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Dynamical phase transitions after quenches in nonintegrable models
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We investigate the dynamics following sudden quenches across quantum critical points belonging to different
universality classes. Specifically, we use matrix product state methods to study the quantum Ising chain in the
presence of two additional terms which break integrability. We find that in all models the rate function for the
return probability to the initial state becomes a nonanalytic function of time in the thermodynamic limit. This
so-called “dynamical phase transition” was first observed in a recent work by Heyl, Polkovnikov, and Kehrein
[Phys. Rev. Lett. 110, 135704 (2013)] for the exactly-solvable quantum Ising chain, which can be mapped to
free fermions. Our results for “interacting theories” indicate that nonanalytic dynamics is a generic feature of
sudden quenches across quantum critical points. We discuss potential connections to the dynamics of the order
parameter.
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I. INTRODUCTION

One of the central quantities in statistical mechanics1,2 is
the canonical partition function

Z(β) = Tr(e−βH ) = e−βLf (β), (1)

where β is the inverse temperature, L denotes the system size,
and f (β) is the free energy density. A phase transition at a
temperature βc is defined as a nonanalytic point of the free
energy density. For real temperatures and finite systems the
partition function (1) is analytic, thus precluding the existence
of a phase transition. In the thermodynamic limit, however,
the free energy density may possess singularities. One way
to characterize phase transitions was proposed by Yang and
Lee.3 The starting point1,4 is the observation that the partition
function will have zeros in the complex β plane. For a finite
system these zeros are isolated and do not lie on the real
axis. For L → ∞, however, the zeros may coalesce into lines
which can cut the real axis at the critical temperature βc. This
picture was established in detail for the two-dimensional Ising
model1,5 as well as related systems.

Recently, Heyl et al.6 pointed out the formal similarity
between the partition function (1) and the return amplitude

G(t) = 〈�0|e−iHt |�0〉. (2)

For a quantum quench G(t) is the Loschmidt amplitude,9 i.e.,
the overlap of the initial state |�0〉 with its time evolution
e−iHt |�0〉 under the post-quench Hamiltonian H . Specifically,
Heyl et al. studied the analytic properties of the boundary
partition function

Z(z) = 〈�0|e−zH |�0〉 (3)

as a function of z ∈ C and established close analogies with
equilibrium phase transitions in statistical mechanics that we
outlined above. For real z = R, Eq. (3) can be interpreted2,7 as
the partition function of a system of length R with boundary
conditions described by the boundary state |�0〉; for z = it
one recovers the return amplitude of Eq. (2).

Heyl et al.6 specifically investigated the prototypical quan-
tum Ising chain which exhibits a quantum phase transition8

between ferromagnetic and paramagnetic ground states. The
Ising chain can be mapped to a model of free fermions and
thus allows an exact evaluation of the boundary partition
function.7,9 If |�0〉 and H are associated with the same phase,
the lines of zeros of Eq. (3) do not intersect the imaginary axis,
while for a quench across the quantum phase transition zeros
with z = it exist. The vanishing overlap of the time-evolved
and the initial state translates into nonanalyticities of the
rate function for the return probability Ll(t) = − ln |G(t)|2
and can thus be viewed as a dynamical phase transition.6

Similar to its thermal counterpart, the nonanalyticities in
time only appear in the thermodynamic limit. They lead
to a breakdown of short-time expansions analogous to the
breakdown of high-temperature expansions in the vicinity of
thermal critical points.10 The characteristic times at which the
nonanalyticities in the rate functions for the return amplitude
and probability occur were also observed in the dynamics of
the order parameter.6,11

In this paper we address the following question: Is a
dynamical phase transition a generic feature of quantum
quenches across quantum critical points? According to our
numerical results, the answer is clearly yes. From the study of
the quantum Ising chain this is not a priori clear, as the Ising
chain can be mapped to an integrable model of free fermions
whose dynamics might be special.

To be more precise, we use the time-dependent
density-matrix renormalization group (DMRG) to investigate
quenches in the quantum Ising chain (where the comparison
with the exact solution allows us to test our numerics), the
transverse axial next-nearest-neighbor Ising (ANNNI) model
(which corresponds to the Ising model complemented by ad-
ditional next-nearest neighbor interactions), and a generalized
quantum Ising chain in a tilted magnetic field. While the
quantum critical points in the first two models are of Ising type,
in the latter model it belongs to a different universality class.
Furthermore, the ANNNI model as well as the generalized
Ising chain cannot be mapped to a noninteracting theory and
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are, to the best of our knowledge, not integrable. In all three
models we consistently observe that when quenching across
the quantum critical point the rate function for the return
probability shows nonanalyticities at critical times t∗n , while
for quenches within the same phase the time evolution of the
rate function is completely smooth. Our results for “interacting
theories” thus indicate that nonanalytic dynamics is a generic
feature of quenches across critical points independently of
their universality class. We also discuss potential connections
to the dynamics of the order parameter.

This exposition is organized as follows: In Sec. II we first
review the results of Ref. 6 for the quantum Ising chain. We
test our DMRG numerics against the exact solution and present
new data for a quench starting out of a spin-polarized ground
state. In Sec. III we discuss DMRG results for the ANNNI
model. The behavior of the return amplitude is very similar
to the quantum Ising chain—we observe nonanalyticities even
if the model is strongly nonintegrable. In Sec. IV we study
a generalized quantum Ising chain whose quantum phase
transition does not belong to the Ising universality class. For
this model we also find nonanalytic behavior of the return
amplitude, although for certain parameters the nonanalyticity
may appear only at late times. We summarize our results in
Sec. V. Technical details including the implementation of the
DMRG calculations are elaborated on in the Appendix.

II. QUANTUM ISING CHAIN

We begin our study with the quantum Ising chain

HIsing = −J
∑

i

(
σ z

i σ z
i+1 + gσx

i

)
, (4)

where we assume J > 0 and g � 0. The model exhibits
a quantum phase transition8 at gc = 1, which separates a
ferromagnetic (FM) phase for g < gc from a paramagnetic
(PM) phase for g > gc. In the FM the system possesses two
degenerate ground states |±〉 with 〈σ z

i 〉 �= 0, while the PM
ground state with 〈σ z

i 〉 = 0 is unique. Close to the quantum
critical point g = gc the correlation length ξ diverges as
ξ ∼ |g − gc|−ν with ν = 1. Quenches across this quantum
phase transition have been studied by various authors.9,11–13

In particular, Heyl et al.6 investigated the analytic properties
of the boundary partition function (3) and showed that its lines
of zeros cut the imaginary time axis z = it for quenches across
the quantum phase transition, giving rise to a dynamical phase
transition at a critical time t∗/2 [see Eq. (12) below].

It is well known that the quantum Ising chain can be
mapped to a model of noninteracting fermions via a Jordan-
Wigner transformation (see e.g. Ref. 11), and is thus certainly
integrable.14 In the fermionic language, the Hamiltonian can
be easily diagonalized:

HIsing =
∑

k

εg(k) α
†
kαk, (5)

where

εg(k) = 2J
√

(g − cos k)2 + sin2 k, (6)

and α
†
k and αk are fermionic creation and annihilation op-

erators. The fermions fulfill either antiperiodic or periodic
boundary conditions, usually referred to as Neveu-Schwarz

(NS) or Ramond (R) sectors, respectively. The momenta k

are correspondingly quantized as either half-integer or integer
multiples of 2π/L. Clearly, at g = gc = 1 the dispersion
in Eq. (6) becomes gapless, indicating the existence of the
quantum phase transition. We note that the mapping from the
spin model (4) to the fermionic model (5) involves a nonlocal
transformation of the spin operators, which leads to subtleties
for quenches originating in the FM (see below).

The quench protocol in the Ising model is implemented
by suddenly switching the transverse field from its initial
value g = g0 to its final value g = g1. The boundary partition
function for the equivalent quench in the fermionic model
can be calculated explicitly6,9 and, up to a constant, in the
thermodynamic limit reads

Z(z) = exp[−Lf (z)], (7)

with

f (z) = −
∫ π

0

dk

2π
ln[cos2 φk + sin2 φk e−2zεg1 (k)], (8)

where φk = θg0 (k) − θg1 (k) and θg(k) = arctan[sin k/(g −
cos k)]/2 ∈ [0,π/2]. We stress that Eq. (7) only applies to
quenches starting from the unique ground state of the fermionic
model, which lies in the NS sector for any finite system. In
the PM phase of the Ising model this state corresponds to the
unique ground state, while in the FM phase it corresponds to
a superposition of the degenerate ground states |±〉.11 Hence,
quenches originating in one of the spin-polarized states |±〉
are not described by Eq. (8).

The zeros of Eq. (7) are located along the lines6

zn(k) = 1

2εg1 (k)
[ln(tan2 φk) + iπ (2n + 1)], n ∈ Z, (9)

where the argument of the logarithm in Eq. (8) vanishes. For
quenches across the quantum critical point these lines of zeros
cross the imaginary time axis, that is there exist zeros with
Re zn(k∗) = 0 for k∗ = arccos[(1 + g0g1)/(g0 + g1)]. This
leads to a nonanalyticity in the rate function for the return
probability

l(t) = − 1

L
ln |G(t)|2 = 2 Re f (it) (10)

at the times

t∗n = Im zn(k∗) = t∗
(

n + 1

2

)
, (11)

with

t∗ = π

εg1 (k∗)
= π

2J

√
g0 + g1

(g0 − g1)
(
1 − g2

1

) . (12)

We note that either g0 < 1 and g1 > 1 or vice versa. Equa-
tion (12) represents a new time scale generated by the quench.
Equation (12) remains finite in the vicinity of the quantum
critical point, where the system can be described2 in terms of
massive Majorana fields (see Appendix A). This time scale
was also observed6,11 as an oscillation frequency in the time
evolution of the order parameter 〈σ z

i 〉 for quenches from the
FM to the PM when starting in one of the polarized states
|±〉. After this brief review we turn now to our DMRG
calculations for quenches across the quantum critical point
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FIG. 1. (Color online) Rate function l(t) defined in Eq. (10) for a
quench from the PM to the FM phase in the Ising model of Eq. (4). l(t)
characterizes the overlap with the initial state in the thermodynamic
limit. The DMRG data agree well with the analytic result obtained
by mapping the model to free fermions [Eq. (5); see also Ref. 6]. The
rate function shows nonanalytic behavior at the times t∗

n indicated by
the vertical dashed lines [Eq. (11)].

and show how the results discussed above can be recovered
using this approach.

A. DMRG results: Quench PM to FM

In this section we discuss time-dependent DMRG data
for quenches across the quantum critical point in the Ising
model (4). We start with the simpler quench from the PM to
the FM and discuss the more subtle quench from the FM to the
PM in the next subsection. Unless stated otherwise, all DMRG
calculations were carried out directly in the thermodynamic
limit L → ∞ using an infinite-system algorithm. Details of
the numerical implementation can be found in Appendix B.

As discussed above, the ground state in the PM phase of the
Ising model corresponds to the ground state of the fermionic
model (5). Thus, Eq. (8) is applicable, and the rate function (10)

can be directly obtained. The comparison to the DMRG data
is shown in Fig. 1; the agreement is good. In particular, we
observe nonanalyticities at the times t∗n defined in Eq. (11). In
contrast, for quenches within one phase the rate function is a
smooth function without features at the times t∗n [we show an
example for this behavior for the ANNNI model in Fig. 4(b)].

Further insight can be gained by considering the quench
from g0 = ∞ to g1 = 0. For this quench the initial state is
simply given by |→→ . . . →〉 where |→〉 = (|↑〉 + |↓〉)/√2,
while the time evolution is governed by the classical Hamilto-
nian H = −J

∑
i σ

z
i σ z

i+1. Since all terms in H commute, the
rate function of Eq. (10) can be easily calculated and is given
by (if L is divisible by four)

lx(t) = − 2

L
ln[cosL(J t) + sinL(J t)]. (13)

This function has maxima at t = t∗n with t∗ = π/(2J ), at which
it becomes nonanalytic in the thermodynamic limit L → ∞.
Thus we explicitly see that the thermodynamic limit is essential
for the appearance of dynamical phase transitions.

B. DMRG results: Quench FM to PM

As a next step we consider a quench originating in the
FM phase. We assume that the system is prepared in the
state |+〉 with 〈σ z

i 〉 > 0 and subsequently quench to the PM
phase with g1 > 1. The corresponding rate function is shown
in Fig. 2(a). We clearly observe nonanalyticities. However, l(t)
cannot be described using the analytic result of Eq. (8), and
the nonanalyticities no longer occur at the times t∗n . This can
be attributed to the fact that the state |+〉 does not correspond
to the ground state of the fermionic model (5); hence, Eq. (8)
is not applicable.

One can gain some analytic understanding by considering
the simple (but instructive) quench from g0 = 0 to g1 = ∞,
where the time evolution after the quench is governed by the
trivial Hamiltonian H ′ = −Jg1

∑
i σ

x
i (see also supplemen-

tary material to Ref. 6). The initial state for g0 = 0 is given by
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FIG. 2. (Color online) The same as in Fig. 1 but for quenches from the FM to the PM phase in the Ising model. In the thermodynamic limit,
the ground state |±〉 within the FM phase is two-fold degenerate. (a) Quench performed starting from the polarized state |+〉. The rate function
shows nonanalytic behavior which, however, does not occur at the times t∗

n defined in Eq. (11). Inset: Time evolution of the order parameter
〈σ z

i (t)〉, which at sufficiently late times oscillates with the frequency 2t∗. (b) Quench starting from the mixed state |NS〉 = (|+〉 − |−〉)/√2.
The DMRG data agree well with the analytic result obtained for the corresponding quench in the fermionic model6 of Eq. (5). The rate function
shows nonanalytic behavior at the times t∗

n . Inset: Comparison of the rate functions starting from the mixed and polarized states |NS〉 and |+〉,
respectively.
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|+〉 = |↑↑ . . . ↑〉, and a straightforward calculation yields

l+(t) = −2 ln | cos(Jg1t)|. (14)

Thus, nonanalyticities occur at the times t̃n = 2t∗(n + 1/2),
t∗ = π/(2Jg1), which differ from the times t∗m for all m,n.
Since the spins in H ′ do not interact at all, the rate function
is perfectly periodic and does not decay. For general quenches
starting from a spin-polarized state, such a periodicity cannot
be observed [see Fig. 2(a)]. Another consequence of the
decoupled time evolution of individual spins is that the
nonanalytic behavior shows up also in finite systems. In
contrast, for quenches to g1 < ∞ the time evolution is no
longer trivial and l+(t) becomes smooth for finite systems.

The inset to Fig. 2(a) shows the time evolution of the order
parameter 〈σ z

i (t)〉. As reported previously,6,11 at sufficiently
late times we observe oscillations with the frequency 2t∗.
For the simple quench discussed above we specifically obtain
〈σ z

i (t)〉 = cos(2Jg1t). We note, however, that in the general
case the relation between the times of nonanalytic behavior
in the rate function and the oscillation frequency of the order
parameter is unclear (see the discussion for the ANNNI model
below).

In order to make contact to the analytic result of Eq. (8) also
for quenches starting in the FM phase, we note that the ground
state of the fermionic model (5) corresponds to a superposition
of the FM ground states11 |NS〉 = (|+〉 − |−〉)/√2. DMRG
data for a quench starting from this state is shown in Fig. 2(b);
the agreement with the analytic result is again good. In
particular, the rate function possesses nonanalyticities at the
times t∗n . As the initial state is an equal superposition of |+〉
and |−〉, the order parameter 〈σ z

i (t)〉 vanishes identically at all
times.

In the inset to Fig. 2(b) we compare the rate functions
for quenches starting from the polarized state |+〉 and the
mixed state |NS〉. We observe that for half of the time the
rate functions are identical. This can again be understood
by considering the simple quench from g0 = 0 to g1 = ∞
introduced above. One finds that (if L is divisible by four)

lNS(t) = − 2

L
ln[cosL(Jg1t) + sinL(Jg1t)]. (15)

For large systems this shows a switching behavior6 depending
on whether the first or the second term in the argument of the
logarithm dominates, in complete analogy with the DMRG
data for generic quenches from the FM to the PM. The
nonanalyticities of Eq. (15) follow in analogy to the ones of
lx(t) at t = t∗n with t∗ = π/(2Jg1).

With this we conclude our analysis of quenches in the Ising
model. In the remainder of this paper we address the question
of whether or not nonanalytic behavior in the rate function
for the return probability can be observed for quenches
across quantum critical points in other models. We begin by
considering the ANNNI model in the following section.

III. ANNNI MODEL

As second model we investigate the transverse axial
next-nearest-neighbor Ising (ANNNI) model15 defined by the
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FIG. 3. (Color online) Sketch of the phase diagram15,16 of the
ANNNI model defined in Eq. (16) as a function of � and g. There
are four phases: a paramagnetic (PM) phase, a ferromagnetic (FM)
phase, an anti phase (AP), and a floating phase (FP). The PM and FM
phases are separated by an Ising transition located at gc(�) defined in
Eq. (17). We study quenches across the Ising transition as indicated
by the solid arrow [see Fig. 4(a)], the dashed arrow [see Fig. 4(b)],
and the dashed-dotted arrow (see Fig. 5).

Hamiltonian:

HANNNI = −J
∑

i

[
σ z

i σ z
i+1 + �σz

i σ z
i+2 + gσx

i

]
. (16)

Again we assume J > 0 and g � 0, while � can be positive or
negative. Obviously, for � = 0 we recover the quantum Ising
chain of Eq. (4). We note that Eq. (16) is invariant under g →
−g due to the transformation σ

x,z
i → −σ

x,z
i . Using a Jordan-

Wigner transformation, the ANNNI model can be mapped to a
model of interacting fermions. To the best of our knowledge,
the resulting system is not integrable and does not allow an
exact solution like the quantum Ising chain.

The phase diagram of the ANNNI model contains four
phases (see Fig. 3):15,16 A paramagnetic phase (PM) with a
unique ground state satisfying 〈σ z

i 〉 = 0; a ferromagnetic phase
(FM) with doubly degenerate ground state with 〈σ z

i 〉 �= 0; an
“antiphase” (AP) that schematically looks like ↑↑↓↓↑↑↓↓;
and a “floating phase” (FP) between the PM and the AP. The
phase transition between the PM and the FM is in the Ising
universality class with ν = 1. For � < 0 it is located at

1 + 2� = gc + �g2
c

2(1 + �)
. (17)

We will restrict ourselves to quenches across this phase
transition in the following (see the arrows in Fig. 3).

We first concentrate on quenches from the PM to the
FM phase. Figure 4(a) illustrates the effect of successively
switching on the “interaction” � for a quench analogous to
the one shown in Fig. 1 (it corresponds to the solid arrow
in Fig. 3). The existence of nonanalyticities is stable against
interactions �. Increasing the interaction strength � leads
to a decrease of the time scale t∗, however, there seems to
be no simple quantitative relation. Furthermore, the critical
times t∗n do not show any periodicity, i.e., it is not possible to
write t∗n = t∗(�)(n + 1/2) with some interaction dependent
time scale t∗(�) replacing Eq. (12). We have furthermore
investigated an interaction quench with fixed g0 = g1 = 1.3
and �0 = 0, �1 > 0 (depicted by the dashed arrow in Fig. 3).
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FIG. 4. (Color online) Rate function for a quench from the PM to the FM phase of the quantum Ising model in the presence of integrability-
breaking next-nearest-neighbor interactions [the so-called ANNNI model; see Eq. (16)]. (a) Quench in the transverse field g (indicated by the
solid arrow in the phase diagram shown in Fig. 3). (b) Quench in the next-nearest-neighbor interaction � (dashed arrow in Fig. 3). In complete
analogy with the integrable “noninteracting” Ising chain (� = 0), the rate function exhibits nonanalytic behavior as a function of time in the
thermodynamic limit if one quenches across a critical point [note that the curve in (b) for �1 = 0.2 corresponds to a quench within the PM
phase].

The results are shown in Fig. 4(b). For �1 = 0.2, one does not
leave the PM phase, and the rate function is a smooth function
of time. In contrast, for �1 = 0.6 and �1 = 1 one enters the
FM phase and l(t) becomes nonanalytic as expected. Note that
the model is strongly nonintegrable for those parameters.

Figure 5 shows DMRG data for the opposite quench from a
polarized FM ground state to the PM phase (dashed-dotted
arrow in Fig. 3). The appearance of kinks is again stable
against interactions � �= 0. Even for the quantum Ising chain
the kinks do not occur periodically if one starts from a spin-
polarized state; this behavior becomes more pronounced for
� �= 0. In particular, the evolution between the kinks becomes
highly nontrivial including smooth maxima and inflection
points, suggesting that for such details interaction effects
become important, and a simple picture based on the time
evolution under a trivial Hamiltonian like H ′ is not sufficient
to describe the dynamics. The order parameter, however, still
oscillates periodically at sufficiently late times (see the inset to
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FIG. 5. (Color online) The same as in Fig. 4 but for a quench from
the polarized ground state of the FM phase to the PM phase (dashed-
dotted arrow in Fig. 3). The rate function consistently features
nonanalyticities. Inset: The order parameter oscillates periodically
at sufficiently late times, but the precise connection of its dynamics
to l(t) remains elusive.

Fig. 5). A straightforward connection between order-parameter
dynamics and the appearance of nonanalyticities in the rate
function for the return probability thus remains elusive.

As was pointed out in Ref. 6, the nonanalytic behavior of the
rate function of Eq. (10) affects the work distribution function
of a double quench experiment where one quenches from H0

to H at the time t = 0 and, at a later time t , back to H0. The
performed work W possesses the distribution function

P (W,t) =
∑

n

|〈n|e−iHt |�0〉|2 δ(W − En + E0), (18)

where |n〉 denote a complete set of eigenstates of the initial
Hamiltonian H0 with energies En. For the work distribution
function one can introduce a rate function r(w,t) via

P (W,t) = e−Lr(w,t), (19)

with the work density w = W/L. Obviously, for vanishing
performed work this is identical to the rate function of the
return probability, r(w = 0,t) = l(t); the nonanalytic behavior
of l(t) hence manifests in the work distribution function.
For the quantum Ising chain it was shown6 that these
nonanalyticities at w = 0 also dominate the behavior of r(w,t)
at finite w > 0, thus making the dynamical phase transition
observable in a measurable quantity like the performed work.
Given the close similarities of the rate functions l(t) of the
quantum Ising chain and the interacting ANNNI model we
expect that the dynamical phase transition will also lead to
observable effects on the work distribution function in the
latter model.

Our results for the ANNNI model show that the appearance
of a dynamical phase transition proposed in Ref. 6 is not an
artefact of the quantum Ising chain: The nonanalyticities in the
time evolution of the rate function for the return probability
are stable against integrability-breaking interactions.

IV. ISING MODEL IN A TILTED FIELD

As last example we consider a generalized Ising chain
in a tilted magnetic field.12,17 Specifically, we use the
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FIG. 6. (Color online) Rate function for quenches within the generalized Ising model defined in Eq. (20). The model is critical at g = 1
for all φ � 0. For φ > 0, the model has a unique ground state for any g, is not integrable, and the quantum critical point is no longer in the
Ising universality class. One consistently observes nonanalyticities in the time evolution; they occur periodically only at φ = 0. We note that
for large angles φ the nonanalyticities appear at rather late times (see the inset) while the behavior for short times is absolutely smooth.

parametrization

HgI = −J
∑

i

[
σ z

i σ z
i+1 + σx

i + (g − 1)
(
cos φ σx

i + sin φ σz
i

)]
,

(20)

where J > 0, g � 0, and 0 � |φ| � π/2. For φ = 0 we
recover the quantum Ising chain (4). Eq. (20) exhibits a
quantum phase transition at g = 1. For any finite angle φ

the ground state is unique and, to the best of our knowledge,
the model is not integrable. The transition at g = 1 is not
in the Ising universality class; instead, the correlation length
ξ diverges with the exponent ν = 8/15. The application of
a Jordan-Wigner transformation to the magnetic field term
(g − 1) sin φ σz

i yields a nonlocal string of fermions. Thus, an
analysis of Eq. (20) in terms of fermionic degrees of freedom
is not possible.

DMRG results for quenches at fixed φ0 = φ1 = φ from
g0 > 1 to g1 < 1 (which in the limit φ → 0 corresponds
to quenches from the PM to the FM phase) and vice versa
(polarized FM state to the PM phase) are shown in Fig. 6. The
rate function features nonanalyticities for arbitrarily large φ.
As for the ANNNI model, these nonanalyticities do not occur
periodically and can potentially be shifted to rather late times.
This is particularly striking at φ = π/8 in Fig. 6(a) (note the
inset) and not an isolated incident (see φ = π/12): the time
where the first nonanalyticity occurs seesms to depend on φ in
a highly nontrivial way.

The dynamics of the generalized Ising model was also
investigated by Pollmann et al.12 who studied a finite-velocity
sweep across the quantum critical point instead of a sudden
quench that we focus on. For the continuous sweep a noninte-
grable perturbation φ �= 0 was found to lead to a broadening
of the kinks. A better understanding of the difference between
sudden and slow continuous quenches will be the topic of
future investigations.

Our results for the generalized Ising model, which is
nonintegrable and possesses a quantum phase transtition which
is not in the Ising universality class, again indicate that the
appearance of a dynamical phase transition is a generic feature
of sudden quenches across quantum critical points.

V. CONCLUSIONS

In this work we investigated sudden quenches across a
quantum critical point of one-dimensional spin models using
the time-dependent density matrix renormalization group. We
specifically studied the quantum Ising model in presence of
two terms which break integrability (next-nearest-neighbor
interactions and a tilted magnetic field) and showed that
in the thermodynamic limit the rate function for the return
probability Ll(t) = − ln | 〈�0| e−iHt |�0〉 |2 to the initial state
|�0〉 becomes a nonanalytic function of time. This breakdown
of short-time expansions is analogous to the failure of high-
temperature expansions of the partition function in the vicinity
of equilibrium critical points. It was thus termed “dynamical
phase transition” and investigated in detail for the integrable
(noninteracting) quantum Ising model in Ref. 6. The systems
studied in our paper are not equivalent to free theories and not
integrable. Thus, our results indicate that “dynamical phase
transitions” are a generic feature of sudden quenches across
quantum critical points. For quenches originating in an ordered
phase we studied the dynamics of the order parameter: it
oscillates periodically at sufficiently late times, but a precise
connection to the nonanalyticities in the return amplitude
remains elusive except for the quantum Ising chain.
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APPENDIX A: SCALING LIMIT IN THE ISING MODEL

For definiteness we assume a quench from the PM to the
FM phase, i.e., g0 > 1 and g1 < 1. In order to study the scaling
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limit of Eq. (12) we first introduce the masses

M0 = 2J (g0 − 1), M1 = 2J (1 − g1), (A1)

which are both positive. In terms of the masses the critical
time (12) reads

t∗ = π

√
4J + M0 − M1

(M0 + M1)M1(4J − M1)
. (A2)

Now taking the scaling limit J → ∞, g0,g1 → 1, and a → 0
(a is the lattice spacing previously set to one), while keeping
the masses and the velocity v = 2Ja fixed, we find

t∗ = π√
(M0 + M1)M1

. (A3)

The existence of this time scale can also be inferred from the
calculation of the boundary partition function Eq. (3) directly
in the Ising field theory. For a quench across the quantum
critical point the derivation requires the introduction18 of an
ultraviolet cutoff in the form of an “extrapolation time” as well
as the regularization of infinite-volume divergencies.7,19

We note that the time scale (A3) diverges as6 t∗ ∝ 1/
√

M1

if one takes the conformal limit of the system after the quench
M1 → 0 (i.e., one quenches to the quantum critical point),
while quenches away from the quantum critical point (M0 →
0) simply lead to the finite value t∗ = π/M1.

APPENDIX B: DMRG CALCULATIONS

We study the quench dynamics of the quantum Ising model
Eq. (4) and its nonintegrable generalizations Eqs. (16) and (20)
using a DMRG algorithm.20 The ground state of any one-
dimensional system can be expressed in terms of a matrix
product state (MPS),21

|�0〉 =
∑
σn

Aσ1Aσ2 · · · AσL |σ1σ2 . . . σL〉, (B1)

where |�σ 〉 denotes the local product basis characterized by σ z.
In the thermodynamic limit L → ∞ it is convenient to directly
work with a translationally-invariant state,22

|�0〉 =
∑

�σ
. . . (A[1]σj+1 A[2]σj+2 . . . A[N]σj+N )

× (A[1]σj+1+N A[2]σj+2+N . . . A[N]σj+2N ) . . . |�σ 〉. (B2)

The matrices A[1...N]σj are associated with a unit cell of size
N (e.g., N = 2 for the Ising model). We first determine the
ground state |�0〉 (corresponding to some initial parameters
g0, �0, φ0) by applying an imaginary time evolution
exp(−τH0) to a random state until the energy has converged
to ten relevant digits (since we are only considering
situations where H0 is gapped, this is very efficient; see
below). Thereafter, we carry out the real time evolution
exp(−iH1t)|�0〉 using a Hamiltonian H1 which features
different parameters g1, �1, φ1.

In order to implement the above procedure, we employ a
standard time-dependent DMRG algorithm.23 After factoriz-
ing the (real or imaginary) evolution operators exp(−cλH )
using second or fourth order Trotter decomposition, they can
be successively applied to Eqs. (B1) or (B2). At each step �λ,
singular value decompositions are carried out to update (some
of the) matrices A. We fix their dimension to a constant value χ

which constitutes our main numerical control parameter. The
ground state of a gapped system only features finite entangle-
ment and can thus be expressed exactly in terms of a MPS with
finite χ (we are always starting with a gapped H0). During
the real-time evolution using exp(−iH1t), the entanglement
increases (we have carried out a global quench). We work with
a fixed χ and for each parameters at hand perform multiple
simulations using successively increased χ (alternatively,
one could carry out the ground state search for a given χ

and thereafter fix the discarded weight during the real-time
evolution). It turns out that a fairly small χ < 100 is sufficient
to obtain results which are converged (w.r.t. increasing χ ) on
the time scales that we study. For the integrable Ising model,
we can explicitly demonstrate that our data are “numerically
exact” by comparing with the analytic solution [see Figs. 1
and 2(b)].

For a finite system described by Eq. (B1), the re-
turn amplitude per site can be computed straightfor-
wardly as the Lth root of the overlap between |�0〉 and
exp(−iH1t) |�0〉. The overlap per site of two infinite MPS
[described by matrices A and Ã in Eq. (B2)] is given by
the N th root of the dominant eigenvalue of the transfer
matrix:

T ({a1,ã1},{aN,ãN }) =
∑

σ1...σN

(A[1]σ1 . . . A[N]σN )∗a1,aN

× (Ã[1]σ1 . . . Ã[N]σN )ã1,ãN
. (B3)

A comparison between the results obtained by finite- and
infinite-system algorithms is shown in Fig. 7.
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is increased one successively approaches the result obtained directly
in the thermodynamic limit L = ∞ via an infinite-system DMRG
algorithm.22
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