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Ultrathin AlO, layers are nowadays widely employed to make tunneling junctions and, as a common practice,
experimental transport data are often rationalized in terms of analytical models invoking effective electronic and
geometric properties of the oxide layer. In this paper we examine the reliability of such models by performing
first-principles simulations of the transport properties of Al/AlO,/Al junctions. The band gap, effective mass,
and interface width obtained from ground state density-functional calculations are used within a potential
barrier model, known also as the Simmons model, and its predictions of the conductance are compared with
first-principles results. We also propose an analytical expression for the conductance based on a tight-binding
model of the interface oxide. We show that the success of the potential barrier model in fitting experimental
transport measurements rests on its formal similarity with the tight binding model which, in contrast to the former,
is directly related to the realistic electronic structure of the interface.
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I. INTRODUCTION

Tunneling of electrons through aluminum-aluminum oxide
(AlVAIO,/Al) junctions is one of the prototypical examples of
quantum-mechanical tunneling in solid state physics. Though
the first experiments date back several decades,' AlO,-based
junctions are currently widely studied, with particular em-
phasis on ultrathin oxide layers.>™ In their pioneering work,'
Fisher and Giaever demonstrated the tunneling character of
electron transport through these interfaces. Moreover, by
comparing their results with the predictions of Holm’ for
tunneling through vacuum gap, they initiated the interpretation
of tunneling measurements through thin metal-insulator-metal
junctions using potential barrier models. The minimal form
of these models contains two parameters—the barrier width
d, which indicates the physical width of the oxide, and its
height W, given by the energy difference between the Fermi
energy and the bottom of the conduction band in the oxide. In
practice, several other parameters enter the model'®'? such as
the electron’s effective mass or the dielectric constant of the
oxide used within an additional image-charge potential. The
latter can have a significant effect on the effective barrier width,
but its presence depends on the time scales of the tunneling
electrons and the interface plasmons in the metal.'>'# Further
parameters are used for fine tuning the shape of the barrier
(e.g., the barrier asymmetry'?). Clearly, having a large set of
parameters, it is no surprise that the simple barrier model can
be fitted to the experimental current-voltage characteristics
well, 231516 byt at the same time, it raises questions about the
relevance of the model itself.*!7 In fact, in order to make the
fitting of the experimental /-V curves useful, it is important
that the analytical model has as few parameters as possible and
that their fitted values do correspond to physical parameters of
the real junction.

On the other hand, more detailed and parameter-free models
of the interface can be constructed using first-principles
calculations™!®-2? even though the size of the modeled inter-
faces is somewhat restricted due to the numerical cost of these
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calculations. Nevertheless, in many experiments>~® the studied
interfaces have widths within the reach of ab initio simulations
so that the accuracy of the potential barrier model to the
interpretation of tunneling data can be tested. Specifically,
Jung et al’ presented a study comparing the character of
the equilibrium projected density of states of the Al/AlO, /Al
interface obtained by a first-principles simulation with the
potential barrier model. They found that the parameters of
the potential barrier model fitted to the experimental data
are in qualitative agreement with the parameters of the first-
principles calculations. The potential barrier model included
the image potential and hence also the dielectric constant
which effectively narrowed and lowered the potential barrier.
However, the transferability of the parameters of the ab initio
ground state calculation and the potential barrier model has
been assumed, and the full ab initio calculation of the
conductance was not attempted.

In this paper we test the performance of the potential
barrier model by comparing the predicted conductance to
its ab initio calculations. The methodology used for the
ab initio calculation consists of a combination of self-
consistent density-functional calculations of the Kohn-Sham
Hamiltonian together with the Landauer formalism of elec-
tronic transport.”>° During the last ten years, substantial
research activity has been directed towards the development
of this approach, particularly in the realm of transport through
molecular junctions,’®?” paralleled with the interpretation of
these calculations through single-resonance or tight-binding
models.?%%

In our paper we calculate the conductance of Al/AlO,/Al
junctions of four different widths d and compare our results
with analytical models. When using the Simmons model,
we show that it is essential to introduce an effective mass
in the oxide and a rescaled (shorter) width of the tunneling
region. We also show that our analytical tight-binding model
describes the ab initio conductance results more accurately
than the potential barrier model. The parameters of the latter
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are extracted from the ground state ab initio calculations of
the junction. In Secs. II and III we introduce the analytical
details of the models. The ab initio results for ground state
properties of the studied junctions are presented in Secs. IV
and V, together with the computational parameters used in the
calculations. Finally in Sec. VI we compare the conductances
obtained using the ab initio calculations and the conductances
obtained from the analytical models.

II. POTENTIAL BARRIER MODELS OF THE INTERFACE

The starting assumption of the potential barrier model is
that inside the metallic electrodes, on the left and right of the
insulator, the electrons behave like free quasiparticles with
their energy being in a separable form?>°

E=E +E =k /[24ki/2, (1)

where k, is the component of the electron’s momentum
perpendicular to the interface and k; the component of
momentum parallel to the interface. The current density,
induced by an infinitesimal bias voltage, consists of a sum of
contributions from the electrons occupying states in the energy
window around the Fermi energy Er, with their momentum
opposite to the drop of the bias voltage (k, > 0). Hence, the
conductance per area is given by the expression’!

d*k, (> dE,
§=2 / S(Ep — E. — E)T(E>), )

ernr ). 2
_ /0 Lr(Er - By, 3)

where T (E.) is the transmission function, the probability for
an electron to pass through the junction, and E is the Fermi
energy. The simplest expression for the transmission 7T(E,)
is based on a metal-vacuum-metal interface,!%-!2 where the
barrier height W is given by the potential energy in the vacuum
with respect to the Fermi energy of the metal.

In Sec. VI we will demonstrate that there are two essential
features of the potential barrier models that need to be taken
into account for the description of ultrathin interfaces: (1) the
barrier needs to have transition regions between the metal and
the insulator of width Ad, where the potential energy changes
continuously, (2) the effective mass of the electrons in the
insulator needs to be accounted for. These two requirements
can be fulfilled by using a specific shape of the potential barrier.
In this paper we use a trapezoid potential barrier (TB) as
defined in Fig. 1.

On the other hand, in Sec. VI we will also demonstrate
that approximate expressions for the transmission as well
as for the energy integration in Eq. (3) are sufficient for
an accurate evaluation of the model conductance. For the
trapezoid potential barrier, the WKB approximation for the
transmission gives

T(E — E)) = exp{—F(E — E)}, “)
d(E))

F(E—E)=2 V2meg[W(2) + Ejldz,  (5)
7d(EH)

PHYSICAL REVIEW B 87, 195107 (2013)

Ad  dy Ad

FIG. 1. (Color online) The trapezoid potential barrier used to
model ultra-thin AlOy interface.

where m. is the effective mass of the electrons in the insulator,
—d(E)) and d(E)) give the region where [W(z) + E] > 0,
and W(z) is the trapezoid potential profile. Accounting only
for the largest contribution from the states close to the Fermi
energy in the integral in Eq. (3), E ~ EF, we obtain the
following simple analytical expression:

o—F(Er)

2n2F(Ep)’ ©

g ~
where

2
F(Ep) =2y 2meffW<dw + —AdEF>, (N

3

F'(Ep) = — (dw +2Adg,). (8)

2
«/zmeffW
We will refer to Eq. (6) as the TB4™" model (A stands
for “analytical” as compared to the numerically calculated
transmission for the trapezoid potential barrier TB"). We note
that the introduction of two transition regions of width Ad
adds to the exponent of the transmission amplitude only a
small fraction of Ad, namely (2/3)Adg,. This results in a
substantial increase of the conductance which is needed for the
agreement of the TB model and ab initio results (see Sec. VI).

III. ATOMIC sp MODEL OF THE INSULATOR

Itis typically assumed that the barrier height in the potential
barrier model corresponds to energy distance between the
Fermi energy and the closest among the valence or conduction
bands of the insulator, or even to its whole band gap.
However, fits of the potential barrier model to experimental
data often lead to unphysically small values if one follows this
interpretation. Various arguments like interface roughness!’
or image potential'! have been suggested to correct for this
underestimation, but perhaps the most important one—the
principal difference in the energetic spectrum of the real
insulator and the vacuum gap—received less attention. %3

To account for a more realistic electronic structure of the
insulator we consider a minimal tight-binding model of a sp-
like insulator with rock-salt crystal structure. For our purposes,
the cation with s-like orbital plays the role of aluminum and
the anion with p-like orbital the oxygen atom. While this
is different from the true structure of alumina, this model
works surprisingly well even for the disordered aluminum
oxide found in our interfaces, as will be shown in Sec. IV.

The sp model has four parameters: the onsite atomic
energies of the cation (gy) and anion (g,), the hopping matrix
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element between the two atoms (¢), and the length of the edge
of the conventional unit cell (cube) a. A standard calculation
leads to valence (v) and conduction (c) band energies

8 eff

1 3
L “sin?(kia/2). )
i=1

E m

E k) =EX+ -2 |1
c/v( ) F ) + Ega
where meir = E,/(21%a?) is the effective mass of the electrons
close to the conduction band minimum, equal in magnitude
to that of the valence band maximum. The two bands are

separated by the band gap E, = ¢, — &, and the energy in the
middle of the gap is

&p + &

EYX = . 10

F=" (10)

In the tunneling regime, the current is carried by the

electronic states in the band gap,”‘35 i.e., the evanescent Bloch
states with imaginary wave number k, = ik:

By (1) ~ €™ Tu (1), (11)

The WKB-like result for the transmission then takes the form

TP (E) ~ e, ()2 ~ e 2 Edd (12)

where d is a vector normal to the interface with the length
given by the width of the interface (|d| ~ d). ¥ (E,k|) can be
obtained from Eq. (9) using the substitution k, = i« therein.
The transmission can be then used in the calculation of
the conductance in Eq. (2). The largest contributions to the
conductance come only from xa/2 < 1, kja/2 < 1, so that
the sin() functions in the dispersion can be expanded in Taylor
series. Keeping only the first two terms we find*®

K(E k) = JWEymeEg 2+ +42, (13)

= 2[V(E)meitEg /4 + E|], (14)

where we have introduced a multiplicative factor v(E) ac-
counting for the relative distance of the energy E from the
middle of the gap,

(E) =1 4(ﬂ>2 (15)
v =1- E, ,

which is close to 1 for £ ~ Er. We note that by using the
Taylor expansion the model becomes independent of the size
of the conventional cell a. The transmission T,fu” (E) is similar
to the WKB result for a potential barrier [Egs. (4) and (5) for a
constant barrier height W]. Hence, making the same approx-
imations as in Sec. II and substituting W — v(Ef)E, /4 we
find an analytical expression for the transmission through a sp
insulator of width d precisely of the form of Eq. (6), where

va(EF) = 2\/ V(EF)"nefng/2 d, (16)
2

——d
RV U(EF)mefng/z

This represents one of the main results of our paper: The
potential barrier height W is related to the band gap through
the relation W = v(Er)E, /4. Since the Fermi energy in our
junctions is close to the center of the gap (Sec. IV) where
we have v(Ef) ~ 1, we expect that the band gap is about

F/(EF) = — a7
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four times larger than the barrier height obtained from the fits
to the experimental data. This explains the typical situation in
Al/AlO, /Al junctions where W can be as small as 2 eV or less,
which is to be compared with the band gap of alumina being
about 7-9 eV. Further comparisons will be made in Sec. VI
where the sp model is compared to the ab initio calculation of
the conductance.

IV. FIRST PRINCIPLES CALCULATIONS
OF THE AL/ALO,/AL INTERFACES

The Al/AlO, thin film is well known for its difficulties to
be grown in an ordered form.*’® The process of oxidation
consists of a quick chemisorption of oxygen on a clean Al
surface which is followed by a complex diffusion process
leading to various widths of the interface which is typically
disordered.®** The model that we consider is on the other
hand relatively simple and ordered. We followed Jennison*>*3
at constructing a chemisorbed layer of oxygen on an ideal
Al(111) V3 x +/3 surface (three Al atoms per layer), modeled
as a slab six layers thick (left electrode). Next we added
Al and O atoms and relaxed the geometry until we found
a stable interface having two layers of oxygen atoms (2L).
Finally we enclosed the interface with four ideal AI(111)
layers (right electrode) and connected it with the left electrode
through periodic boundary conditions. Through performing
this procedure two different geometries of the interfaces were
identified: (1) an asymmetric structure, corresponding the the
ultrathin AlO, layer investigated by Jennison, and (2) a sym-
metric structure which did not contain the layer of chemisorbed
oxygen next to the bottom Al electrode. More details on the
differences between the asymmetric and symmetric structures
can be found elsewhere;** in this paper we will consider only
structures derived from the asymmetric geometry.

Motivated by the geometry of the asymmetric 2L interface
model we have constructed thicker AI/AlO, /Al by adding one
(3L), two (4L), or three (5L) full oxygen layers sandwiched
between monoatomic (All) or diatomic (Al2) layers of
aluminum. The resulting geometries were optimized until the
forces on the atoms were smaller than 0.002 Ha/ap, while
the Al atoms beyond the first layer of bulk metal were kept
fixed. An example of the resulting geometric structure of 4L is
shown in Fig. 2. We should mention that these models are
not necessarily the only ones possible for the interface of
the concerned width. Due to the above described tendency of
AlO, systems towards disorder, we expect that many different
variations could be found with larger surface cells. The struc-
tures identified here need to be taken as a few samples of the
great variety of possible geometrical arrangements. However,
the comparison of the projected density of states (PDOS)
for symmetric and asymmetric 2L junctions (see Ref. 44)
suggests that these differences lead to small changes in their
conductances.

All of the ground state properties and optimizations were
done using the QUANTUM ESPRESSO distribution.*> We have
employed the PBE exchange-correlation functional; atomic
cores were described using ultrasoft pseudopotentials resulting
in a well converged electronic structure close to the Fermi
energy, using a cutoff energy of 12.5 (125) Ha for wave
functions (charge density). A 6 x 6 x 1 Monkhorst-Pack
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FIG. 2. (Color online) The 4L structure (above) and the corre-
sponding averaged electronic density of the occupied transmitting
states. Gray large spheres represent aluminium, red small spheres
oxygen. The dashed lines indicate the positions of the metal-oxide
boundary obtained according to Eq. (18).

k-point grid was sufficient to converge the total energy within
0.002Ry.

In Fig. 2, in parallel with the geometric structure of the 4L
interface, we show the profile of the plane-averaged electronic
density of the scattering states An(z) (e.g. localized states on
oxygen atoms are not included). We see that the rapid drop
and increase in the density appears at the boundary between
the metal and the oxide. We use An(z) as the quantity for
the determination of the interface width from our ab initio
calculations, in close analogy with the determination of the
position of surfaces at metal-vacuum interfaces;*® for the left
boundary we use

S dA S dA
. =/ . n(Z)dz/f n(z)dz’ (18)
oo dz oo dz

where z; is a position in the center of the insulator. Similar
expression is used for the determination of the right boundary
zg which together with z; give the estimate of the interface
width d = zg — z; used within our potential barrier and sp
models in Sec. VI. The resulting interface widths are given in
the Table I. In the following we will also refer to the width of
the transition region beween the metal and the oxide, which
can be estimated from the averaged density to be An ~ 2.0 A.
This value will be used for the determination of the width of
the transition region in the potential barrier model (Fig. 1).
‘We note that for the calculation of the positions z;,z we do
not necessarily need to use the density An(z) obtained from
the scattering states in the transport calculations (see Sec. VI),
but it is equally good to use the partial density of states close
to the Fermi energy that can be obtained from any ground

TABLE . Values of the interface widths, band gaps, Fermi energy
shifts, and the shift factor v(E ) obtained from ab initio calculations.

System d (A) E, (eV) AEp (eV) v(EFr)
2L 4.5 7.0 1.5 0.82
3L 5.5 6.5 —0.25 0.99
4L 7.8 6.5 —1.0 0.91
5L 9.8 6.5 —1.0 0.91
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vgs(z) [a.u]

n(z) [a.u.]

An(z) [a.u]

FIG. 3. (Color online) The comparison of the average Kohn-
Sham potential vg g(x), the total density n(z), and the contribution to
the density from the states close to the Fermi energy An(z). Clearly,
the latter can be unambiguously used for the definition of the width
of the interface using Eq. (18).

state code (e.g., QUANTUM ESPRESSO). On the other hand, the
total electronic density or the Kohn-Sham potential (which
is frequently but incorrectly believed to be the origin of the
potential barrier in the model from Sec. II) are not suitable
for this calculation. This is demonstrated in Fig. 3 where the
Kohn-Sham potential, averaged over the x-y plane, contains
large oscillations due to atomic positions in both the electrode
as well as the oxide, or the total density which is dominated
by low-lying electrons of oxygen atoms.

The second important parameter of the potential barrier and
the atomic sp models is the insulator band gap E,. It can be
extracted from the projected density of states (PDOS), where
the Kohn-Sham eigenstates of the interface are projected on
atomic orbitals. Figure 4 shows the PDOS for the 4L interface,
where the PDOS of atoms in each layer are added together,
green lines corresponding to the Al layers and the red lines

PDOS [a.u.]

FIG. 4. (Color online) The projected density of states for the AlO,
4L interface. The distance of the valence band to the Fermi energy,
being less than half the distance to the conduction band, is taken as
the effective barrier height.
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to the oxygen layers. The oxide band gap is estimated as the
energy distance between the onset of the valence bands on
the oxygen atoms below the Fermi energy, and the onset of the
mixed Al and O bands above the Fermi energy. From the PDOS
we can also obtain the energy distance between the mid-gap
energy and the Fermi energy, A Er, needed for the sp model.
The calculated band gaps and AE for all studied interfaces
are collected in Table I. Interestingly, in spite of the well known
band-gap problem of the DFT,*’~* these band gaps appear to
be in very good agreement with recent experimental results for
the AI/AL,O5 interfaces’®! which found E o =04¢eV.

While the band gap stays roughly the same for all of
the studied interfaces 2L—5L, the Fermi energy shifts with
respect to the middle of the gap from positive (conventionally
called the electron tunneling regime) to negative values (hole
tunneling). However, the factor v(E ) stays close to one in all
the cases (see Table I), as anticipated already in Sec II. The
energy difference between the bottom of the conduction band
and the Fermi energy determined experimentally>® was found
tobe E. — Er = 2.9+ 0.2 eV whichis 1 eV smaller than the
DFT value found here for 4L and 5L, but on the other hand,
in good agreement with 2L and 3L, which perhaps indicates
larger sensitivity of this quantity on the particular system.

V. ELECTRONIC STRUCTURE OF AN IDEAL INSULATOR

The potential barrier model as well as the sp model also rely
on the knowledge of the effective mass mg of the electrons
in the insulator or barrier region. To calculate it we have
considered a first-principles model of the insulator extracted
from the geometry of the 4L junction. Namely, it consists of
a supercell of length / = 8.11ap in the z direction and with
identical dimensions in the two remaining in-plane directions
[i.e., v/3 x /3 Al(111)]. The supercell contains two layers
of oxygen and two layers of 2/3 filled Al planes (the third
and fourth oxygen layers in Fig. 2 from the left and their
immediately following Al layers, respectively). This way, the
chemical composition actually corresponds to alumina, Al,O3.

The DFT ground state calculation has been done with the
same specifications as for the full interface (Sec. IV) except
for the k-point grid being here 6 x 6 x 6 due to smaller extent
in the z direction. The following band-structure calculation
has been done using the PWCOND program?? that is capable
of obtaining the so-called complex band structure, i.e., energy
bands for imaginary as well as real Bloch k vectors. We have
checked that calculations of the band structure for real k vectors
using the QUANTUM ESPRESSO and the PWCOND gave identical
results so that the parameters involved in the PWCOND program
were correctly chosen.

The band structure along the direction normal to the
interface (z) is shown in Fig. 5. First of all we note that
the band gap obtained here, E;° ~4 eV (in agreement
with the previous DFT-PBE results for bulk y-Al,035233),
is significantly smaller that the band gap extracted from
the PDOS of the full junction (~ 6.5 eV). Interestingly, the
experimental value of this phase of alumina is E; "~ = 7 eV,
which can be obtained also computationally if the DFT-PBE
result is followed by a GW calculation.”3

The DFT band structure in Fig. 5 is fitted with two
model dispersions. The TB model uses a free-electron-like
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FIG. 5. (Color online) The imaginary (left) and real (right)
band structures from ab initio calculations compared with the band
structures of the sp and potential barrier models. The sp model
gives an excellent fit for both real and imaginary band structure for
mep = 0.35 and E, = 4.0 eV. The dashed arrows in the imaginary
band structure point to the values of « at the Fermi energy for the
free-electron model (*20.3) and for the sp model (=0.2).

dispersion E.(k) = . + k?/(2mes) which after fitting gives
the effective mass m.g = 0.35. The atomic sp model [Eq. (9)]
in the approximation ka/2 < 1, which is used in the analytic
expression for the conductance, gives (for k, = k, = 0) the
dispersion:

E

2k?
Ec/v(k)zE;O:I:?g 1+ 2

mefng

19)

The parameters of the fit given in Fig. 5 are meg = 0.35, E, =
4.0 eV, and EY° =1 eV. Our value of the effective mass is
to be compared with the electron’s mass obtained from DFT
calculations for ideal «-Al, O3 crystal, meg & 0.4,5* and fits to
experimental /-V characteristics, meg ~ 0.23.15°3

We see that the sp model works very well for real as well as
imaginary band structure close to k = 0. While both models
give the same effective mass, the values of « for the free-
electron-like dispersion are larger by ~50% (as indicated by
arrows in Fig. 5) which contributes to prediction of smaller
conductances within the potential barrier model given that the
interface width is the same, as will be shown in the following
section.

VI. THE CONDUCTANCE

Transport properties of the junctions were obtained using
the transfer matrix method®® implemented in the PWCOND
code,?® using plane-wave basis and ultrasoft pseudopotentials.
For the given self-consistent Kohn-Sham potential (obtained
from the ground state calculations, see Sec. IV), the conduc-
tance was converged with respect to the k grid; going from
the 6 x 6 mesh (used for the presented results) to a 44 x 44
mesh the change in the conductance has been found to be
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TABLEIL Values of the conductances in multiplies of e? /1 x A,
where A, = 74.23a3 is the area of the supercell perpendicular to the z
direction, calculated by the PWCOND and WANT codes. The differences
are similar to the differences between the PWCOND results and the sp
model.

Code 2L 3L 4L SL
PWCOND 0.109 0.0166 0.00245 0.000279
WANT 0.0668 0.00730 0.00224 N/A

<5%. Furthermore, for testing purposes, the conductances for
the 2L, 3L, and 4L interfaces were also calculated using the
WANT code,”*? where a completely different method based on
maximally localized Wannier functions is implemented. Note
that in this case the conductance is evaluated on a 20 x 20 mesh
of k; by using a Wannier interpolation scheme.? Results are
reported in Table II and compare well with the previous set,
though slightly underestimating the absolute values.

In Figure 6 we show the dependence of the conductances
per unit area on the interface width d, determined in Sec. IV,
in comparison with the two models considered in Secs. II
and III. The horizontal error bars accompanying the ab initio
conductances, Ad ~ 2 A, indicate the width of the transition
region between the metal and the insulator, which is taken
from the averaged density profile, Fig. 2.

First we consider the potential barrier model with effective
mass equal to one, where the calculation of the transmission
as well as its energy integration [Eq. (3)] are done numerically
exactly (TBV). The potential barrier is of the form given in
Fig. 1, where d,, =d — Ad. The conductances are shown
as the blue crosses, where the height of the energy barrier
W =0.5neV,n = 1,2,3,4,5 is increasing from top to bottom.
The pink-dotted line is the conductance of the same potential
barrier of width W = 2 eV, but evaluated using the approxi-

10° v v
ab inttio ——
108 —_— -
SB, W = 2eV
107 TBY, W =nx 05V +
10k TBA, W = 26V s ]
q B} ESS TBA™ W = 26V ———
g 10° 3
3 L+
2 w0
= 10° }
10 } N
10" } 1
10° " 2 . L
2.5 5 7.5 10 12.5 15 17.5

d[A]

FIG. 6. (Color online) The ab initio and model conductances. The
square barrier (green dashed line), the trapezoid barrier with transition
regions AD # 0 (pink dotted line), and the inclusion of the effective
mass (orange dash-dotted line) form a sequence of improvements of
the potential barrier to model towards the true atomic system. Finally,
the analytic sp model (black full line) with parameters taken from
ground state ab initio simulations gives very good agreement with
the full first-principles calculation of the conductance.
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mate formula [Eq. (6)]. As anticipated in Sec. II, we see that in
view of the overall differences, the approximate but analytic
formula is very satisfactory and the numerical calculation of
the transmission of its energy integration is not really needed.

‘We see that in principle, we can achieve agreement between
this model and the ab initio results if we choose W ~ 0.5 eV,
but this is in stark contrast with the estimates of the potential
barrier height from the PDOS, typically taken as the distance
between the Fermi energy and the nearest band in the oxide
(e.g., the valence band in the oxide in 4L structure according
to Fig. 4), here expected to be W ~ 2 eV.

The green-dashed line is a conductance corresponding to a
simple square potential barrier with W = 2 eV and effective
mass equal to one, and we see that the plain square barrier
model goes in the wrong direction. The use transition regions
of width Ad does shift the potential barrier model in the
right direction, particularly for very short interfaces, where
the effective mass within the insulator does not seem to play
an important role. Hence, use of the transition region between
the metal and the insulator of width Ad, given by the spatial
extent of the drop of the electronic density between the metal
and the oxide, is essential for the TB model.

The red dash-dotted line gives the conductance according
to Eq. (6) with the ab initio determined effective mass m.g =
0.35 and W = 2 eV. The effective mass significantly improves
the agreement of the potential barrier model with the ab initio
conductance, while keeping the barrier at the “reasonable”
value, motivated by offset between the Fermi energy and the
valence band maximum.

Finally, the full black line corresponds to the atomic sp
model with the effective mass m.g = 0.35, band gap E, =
6.5 eV, and the barrier width dyy = d — Ad. The use of this
reduced width dy is motivated by two observations: (i) In
Sec. I we have seen that the linearly increasing potential at
distance Ad contributes to the exponent of the conductance
[Egs. (6) and (7)] through a much smaller contribution Adg, =
W/(W + Er)Ad ~ 0.15Ad. (ii) In the TB model we have
seen that the use of a shorter barrier, effectively given by
dw + 2/3Ad [Eq. (7)], is important to compare well with the
ab initio conductances. Hence we expect that also in the sp
model, the oxide width (i.e., the equivalent of the potential
barrier) needs to be reduced almost to d — Ad, which is the
value we use. As a result, the sp model is essentially on top
of the ab initio conductances. While the improvement with
respect to the potential barrier model with transition region
and the effective mass is not that large, it is important to
stress that the parameters of the sp model (E,, mefr, d — Ad)
correspond to the characteristics of the true ab initio model.

It is interesting to attempt a quantitative comparison be-
tween experimentally determined barrier widths and heights,
and our ab initio and sp model results (Fig. 7). As mentioned
already in the introduction, there are experimental junctions
that are now accessible to first-principles simulations. Based
on the rather unsatisfactory state of affairs in Fig. 7, we
suspect that not all of the published widths may have been
determined correctly. On the other hand, a positive example is
the data point taken from the work of Jung,’ where the interface
width has been determined directly and not through fits to the
Simmons model, and as a result the conductance is relatively
closer to our ab initio conductances. Similar underestimation
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FIG. 7. (Color online) The ab initio conductances compared to
selected experimental results. (a) Jung (Ref. 5), (b) Gloos (Ref. 2),
(c) Holmgvist (Ref. 57), (d) Brinkman (Ref. 12), and recent
experiments by Schaefer (Ref. 3). The model gives fairly rigid
prediction of the conductances, even using the band gap of the
a-AlL,Os3, E, ~9 eV. The likely source of these discrepancies is
the experimental determination of the interface width.

of the junction widths obtained from Simmons (potential
barrier model) has been obtained in the experimental work
of Buchanan et al.,'® even though here it has been interpreted
as due to interface roughness.

VII. CONCLUSIONS

In conclusion, we have analyzed the performance of
simple analytical models in describing the conductance of

PHYSICAL REVIEW B 87, 195107 (2013)

ultrathin Al/AlO,/Al junctions. We have compared atomistic
first-principles calculations using the DFT-PBE framework
combined with the Landauer formula, with the conductances
obtained from a potential barrier and a tight-binding sp
analytical model. We have shown that the expression for the
conductance of the atomic sp model has the same form as
that from the potential barrier model if the barrier height W is
exchanged for v(Er)E, /4 with v(Er) ~ 1, which explains
the small values of W obtained frequently in the past by
fitting the potential barrier model to the experimental 7-V
curves. The accuracy of the analytical models has been
tested by using parameters derived from ground-state DFT
calculations. We have found that the oxide is characterized by
an effective mass m = 0.35m( and a band gap E, = 6.5 €V.
When these parameters are used in combination with the sp
model, excellent agreement with the numerically calculated
conductances is found. The interface width used in the
models has been shown to correspond to the width of the
well-developed oxide which is shorter by about Ad ~2 A
compared to the geometric width of the interface d. Our results
show that the sp analytic formula can be used as a reliable tool
to estimate the band gap and width of a junction, by simply
performing a fit of its experimental conduction data.
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