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Exact spin-orbital separation in a solvable model in one dimension
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A one-dimensional model of coupled spin-1/2 spins and pseudospin-1/2 orbitals with nearest-neighbor
interaction is rigorously shown to exhibit spin-orbital separation by means of a nonlocal unitary transformation.
On an open chain, this transformation completely decouples the spins from the orbitals in such a way that the
spins become paramagnetic while the orbitals form the soluble XXZ Heisenberg model. The nature of various
correlations is discussed. The more general cases, which allow spin-orbital separation by the same method, are
pointed out. A generalization for the orbital pseudospin greater than 1/2 is also discussed. Some qualitative
connections are drawn with the recently observed spin-orbital separation in Sr2CuO3.
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I. INTRODUCTION

The multiorbital Mott-Hubbard insulators are known to
exhibit a rich variety of orbito-magnetic phases due to the
coupled nature of spin and orbital degrees of freedom. The
theoretical framework that one uses to discuss such problems
goes by the name of Kugel-Khomskii models. These are
natural extensions of the Heisenberg spin exchange to the
multiorbital cases wherein the spins and orbitals get coupled
via superexchange to form the spin-orbital models.1,2 The
phonons, through Jahn-Teller coupling, also participate in
the systems with orbital degeneracy. However, at the very
least, one simply focuses on the electronic part, the leading
term in energy, that gives rise to the spin-orbital models
within second order perturbation theory in the limit of
strong local repulsion for effectively one electron or hole per
unit cell.

There are a lot of materials, such as KCuF3, V2O3, LaMnO3,
MnF3, (Na, Li)NiO2, Sr2CuO3 (to name a few), where
the Kugel-Khomskii type spin-orbital models are directly
applicable.1–6 For example, in KCuF3, the Cu2+ ions, having
[Ar]3d9 configuration in the octahedral crystal field of F− ions,
can be treated as having one hole in the twofold degenerate eg

orbitals (dx2−y2 and dz2 ). It is a Mott insulator, and has been
studied as a Kugel-Khomskii problem.4,7 There are also cases
of a different type in which the effective problem has the form
of a spin-orbital model, although in actuality one may not be
dealing with the orbitals.8–10 For instance, an odd-legged spin-
1/2 tube can be described in terms of the effective spin-1/2
and chirality variables. Since the chirality can be treated as a
pseudospin-1/2 object, an effective model for such a spin tube
is a spin-orbital model in one dimension.11–13 Clearly, there is
much interest in studying these model problems with different
motivations.

In this paper, we present a solvable spin-orbital model in
one dimension (1D), whose most significant feature is the
“spin-orbital separation,” an effect similar to the spin-charge
separation in the interacting 1D electrons (Luttinger liquids).
Our model has a realistic form. It resembles the effective mod-
els for odd-legged spin-1/2 tubes,11,13 and may be motivated
by a microscopic two-band Hubbard model.1,2 This work is
built upon an earlier brief suggestion of spin-orbital decoupling
by the present author.14 Interestingly, the recent observation of
spin-orbital separation in Sr2CuO3 is a welcome development

that makes our independent theoretical findings experimentally
relevant.6

In a spin-orbital model, the electron spin is described
by the Pauli operators �σl , where l is the site index of a
lattice. The operators for the orbitals depend upon the details
thereof. Here, we consider the two orbital case, for which the
operators in the orbital space can be treated as pseudospin-1/2
objects described by another set of Pauli operators, �τl . For
a system of spin-1/2 spins and pseudospin-1/2 orbitals, a
coupled spin-orbital problem can have the following generic
form:15,16

Ĥso =
∑

l

[J1 �σl · �σl+1 + J2 {�τl,�τl+1}�

+ J3 (�σl · �σl+1) {�τl,�τl+1}�′ ]. (1)

Here, the model Hamiltonian Ĥso is written on a 1D lattice,
and it only has the nearest-neighbor exchange interactions.
Of course, in general, the Ĥso could have further neighbor
exchanges, and be living on any lattice. The exchange interac-
tions J{1,2,3} are assumed to be antiferromagnetic, unless stated
to be otherwise. The symbol {�τl,�τl+1}� denotes the anisotropic
exchange, �τz

l τ z
l+1 + 2(τ+

l τ−
l+1 + τ+

l+1τ
−
l ), between the or-

bitals. Evidently, the Ĥso is SU(2) symmetric for spins, and
has U(1) symmetry for orbitals. Therefore, the total spin, and
the z component of total pseudospin, are conserved. When
� = �′ = 1, it becomes SU(2) × SU(2) symmetric. These are
complex models to investigate theoretically, and they have
attracted a lot of attention.

Of the many cases of Ĥso, quite a few are special as
they allow for exact analytical solution of some kind. The
most notable is the SU(4) symmetric model corresponding
to J1 = J2 = J3 and � = �′ = 1, whose ground state energy
and elementary excitations are known using Bethe ansatz.17,18

There are other interesting cases as well. For example, when
J1 = J2 = 3J3 for � = �′ = 1, the exact ground state is
doubly degenerate with the spins and the orbitals separately
forming pairwise singlets on alternate bonds. The same
ground state also holds true for � = �′ = 0 and J1 = 2J3

and J2 = 3J3.19–21 The quantum phase diagram for general
J1/J3 and J2/J3 has also been investigated using the density
matrix renormalization group (DMRG) method.15,22 Different
variations of Ĥso are also known to give some interesting
solvable models. Notable ones are a symmetric XY spin-orbital
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model which can be completely solved using Jordan-Wigner
transformation,23 and an integrable dimerized chain with
J3 = −2 and (J1,J2) alternately equal to ( 3

2 , 1
2 ) or ( 1

2 , 3
2 ) on

successive nearest-neighbor bonds.24 We too have found a
special case which is the subject of our discussion in this
paper.

II. MODEL

We present the following spin-orbital model in 1D. We were
led to this model unexpectedly while working on the infinite
U Hubbard model:14,25

Ĥ =
∑

l

[
Jzτ

z
l τ z

l+1 + J⊥X̂l,l+1(τ+
l τ−

l+1 + τ+
l+1τ

−
l )

]
. (2)

Here, Jz and J⊥ are the nearest-neighbor interaction param-
eters. While Jz measures the strength of Ising interaction
between orbitals, J⊥ couples the spin exchange, X̂l,l+1 =
(1 + �σl · �σl+1)/2, with the orbital quantum fluctuations (the
XY part of the orbital exchange). This model corresponds to
the Ĥso for J1 = �′ = 0, J2 = J3 = J⊥/4 and � = 4Jz/J⊥.
Evidently, the Ĥ is SU(2) × U(1) symmetric, and conserves∑

l τ
z
l as well as the total spin,

∑
l �σl . Below we show that the

Ĥ of Eq. (2) is exactly soluble through a unitary transformation
which completely decouples the spins from the orbitals, and
the decoupled problems of spins and orbitals are separately
solvable. Recently, there has been some experimental interest
in the spin-orbital separation in quasi-1D systems.6 The model
Ĥ presents a realistic and rigorous theoretical example of the
same.

A. Spin-orbital separation

An important property of the spin-exchange operators,
X̂l,l+1, is that X̂2

l,l+1 = I, where I is the identity operator.
It prompts us to view X̂l,l+1 as a unimodular “operator phase”
factor. Since it appears in conjunction with τ+

l τ−
l+1 in Ĥ , we

are led to think that one may suitably gauge-transform τ±
l to

rid the Ĥ of X̂l,l+1 operators. It turns out that we can indeed do
this by the procedure invented in Ref. 14 by the present author
for the infinite-U Hubbard model in 1D. This method exploits
the identity, X̂2

l,l+1 = I, and enables us to completely separate
the spins from the orbitals on a chain with open boundaries by
applying a suitably defined nonlocal unitary transformation on
Ĥ . The details are as follows.

Consider the J⊥ term in Ĥ which couples the spins with
orbitals. Let us denote it as Ĥ⊥:

Ĥ⊥ = J⊥
L−1∑
l=1

(τ+
l X̂l,l+1τ

−
l+1 + τ+

l+1X̂l+1,lτ
−
l ). (3)

Here, X̂l+1,l = X̂
†
l,l+1 = X̂l,l+1 (it is Hermitian), and L is the

total number of lattice sites. We have explicitly put in the open
boundary condition in the summation over l.

Now, on the bond (1,2), define a unitary operator U1,2 =
P̂ −

2 + P̂ +
2 X̂2,1, where P̂ ±

2 = (1 ± τ z
2 )/2 are the projection op-

erators for the orbital states on site 2. By applying U1,2 on Ĥ⊥,

we get

U†
1,2Ĥ⊥U1,2

= J⊥

{
(τ+

1 τ−
2 + τ+

2 τ−
1 ) + (τ+

2 X̂2,3τ
−
3 + τ+

3 X̂3,2τ
−
2 )

+
L−1∑
l=3

(τ+
l X̂l,l+1τ

−
l+1 + τ+

l+1X̂l+1,lτ
−
l )

}
. (4)

As a result of the transformation under U1,2, three things
have happened to Ĥ⊥. First, the spin-exchange operator X̂1,2

has vanished from the bond (1,2). Now we only have (τ+
1 τ−

2 +
τ+

2 τ−
1 ). Second, the operator X̂2,3 on bond (2,3) has been

replaced by X̂2,3 = X̂1,2X̂2,3. Thus, the X̂1,2 hasn’t quite disap-
peared from Ĥ⊥. Instead, it has been shifted to the bond (2,3).
Unlike X̂2,3, the new operator X̂2,3 is not Hermitian. But it is
unitary, which is sufficient for our method to work. In our no-
tation, X̂3,2 = X̂ †

2,3. Therefore, X̂2,3X̂3,2 = X̂3,2X̂2,3 = I. And
third, the interactions on the bonds beyond the bond (2,3) re-
main unaffected. These observations suggest that we may sim-
ilarly transfer X̂2,3 to bond (3,4) and so on, and eventually get
rid of all the spin-exchange operators in Ĥ⊥ on an open chain.

Our strategy is to remove the spin-exchange operators from
the successive bonds one by one. The unitary transformation
which does this for us can be defined as U = ∏L−1

l=1 Ul,l+1,
where

Ul,l+1 = P̂ −
l+1 + P̂ +

l+1X̂l+1,l . (5)

Here, X̂l+1,l = X̂l+1,l X̂l,l−1 · · · X̂3,2 X̂2,1 is the string of spin-
exchange operators, and P̂ ±

l+1 = (1 ± τ z
l+1)/2 are the orbital

projectors. Clearly, the U is a very nonlocal unitary operator.
By transforming Ĥ⊥ under U , we get

U†Ĥ⊥U = J⊥
L−1∑
l=1

(τ+
l τ−

l+1 + τ+
l+1τ

−
l ). (6)

It is a remarkable transformation which completely decouples
the orbitals from the spins. This decoupling happens because
the spin-exchange operators that accumulate on the (L − 1,L)
bond are finally thrown out of the chain, as there is no
(L,1) bond on the open chain. It is a beautiful case of exact
spin-orbital separation in a model of coupled spins and orbitals.
On a closed chain of finite L, things complicate. But for a ther-
modynamically large L, the two chains may behave similarly.

The resultant orbital only problem in Eq. (6) is the exactly
solvable XY chain which turns into a free fermion model under
the Jordan-Wigner transformation.26 Moreover, the complete
absence of spin-spin interaction in the transformed problem
makes the spin subsystem an ideal paramagnet. Thus, the Ĥ⊥
is a soluble spin-orbital model, where one exactly knows all
the eigenvalues and eigenstates. Every eigenvalue of Ĥ⊥ is
exponentially degenerate (∼2L) due to the free spins. Even the
ground state has an extensive entropy of L log 2.

We note that U†τ z
l U = τ z

l and U† ∑
l σ

α
l U = ∑

l σ
α
l for

α = x,y,z. Since
∑

l �σl and τ z
l operators are invariant underU ,

it enables us to write a more general model, solvable through
the same spin-orbital decoupling procedure as used for the Ĥ⊥
in Eq. (6). A simple and realistic modification that we do to Ĥ⊥
is to add the nearest-neighbor orbital Ising term, Jz

∑
l τ

z
l τ z

l+1.
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This gives us the model Ĥ of Eq. (2). Clearly, due to the
invariance of τ z

l under U , the Ĥ also shows exact spin-orbital
separation on an open chain. That is,

U†Ĥ U =
L−1∑
l=1

[
Jzτ

z
l τ z

l+1 + J⊥(τ+
l τ−

l+1 + τ+
l+1τ

−
l )

]
, (7)

which is the XXZ Heisenberg model, solvable by Bethe
ansatz.27–30 Thus, the Ĥ is a soluble spin-orbital model. We
can in fact add more arbitrary terms of the type, Vo({τ z

l }) +
Vs(

∑
l σ

z
l ,

∑
l σ

x
l ,

∑
l σ

y

l ), to Ĥ , and still rigorously achieve
spin-orbital separation under U . For example, we can certainly
add a term like

∑
l(hσ z

l + ητ z
l ), where h and η are the

fields for spins and orbitals, respectively. But such more
general spin-orbital-separable problems may not always be
analytically soluble. Hence, the Ĥ is a special model indeed.

B. Ground state

As a function of Jz (for J⊥ > 0), the exact ground state of
Ĥ behaves as follows. For 2|Jz|/J⊥ < 1, the orbital part of the
ground state is critical with power law correlations and gapless
excitations, akin to the XY case (Jz = 0). For 2Jz/J⊥ < −1,
the ground state is ferro-orbital and the elementary orbiton
excitations are gapped. By ferro-orbital we mean the ferro-
magnetic state of orbital pseudospins. Moreover, an orbiton
is a dispersing orbital excitation, like what a magnon is
for a magnet. For 2Jz/J⊥ > 1, the orbital ground state is
Néel ordered with gapped orbital excitations. In all these
qualitatively different phases, the spins remain completely free
(paramagnetic).

At this point, we also like to put our understanding of Ĥ⊥
in perspective with some results in Ref. 22, where the Ĥso for
� = �′ = 0 has been investigated using DMRG. Particularly
for J1 = 0, the point J2/J3 = 1 (which is J2 = 1/4 in their
notation) was identified as a transition point (see Fig. 1 in
Ref. 22), above which the ground state is a direct product
of the ferromagnetic spins and the orbital fermi-sea (through
Jordan-Wigner mapping), |F 〉s ⊗ |JWf s〉o. Here, F stands for
ferromagnetic, JWf s for the Jordan-Wigner fermi-sea, and the
subscripts s and o indicate the spin and the orbital subsystems,
respectively. For J2/J3 � 1, they proposed a spin-dimerized
antiferromagnetic (DAF ) ground state, |DAF 〉s ⊗ |JWf s〉o.
Here, we make an important observation that their transition
point J2/J3 = 1 is the same as our Ĥ⊥. In the light of our exact
findings, the J2/J3 = 1 is a special point in their quantum
phase diagram, hitherto unrealized, with exact solvability for
the complete eigenspectrum. Moreover, the correct ground
state at this special point is not as stated in Ref. 22.
Instead, it is a highly entropic manifold of 2L eigenstates,
{U |s1,s2, . . . , sL〉 ⊗ |JWf s〉o}, where |s1,s2, . . . , sL〉 denotes
an Ising state in the Hilbert space of L spin-1/2′s, with sl =
↑ or ↓ (for l = 1,2, · · · L).

C. Correlations

For the model Ĥ quite a few different correlation functions
can be exactly computed, or understood using the results
known for the XXZ chain. The simplest thing one can
compute is the static spin susceptibility, χs ∼ β

L
{〈(∑l σ

z
l )2〉 −

〈∑l σ
z
l 〉2}, where β = 1/kBT is the inverse temperature.

Consider 〈∑l σ
z
l 〉 = tr{ρ̂ ∑

l σ
z
l }, where ρ̂ is the equilibrium

thermal density matrix, e−βĤ /Z, for Ĥ . For the decoupled
Hamiltonian U†Ĥ U , the thermal density matrix is U†ρ̂ U =
1

2L I ⊗ ρ̂o, where I is the 2L-dimensional identity matrix for
the spin subsystem and ρ̂o is the thermal density matrix
for the XXZ orbitals. Since

∑
l σ

z
l is invariant under U ,

the expectation 〈∑l σ
z〉 = 1

2L trs{
∑

l σ
z} = 0, as it ought to

be for a paramagnet. Moreover, 〈(∑l σ
z)2〉 = L. Therefore,

χs ∼ 1/kBT . Here, trs denotes the trace over spins only.
Similarly, tro is the trace over orbitals, and tr = trs tro.

For the orbital pseudospins, the longitudinal susceptibil-
ity, χo ∼ β

L
{〈(∑l τ

z
l )2〉 − 〈∑l τ

z
l 〉2}, can also be calculated

from the decoupled problem because the τ z
l operators are

invariant under U . The XXZ Heisenberg chain has a very
rich mathematical literature from which we can gladly quote
the results for χo. For the isotropic XXX orbital case, χo ∼
1 + 1

2 ln (T0/T ) for small temperatures.31 In the anisotropic case,
for 2Jz/J⊥ > 1, the orbital excitations are gapped. Therefore,
χo will exhibit exponential behavior at low temperatures.
However, for 2Jz/J⊥ < 1 when the excitations are gapless,
through the Bethe ansatz and field-theory treatment, it has been
shown that χo ∼ θ

π(π−θ) sin θ
+ cT ζ , at low temperatures. Here,

θ = cos−1 (2Jz/J⊥), and c is some constant. The exponent
ζ = 4θ

π−θ
for θ < π

3 , and equal to 2 otherwise.31 For the
corrections arising due to the open boundary condition, one
may see Ref. 29 and the references therein.

Next we discuss the two-point orbital correlation function,
Czz

o (r) = 〈τ z
l τ z

l+r〉 = tr{ρ̂τ z
l τ z

l+r}. The invariance of τ z
l oper-

ators under U implies Czz
o (r) = tro{ρ̂oτ

z
l τ z

l+r}. The zz orbital
correlation is thus exactly the same as in the corresponding
XXZ problem. For example, in the ground state of Ĥ⊥, it is
Czz

o (r) = −[ 2
π r

]2 for odd integer values of r and 0 for even
r .26 For the full problem with nonzero Jz, it has been a terribly
hard job to find amicable analytic forms of the correlation
functions, but using field theoretic techniques, the asymptotic
behavior has been predicted to be Czz

o (r) ∼ (−1)|r|
√

ln |r|/|r|
for the isotropic XXX case. Unlike the zz correlation function,
the computation of xx and yy orbital correlations does not
simplify here, because τ x

l and τ
y

l operators are not invariant
under U .

The presence of an external magnetic field, −h
∑

l σ
z,

however, simplifies the computation of some ground state
correlations by selecting the fully polarized spin state. For
h > 0, the ground state wave function is |ψg〉 = U |↑ ↑
. . . ↑〉s ⊗ |XXZ〉o = |↑ ↑ . . . ↑〉s ⊗ |XXZ〉, where |↑ ↑ . . . ↑
〉s and |XXZ〉o denote the fully polarized spin state and the
XXZ orbital ground state, respectively. Note that the U acts
like an identity operator on the fully polarized spin state.
Therefore, the spin-spin correlation in this case is trivial, as all
the spins are pointing in the same direction. One also knows
the xx and yy orbital correlations in some cases. For example,
in the ground state of Ĥ⊥ (with h �= 0), 〈ψg|τ x

l τ x
l+r |ψg〉 =

〈ψg|τ y

l τ
y

l+r |ψg〉 ∼ (−1)|r|/
√|r|, as known for the XY chain in

the limit of large r .32 Surely, one can quote more results for
various calculable objects, as the literature for the XXZ model
is vast. But we stop it here. Next, we discuss a generalization
of the Ĥ for arbitrary orbital pseudospins. Moreover, we also
relook at our model problem in the light of Sr2CuO3.
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III. MISCELLANEOUS REMARKS

A. Generalization for orbital pseudospin �1/2

Here, we present a case of spin-orbital separation in systems
with more than two orbitals per site. The idea is to demonstrate
that, in principle, this phenomenon can also occur when the
orbital pseudospin quantum number T is greater than 1/2. As
an example, consider the model

ĤT =
∑

l

[
JzT̂

z
l T̂ z

l+1 + J⊥
(
T̂ +2T

l X̂l,l+1T̂
−2T
l+1 + H.c.

)]
,

for an arbitrary T . Here, T̂ z
l and T̂ ±

l are the angular
momentum operators representing the orbital pseudospin on
the lth site, and T̂ ±2T

l = (T̂ ±
l )2T . We find that ĤT also

exhibits complete spin-orbital decoupling under the unitary
transformation UT = ∏L−1

l=1 UT (l,l + 1), where UT (l,l + 1) =
P̂ −T

l+1 + (1 − P̂ −T
l+1 )X̂l+1,l is a generalization of Eq. (5). Here,

P̂ −T
l = |−T 〉l〈−T |l is the projector for the lowest eigen-

state of T̂ z
l . We can show that U†

T ĤTUT = ∑
l[JzT̂

z
l T̂ z

l+1 +
J⊥(T̂ +2T

l T̂ −2T
l+1 + H.c.)], similar to the Ĥ . Likewise, it is also

valid for the more general forms of ĤT , as T̂ z
l operators

and
∑

l �σl are invariant under UT . We can also generalize by
allowing for the X̂l,l+1’s to be unitary (and not only Hermitian)
operators, and still have the spin-orbital decoupling by the
same method.14

B. Discussion in relation to Sr2CuO3

The Sr2CuO3 is a quasi-1D spin-1/2 Heisenberg antiferro-
magnet, wherein the hole in the 3d9 configuration of each
Cu2+ ion resides in the dx2−y2 orbital. Moreover, it has a
large energy gap to the orbital excitations (∼2.5 eV from
dx2−y2 to dxz). Therefore, it is also a system with ferro-orbital
order. Very recently, the Sr2CuO3 has been reported to show
spin-orbital separation.6 Given that we also have a model
exhibiting spin-orbital separation, it would be interesting to
draw some connections between our model and Sr2CuO3 in
the phenomenological spirit. Of course, it is not to suggest that
ours is a microscopically derived model for this material.

As the dxz orbital excitation in Sr2CuO3 happens to be
most dispersive of them all, we focus on dx2−y2 and dxz

as the basis for the two-level orbital pseudospin. Since the
two orbitals are separated by a large (crystal field) energy
η that selects the ferro-orbital state, it requires us to have
the term η

2

∑
l τ

z
l in the Hamiltonian. For the spin part, we

take nearest-neighbor antiferromagnetic exchange interaction.
We model the coupling between spins and orbitals by Ĥ⊥
of Eq. (3), a personally favored spin-orbital-separable choice.
Thus, a minimal phenomenological model relevant to Sr2CuO3

could be

Ĥ⊥ + J

4

∑
l

�σl · �σl+1 + η

2

∑
l

τ z
l , (8)

with J ∼ 0.25 eV and η ∼ 2.5 eV. The J⊥ can be estimated
from the orbiton energies (bandwidth ∼0.2 eV). Here, we
may also include the term Jz

∑
l τ

z
l τ z

l+1, but it doesn’t seem
necessary.

Notably, the J term here presents a “formal” difficulty to
rigorous spin-orbital separation, as it is not invariant under

U . But the above model has in it the basic features of
Sr2CuO3. For a strong positive η, the exact ground state of
this model is obviously ferro-orbital, and it is described by
the antiferromagnetic Heisenberg model for the spin part, as
is the case for Sr2CuO3. It can also be checked that, through
Ĥ⊥, an excited state created by a local orbital “flip” in an
antiferromagnetic spin background evolves into separately
dispersing orbitons and spinons [as sketched in Fig. 1(a) of
Ref. 6]. This looks the same as discussed recently in the
SU(4) model in an orbital field (using a different approach
than ours),33 and was used to describe Sr2CuO3. Hence,
it appears that the model of Eq. (8) could likewise be
useful.

This discussion further motivates us to write down models
which have antiferromagnetic spin ground states and show
exact spin-orbital separation under U . To do this, we replace∑

l �σl · �σl+1 in Eq. (8) by (
∑

l �σl)2, or by P̂ −
o

∑
l �σl · �σl+1P̂

−
o ,

where P̂ −
o = ∏

l(1 − τ z
l )/2 is a ferro-orbital projector. Since

U does not affect these new terms, the two cases show exact
spin-orbital separation under U , while their ground states are
spin singlets.

IV. SUMMARY

We have found a solvable 1D spin-orbital model Ĥ [of
Eq. (2)]. It shows exact spin-orbital separation under the
unitary transformation U , which systematically rids the Ĥ

of the spins that are coupled to the orbital fluctuations. The
transformed problem has free spins and the XXZ model for
orbitals. While the obvious symmetry, SU(2) × U(1), of Ĥ

implies the conservation of
∑

l �σl and
∑

l τ
z
l only, in actuality

all the spins that vanish from Ĥ under U are conserved.
This fact and the integrability of the XXZ chain imply
that we have a complete knowledge of all the conserved
quantities of Ĥ . We have also presented a generalization of
Ĥ for the orbital pseudospins >1/2, exhibiting spin-orbital
separation.

In view of the recent experimental observations of spin-
orbital separation in Sr2CuO3, we have briefly remarked on the
scope of our model in relation to Sr2CuO3. While we seem to
have the minimal ingredients [as in Eq. (8)] required to discuss
spin-orbital separation in Sr2CuO3, a proper comparison needs
explicit calculations.

A point of further study in our models would be to
understand the nature of spin-orbital entanglement.34 Since
the spins and orbitals completely decouple here (in the U-
transformed basis), one might think of it as having no spin-
orbital entanglement. But remember that U is a very nonlocal
transformation. Therefore, in the original basis, the different
eigenstates of Ĥ may actually have nonzero entanglement up
to different degrees. After all, in general, the entanglement is
not invariant under the unitary rotations of the full system. We
will discuss this in detail elsewhere.

ACKNOWLEDGMENTS

The author thanks Frederic Mila for useful comments and
encouragement. The partial financial support from the DST-
PURSE is gratefully acknowledged.

195105-4



EXACT SPIN-ORBITAL SEPARATION IN A SOLVABLE . . . PHYSICAL REVIEW B 87, 195105 (2013)

*bkumar@mail.jnu.ac.in
1K. I. Kugel and D. I. Khomskii, Sov. Phys. JETP 37, 725 (1973).
2C. Castellani, C. R. Natoli, and J. Ranninger, Phys. Rev. B 18, 4945
(1978).

3J. C. T. Lee, S. Yuan, S. Lal, Y. I. Joe, Y. Gan, S. Smadici,
K. Finkelstein, Y. Feng, A. Rusydi, P. M. Goldbart, S. L. Cooper,
and P. Abbamonte, Nat. Phys. 8, 63 (2012).

4M. V. Mostovoy and D. I. Khomskii, Phys. Rev. Lett. 92, 167201
(2004).

5F. Vernay, K. Penc, P. Fazekas, and F. Mila, Phys. Rev. B 70, 014428
(2004).

6J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W.
Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto,
S. Singh, A. Revcolevschi, J.-S. Caux, L. Patthey, H. M. Rønnow,
J. van den Brink, and T. Schmitt, Nature (London) 485, 82 (2012).

7L. F. Feiner, A. M. Oleś, and J. Zaanen, Phys. Rev. Lett. 78, 2799
(1997).

8V. Subrahmanyam, Phys. Rev. B 52, 1133 (1995).
9M. Ferrero, F. Becca, and F. Mila, Phys. Rev. B 68, 214431 (2003).

10D. Sa and C. Gros, Eur. Phys. J. B 18, 421 (2000).
11V. Subrahmanyam, Phys. Rev. B 50, 16109 (1994).
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