free energy at each
m is also plotted.

the quantity μ̃kσ = σ
2 (m + h) + dkφ for a fixed μ. Suppose the

maximal value of φ, say φmax, is obtained at h = hmax for gm =
0, namely, for m = 0. Even when gm is turned on, the same
value of φmax is obtained as long as m and h fulfill the equation

m + h = hmax. (22)

This equation may hold unless the value of m becomes as
large as hmax. We can check that Eq. (22) indeed holds up to
gm ≈ 7, leading to the same maximal value of φ for gm = 0–7.

In Fig. 7(c), the magnetization is plotted as a function
of h at low T . Because of first-order transitions at low
T , the magnetization exhibits two successive jumps. It is
instructive to recognize that there could occur a metamagnetic
transition at h ≈ 0.12 if the coupling gφ would be turned
off, indicating the underlying competition of the dPI and a
metamagnetic transition. We can check that the dPI overcomes
the metamagnetic transition up to gm = 7.9.

For gm � 8, on the other hand, the metamagnetic transition
becomes dominant and the magnetization exhibits a single
jump as shown in Fig. 8(a). The Landau free energy is plotted
in Fig. 8(b) as a function of m at h = 0.023, just below the
metamagnetic transition; the order parameter φ is optimized
to minimize the free energy at each m. There are three local
minima. Two local minima, where φ = 0 is stabilized, are
associated with the metamagnetic phenomenon. The other
local minimum, at which φ becomes finite, corresponds to
a solution of the dPI. This solution, however, does not give
the absolute minimum and thus the dPI does not occur. When
gm exceeds 8.25, the FM occurs even for h = 0. In this case,
neither a metamagnetic transition nor a dPI occurs by applying
a magnetic field.
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The effect of a ferromagnetic interaction on the dPI for
h �= 0 can be summarized as follows: (i) the dPI occurs in
a lower magnetic field, (ii) the field range where the dPI is
stabilized becomes narrower, (iii) the first-order part of the
transition line extends, and (iv) the dPI and a metamagnetic
transition compete with each other and the former is realized
up to gm ≈ 8, and the latter for 8 � gm � 8.25 for the present
choice of parameters.

IV. CONCLUSIONS

We have studied a two-dimensional electron system, where
electrons interact with each other via interactions favoring a
dPI and FM. In the absence of a magnetic field, we have ob-
tained rich phase diagrams. The dPI and FM typically compete
with each other. In fact, while both dPI and FM can be realized
simultaneously, they are separated by a first-order phase
boundary. Nevertheless, it is possible that the dPI is stabilized
inside the FM phase, leading to their coexistence. The presence
of t ′, leading to a breaking of particle-hole symmetry, plays an
important role. For t ′ = 0, either the dPI or the FM is typically
realized in the plane of the chemical potential and temperature,
and coexistence is not stabilized. We have also studied the
effect of a magnetic field, motivated by the experimental
indication that Sr327 is in the normal state without a magnetic
field and exhibits a nematic instability by applying a field. In
this case, instead of FM, the dPI competes with a metamagnetic
transition. The latter occurs above a threshold strength of the
FM interaction and otherwise the dPI is stabilized with a dome-
shaped transition line around the van Hove energy in the plane
of a field and temperature. With increasing the FM interaction,
the center of the dome shifts to a lower field, accompanied
by a substantial reduction of the field range where the dPI is
stabilized and by an extension of the first-order part of the
transition line, although the maximal Tc does not change.

It might seem that the interaction strength of gm is
considered up to a too large value (gm ∼ 10) in our study.
However, this seemingly large value is due to our definition of
gm in Eq. (5) where a factor of (1/2)2 originating from spin is
not absorbed into the definition of gm.

A typical feature of the dPI is that its mean-field phase
diagram is characterized by universal ratios.21,54 In the model
solved in Ref. 54, several universal ratios reasonably agree
with experimental values, but ratios of temperature and a
magnetic field come out one order of magnitude smaller
than the experimental data. For example, in experiments,
T tri

c /htri ∼ 0.6kB/(0.15gμB ) = 6g−1 ≈ 3 if g = 2, whereas
theoretically we obtain T tri

c /htri ∼ 0.3 for gm = 0 (Ref. 68);
here, htri is the field at a tricritical point measured from the
van Hove energy. However, in the presence of a ferromagnetic
interaction, we have found that only the scale of a magnetic
field is substantially reduced, while the temperature scale

is not. As a result, from Fig. 7(a), we obtain T tri
c /htri ∼ 2

and 7 (Ref. 68) for gm = 6 and 7, respectively. The ratio
of T tri

c /htri is substantially modified by a FM interaction to
become comparable to the experimental one. The large value
of gm indicates that the system is close to the FM instability
for h = 0, the same situation as in Sr327.55–58

The FM interaction pushes up T tri
c to a higher temperature,

but the maximal Tc does not change. As a result, other ratios
such as T tri

c /T vH
c , where T vH

c is Tc at the van Hove energy, now
become slightly larger than the experimental value, although
it showed better agreement with experimental data in the
model with gm = 0.54 However, this may be easily improved
by invoking weak fluctuations associated with the dPI since
it was shown32,33 that fluctuations suppress T tri

c stronger than
T vH

c . Therefore, the ratios in the experimental phase diagram
of the dPI are well understood by the presence of a FM
interaction tuning the system close to the FM instability, and
by weak dPI fluctuations.

The lines of first-order phase transitions tilt outward in
the experimental phase diagram,44 indicating that the entropy
inside the dPI phase is larger than that in the normal state.46

This counterintuitive phenomenon is not captured in the
present theory. This inconsistency may be explored further
in terms of the interplay of ferromagnetic fluctuations and the
dPI by going beyond the mean-field model.

Sr327 is a t2g system and band-structure calculations60,61

show six Fermi surfaces for h = 0. The present one-band
model focuses on a two-dimensional Fermi surface closest
to k = (π,0) and (0,π ) since such a band contributes to
the large density of states near the Fermi energy and thus
plays an important role for the dPI and FM instability. It is
remarkable that the present simple model captures several
features observed in Sr327 and also provides insight into
possible fluctuation effects beyond mean-field theory.

On the other hand, we have discarded multiband effects
such as the spin-orbit effect, charge transfers among different
bands, and detailed features of the electronic band structure
in Sr327. There are theoretical studies4,5 that propose the
importance of such multiband effects. Hence, further studies
will help to identify the most important physics in Sr327.
Actually, orbital nematic order provides another possible
scenario.4,5 Since there are interactions among different
orbitals, the dPI is expected to generate orbital nematic order,
or vice versa. It is an open question as to which is the driving
force for nematicity observed in Sr327.
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