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K matrix construction of symmetry-enriched phases of matter
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We construct in the K matrix formalism concrete examples of symmetry-enriched topological phases, namely
intrinsically topological phases with global symmetries. We focus on the Abelian and nonchiral topological
phases and demonstrate by our examples how the interplay between the global symmetry and the fusion algebra
of the anyons of a topologically ordered system determines the existence of gapless edge modes protected by the
symmetry and that a (quasi)group structure can be defined among these phases. Our examples include phases that
display charge fractionalization and more exotic nonlocal anyon exchange under global symmetry that correspond
to general group extensions of the global symmetry group.
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I. INTRODUCTION

The understanding of phases of matter has come a long
way beyond the Landau paradigm.1 Different phases of matter
cannot be simply classified by Landau’s symmetry breaking
and a corresponding order parameter. In the case of phases
involving short-range entanglement (SRE), it is now realized
that for a given preserved global symmetry Gs , they could be
subdivided into many different phases that cannot be connected
by any local, unitary transformation without breaking the sym-
metry. These phases, called symmetry-protected topological
(SPT) phases, turn out to be classified by group cohomology
H 2[Gs,U (1)] in two space-time dimensions and are believed
to be classified by Hd [Gs,U (1)] in d-dimensional space-time.2

An independent study based on K matrix construction that is
particularly powerful in studying Abelian symmetry groups
have confirmed many of the group cohomology classifications
and, moreover, shed light on the edge excitations and transport
properties of these phases.3–6 Things are more interesting when
phases possess long-range entanglement (LRE). Even without
symmetry, they already show a very rich bulk structure, and so
far only a partial classification of them is known. It is expected
that when symmetry is incorporated, where such phases are
often dubbed symmetry-enriched topological (SET) phases,
they would be further subdivided into different phases, and the
allowed action of the symmetry group can be very exotic as it
is already anticipated in earlier work on projective symmetry
group where charge fractionalization is one common feature
there.4,7–15

More recently, there is renewed interest in systematically
constructing and classifying these SET phases, notably in
Refs. 16–19. Here, we would like to extend the methods
in Refs. 3 and 4 to constructing SET phases in 2 + 1
dimensions. Our extension confirms many of the results in
Refs. 16–18, particularly regarding the conditions of charge
fractionalization and generalization to nonlocal symmetry
transformations. Moreover, the K matrix analysis allows us
to study the edge excitations in the presence of boundaries.
A (quasi)group structure among phases with the same global
symmetry and fusion algebra emerges as we consider stacking
them together, which does not appear to be directly related

to group cohomology, although such a relation was found in
the case of SPT phases.3 We also generalize constructions in
Ref. 3 to include some non-Abelian symmetry groups.

The K matrix construction is most powerful in dealing
with phases whose anyons are governed by Abelian statistics.
However, our study has inspired us with a more general way to
construct and perhaps ultimately to classify symmetric phases
with non-Abelian anyons. We comment on the general idea
towards the end of the paper.

Since our construction amalgamates and generalizes several
ideas, we would like to begin our discussion with a general
overview that puts together the various building blocks
necessary for the current paper and clarify a few core concepts.

In Sec. III we introduce our K matrix approach, based on
the ideas developed in Refs. 3 and 4 of how K matrix can be
taken as the starting point for constructing SPT phases. Then
we apply this approach in Sec. IV to construct LRE phases with
symmetries. We dwell particularly on the symmetry-enriched
Z2 gauge theory and the double-semion model, studying their
edge excitations and a quasigroup structure that emerges
between the phases. This is then generalized in Sec. V to
ZM symmetry in phases with ZN × ZN and related fusion
algebras.

To explore more exotic group actions of the symmetry
group beyond charge fractionalization, we study some ex-
amples in Sec. VI that involve anyon exchange based again
on phases with Z2 × Z2 fusion algebra. More exotic and
elaborate examples based on phases with fusion Z4 × Z4 is
discussed in Sec. VII. We collect these ideas and summarize
the unifying principles behind these examples in Sec. VIII,
where we construct also new phases accommodating discrete
non-Abelian group actions, explicitly the Dihedral groups.

We compare our results with existing results in the literature
in Sec. IX and then conclude our discussion in Sec. X with
open questions.

Appendixes A and B collect some technicalities. Ap-
pendix C, however, provides the K matrix version of the
“duality” relation between a SPT phase and a topological
phase, where the latter descends from gauging the global
symmetry in the former. This relation was first proposed and
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realized in the string-net formalism in Ref. 20 and then further
discussed in Refs. 17, 18, and 21.

II. SYMMETRY-ENRICHED PHASES IN 2 + 1
DIMENSIONS: AN OVERVIEW

The main focus of the current paper is to construct examples
where topological phases—namely phases that possess LRE—
are endowed with global symmetries. The theme has received
much attention recently, for example in Refs. 16–18. Several
principles underlie these discussions and constructions, and
we would like to summarize them, along with a conceptual
account for our approach, before moving on to our explicit
constructions that concretely realize these principles.

Any discussion of symmetry can hardly avoid the in-
troduction of groups. Since a number of groups would be
introduced in our discussion, we would like to catalog them
here and explain briefly the role each plays for clarity and later
convenience.

One important feature of LRE phases is the emergence
of nonlocal deconfined quasiparticles. In 2 + 1 dimensions,
for instance, quasiparticles (anyons) displaying Abelian or
non-Abelian anyonic statistics furnish such examples. While
physical observables are characterized by local, bosonic
excitations, anyons are nonlocal and cannot be physically
excited in complete isolation. Nevertheless, the phases often
exhibit “deconfined” limits, in which it is possible to keep
various anyons so far apart that a lot of the operators can
be considered as acting locally on individual anyons present.
This is analogous to the familiar situation in gauge theories,
in which physical excitations are necessarily gauge invariant,
even though it is often useful to think of them as composites
being made up of gauge charged particles, particularly in
a “deconfined” limit when the charged particles can be, to
some extent, isolated. In fact, a lot of these LRE phases
can be conveniently described by gauge theories, such as the
familiar case of a Z2 spin liquid, where a Z2 gauge symmetry
effectively emerges in the deconfined limit. Moreover, while
it is unclear whether a complete classification of these LRE
phases exist, and very likely, any such complete classification
would invoke the mathematics of tensor categories,22,23 the
framework of gauge theories alone already encompasses a
large class of LRE phase,17,22,24–27 including many of the
well-known paradigmatic examples such as the Z2 spin liquid.
Most of the examples discussed in this paper are within
the gauge theory framework, and thus we frequently refer
to “gauge groups” G in this sense. These gauge theories
are taken as the starting point on which we impose global
symmetries. This starting point enables us to characterize or
label an anyon—each topological sector—by its gauge charge
and flux. A flux is labeled by a conjugacy class of G, while the
associated charge takes value in the irreducible (projective)
representations of the centralizer subgroup of the flux in G.
Each anyonic excitation for any given gauge group would fall
into one of the three categories: pure charge, pure flux, and
dyon, which has both a flux label and the associated charge
label. In the rest of the paper, we refer to different anyons using
these terminologies where appropriate. Actually, as one will
see, when a global symmetry is incorporated, another group
that behaves essentially like a gauge group may appear, as

we explore shortly below. This group, however, is generally
different from G.

As discussed in the previous paragraph, 2 + 1-dimensional
LRE phases generally bear anyonic, low-energy excitations,
Abelian and/or non-Abelian. The interactions of these anyons
are described by a set of fusion rules, in the sense that
when viewed from sufficiently far away, various anyons
relatively close together can be treated as a single lump.
The lump behaves essentially as another anyon, now with
a different topological charge and/or flux that descends from
those of the constituent anyons in the lump. These fusion
rules generally form an algebra F, a fusion algebra, which
in the case of Abelian anyons is, in fact, an Abelian group.
As discussed in Ref. 16 and later generalized in Ref. 18,
F plays a central role in determining the possible ways a
global symmetry could act. In this paper, like in most other
discussions of symmetries, the global symmetries form a group
Gs . Since symmetry acts reasonably locally in many cases,
they can be understood as acting on individual anyons roughly
independently. As emphasized above, however, anyons are
not physical excitations and are thus not directly a physical
observable; therefore, it is conceivable that the physical
states must transform linearly under the global symmetry.
Particularly, that means they must transform trivially under
the identity operator of the symmetry; such a restriction can
be lifted on individual anyons. The simplest possibility is that
the anyons live in projective representation spaces of Gs ,
in which case the anyons are considered to have undergone
charge fractionalization.

There are more exotic likelihoods, as demonstrated in
Refs. 3 and 17 and also in some of our examples constructed in
this paper in Secs. VI and VII, where exchange of anyons are
involved and such symmetry transformations are not strictly
local, as opposed to the case of fractionalization. Nonetheless,
in all these cases, the fusion algebra/group F constrains
admissible ways the anyons can transform by demanding
that the aggregate transformations on any group of anyons
that fuse to a physical bosonic excitation be reduced to those
corresponding to a linear representation, such that the identity
operator acts trivially. In other words, we are effectively
“modding out” transformations on anyons when the aggregate
transformation of the group of anyons that fuse to a boson is
trivial. These transformations that are modded out constitute
a linear representation of a subgroup Ng of F. In this sense,
therefore, Ng also behaves very much like some kind of gauge
group, although it should not be confused with G introduced
earlier. They are generally different.

To concisely describe and thus classify these nontrivial
transformations, we can introduce yet another group G. In
Ref. 16, G is the central extension of Gs by Ng . In that case,
elements of Ng necessarily commute with those of Gs . This has
been generalized to other group extensions, where Gs is the
quotient subgroup G/Ng , where Ng is the normal subgroup
of G. Anyons transform as linear representations of G, and
these group extensions provide the platform of classifying
projective and actually more general nonlinear representations
of Gs into which the anyons may fall. In this fashion, the
group actions even of an Abelian Gs do not necessarily
commute, examples of which have been seen in Ref. 17 and
are shown in this paper. More generally, the group G is itself
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non-Abelian, and we obtain, to our knowledge, the first of such
an example implementing non-Abelian group action in the K

matrix construction, as discussed in Sec. VIII.
It should be noted that such classification of physically

admissible nontrivial actions of global symmetries Gs on any
nonlocal excitations have appeared elsewhere. Most notably,
in fermionic SPT phases, which involve only SRE, fermions
nevertheless can transform projectively under Gs as long as
any pair of them transform linearly. Framing it in the language
developed above, the fusion group can be taken as F = Z2 and
the projective representations can be understood as a group
extension of Gs by Z2. In bosonic SPT phases, since the
underlying excitations are already physical bosons, there is
no notion of charge fractionalization, and in our language the
fusion group can be thought as F = Z1, the trivial group.

Before we close our discussions on Abelian phases, let us
comment that the classification of symmetric LRE phases via
the idea of group extensions does not a priori inform us of
whether a given phase possesses nontrivial edge excitations in
the presence of a boundary. Here, nontrivial edge excitations
refer to the edge modes of the anyons that cannot be gapped
out without breaking the symmetry and thus remain gapless
as protected by the symmetry. The virtue of an explicit
construction using K matrices is that one is able to explore
the fate of the edge states as much as classify them. Despite
transforming in highly nonlinear representations under Gs ,
there is no guarantee that the edge behaves also nontrivially.
We found examples in which even very exotic transformation
rules, implying charge fractionalization and more, can lead
to a gapped edge that respects the global symmetry. Among
those phases that do possess nontrivial edges, which feature
gapless excitations or spontaneousely broken global symmetry
Gs , it appears that there is a notion of a (quasi)group structure
between them, when one considers stacking them together as
in Ref. 3. This is a quasigroup also because the identity is not
a single element but contains those phases that have a fully
gapped edge state without breaking Gs . This is discussed in
Sec. IV C. It is yet not completely clear whether such a group
structure can always appear for any gauge theories, or that
they are related to group cohomology, as in the case of SPT
phases.3

In acknowledging the central and similar role F plays
in constraining admissible nontrivial Gs representations in
phases both short-range and long-range entangled, as well as
the quasigroup structure that ties together several phases that
share the same fusion algebra F, we deem it convenient to refer
generally to these phases as symmetry-enriched phases (SEPs)
and label classes of them with the same symmetry group Gs

and fusion algebra F that are related by the group structure of
SEP(F,Gs). This is, in fact, a unified notion of phases with
symmetry that also encompass SPT phases: Fermionic SPT
phases are classified by SEP(Z2,Gs) and bosonic SPT phases
by SEP(Z1,Gs).

Finally, let us comment on the situation of non-Abelian
anyons. In the above discussion, we have very much restricted
our attention almost entirely to Abelian anyons, whose fusion
F is an Abelian group. This is also the major focus of our paper,
where we make heavy use of the K matrix construction, which
is appropriate for Abelian anyons. However, the discussion
here, and also the discussion of group extensions discussed

in Ref. 18 have pointed to a general way to construct LRE
phases with symmetries, if not completely classifying them.
The idea is very much like the case of Abelian anyons, where
different phases can be thought of as different embeddings
of the fusion group F inside a larger fusion group. Quite
generally, particularly in the framework provided in Refs. 17,
22, and 24–27 describing large classes of LRE phases where
the fusion F forms a representation ring of a quantum group,
which is an algebra U, an LRE phase possessing symmetries
can be thought of as embedding U within a larger quantum
group UG. Analogous to the case of Abelian anyons, the
quotient algebra is then taken as the global symmetry. This
framework provides a natural way in which anyons, which
fall into irreducible representations of the larger algebra, can
be decomposed as a direct sum of irreducible representations
of U, which, in turn, dictates how anyons transform under
the global symmetry given by the quotient algebra. The
embedding of a smaller invariant subgroup in a larger one
employs the same mathematics as in symmetry breaking, in
which a large (gauge) group is broken to its invariant subgroup.
For non-Abelian topological phases, the relevant mathematics
would be that employed in Hopf symmetry breaking, which
has been discussed in Refs. 28–30 in the context of anyon
condensation. Many ideas can be directly applied here. We
shall report a more detailed discussion elsewhere.31

III. SYMMETRY-ENRICHED PHASES IN 2 + 1
DIMENSIONS: THE APPROACH

In this section, we elaborate on our approach for studying
LRE Abelian phases with symmetry. We take the formalism
known as K matrix plus Higgs terms. This formalism was used
in Ref. 3 for studying bosonic and fermionic SPT phases in
2 + 1 dimensions. We first briefly review the relevant pieces
of this formalism then extend it to the case of LRE phases with
symmetry.

A. The K matrix + Higgs term formulation

It is believed that 2 + 1-dimensional Abelian topological
phases, including SRE phases and LRE Abelian, can be
described in a unified fashion as effective Chern-Simons (CS)
theories in the K matrix formulation due to Wen et al.,32–35

whose generic Lagrangian density reads

LCS = − 1

4π
aI

μKIJ ∂νa
J
ρ εμνρ − aI

μj
μ

I + · · · , (1)

where Einstein’s summation rule is assumed. The internal
indices I,J = 1,2, . . . ,N label a set of N internal U (1) gauge
fields aI

μ, where the Greek letters are space-time indices.
The fields aμ describe the fundamental quasiparticles that are
sourced by the correspondingly quantized currents jμ. The
omitted terms in “. . .” are irrelevant higher order ones such as
the kinetic term. The K matrix satisfies KIJ = KJI ∈ Z. A
generic quasiparticle, however, is a fusion of the fundamental
ones and may be characterized by an integer vector l =
(l1,l2, . . . ,lN )T , carrying lI unit of aI

μ charge. The self-statistics
of a quasiparticle and the mutual statistics of two different
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quasiparticles a and b are, respectively, given by

θa/π = (K−1)IJ lIa l
J
a ,

(2)
θab/π = 2(K−1)IJ lIa l

J
b .

A physical quasiparticle is a boson, characterized by a vector
lB that satisfies θB/π = 0 and θBa/π = 0 (mod 2π ) with
arbitrary quasiparticle la . The ground-state degeneracy (GSD)
of the system placed on a torus is given by

GSD = |K|, (3)

where, as an abuse of notation, K is the determinant of the
K matrix. The Lagrangian in Eq. (1) describes SRE phases
if |K| = 1 and LRE phases if |K| > 1. In this paper, we
concentrate on the latter case. Moreover, if K has the same
number of positive and negative eigenvalues, which also
implies dim K ∈ 2Z+, it describes a nonchiral topological
order.

In the absence of any symmetry, one can condense the
bosons by adding to LCS potential terms,

L′
CS = LCS +

∑
l∈bosons

(
Cl

∏
I

b
lI
I + H.c.

)
, (4)

where each Cl is constant, and bI is the annihilation operator
of the fundamental excitation of aI type, with b

†
I = b−1

I . Each
such term Cl

∏
I b

lI
I + H.c. is often called a Higgs term. Note

that this addition does not affect any topological properties of
the system described by LCS. The K matrix theory makes it
handy to study the edge states if the system has a boundary.
The effective action of the edge theory is given by

SE = S0
E + S1

E, (5)

where

S0
E = 1

4π

∫
dtdx

∑
I,J

(KIJ ∂tφI ∂xφJ − VIJ ∂xφI ∂xφJ ) (6)

corresponding to LCS is the effective description of the gapless
edge excitations, with φI the edge field associated with aI and
VIJ a constant, positive definite matrix that determines the
velocity of the edge excitations, and

S1
E =

∑
l∈bosons

C ′
l

∫
dtdx cos(lI φI + αl) (7)

corresponds to the bulk Higgs terms, with some constants αl.
Canonical quantization of S0

E yields the Kac-Moody algebra

[∂xφI (x),∂yφJ (y)] = i2π (K−1)IJ ∂xδ(x − y). (8)

For simplicity, when referring to a quasiparticle lI aI or its edge
mode lI φI , hereafter we most often simply specify only the
charge vector l. Besides, since we are mostly interested in the
fate of the edge states, hereafter we refer to Eq. (7) or simply
the cosine functions therein as our Higgs terms. We from now
on focus on the edge modes φ exclusively.

B. Edge gapping conditions in LRE phases with symmetry

To gap out a bosonic edge mode, one needs to condense it at
a certain classical expectation value; however, the uncertainty
principle due to Eq. (8) may prevent one from doing so.

Any two bosons labeled by vectors la and lb must satisfy the
following canonical commutation relation, implied by Eq. (8),[

lIa ∂xφI (x),lJb ∂yφJ (y)
] = i2π (K−1)IJ lIa l

J
b ∂xδ(x − y). (9)

It is then clear that if boson la can condense, the above
commutator must vanish for a = b; i.e., lTa K−1la = 0. Such
a boson is called self-null. Furthermore, two bosons la and lb
are allowed to condense simultaneously only if they are both
self-null, as well as mutually null, namely lTa K−1lb = 0.

We now summarize the necessary and sufficient condition
for a nonchiral LRE Abelian phase with symmetry to attain a
symmetry preserving yet fully gapped edge state.

Complete-gapping condition. Given a nonchiral, Abelian,
LRE phase characterized by a K matrix satisfying dim K =
N ∈ 2Z+ and |K| > 1, with a global symmetry group Gs ,
in order that the edge modes in the phase can be completely
gapped without breaking Gs , there must exist at least one
complete set BI of independent self- and mutually null bosons,
of which the Higgs terms are invariant under the action of Gs ,
namely, ∀ g ∈ Gs ,

g :
∑
la∈BI

Cla cos
(
lIaφI + αla

)
�→

∑
la∈BI

Cla cos
(
lIaρIJ (g)φJ + αla

)
=

∑
la∈BI

Cla cos
(
lIaφI + αla

)
, (10)

where each la ∈ BI appears at least once. αla is some arbitrary
angle allowed by the symmetry transformation, whereas
ρIJ (g) is an abstract notation of the representation of g ∈ Gs .
The completeness of the set follows from two criteria: First,
any boson that is not in BI is not mutually null with at least
one member in BI; second, the set must consist of at least N/2
linearly independent charge vectors.

If this is the case, all edge boson modes can be pinned at
a vacuum expectation value without breaking the symmetry,
and we call the corresponding LRE phase with symmetry edge
trivial.

This condition should be self-explaining. It is adapted to
the case of LRE phases with symmetry from its counterpart in
Ref. 3 for the SPT phases, where one finds detailed reasoning
for the condition. Two remarks are in order, however. For a K

matrix describing a chiral LRE phase, it would be impossible
to gap all the edge modes, as there would always be excessive
left- or right-moving bosons. Also, for each given K matrix
model there may be more than one complete set BI which by
definition cannot be mutually null with each other, and any
single set that is completely gapped is sufficient to gap out the
entire edge.

C. Representations of the symmetry

Given any Lagrangian, one could look for the symmetries
that leave it invariant. In our case, the Lagrangian comprises
the Chern-Simons terms and the Higgs terms. However, we
work backwards in the program of studying nontrivial phases
with symmetries. We would start with the K matrix theory with
a fixed K matrix that has the correct degeneracy appropriate
for the phase in we are interested (a topological phase with
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|K| = N > 1), then exhaust all possible group action on the
excitations for a given symmetry group Gs . An element of
Gs acts on the anyons depending on the representations they
fall into, as indicated in Eq. (10). We would consider a very
general scenario where the group actions rotate a dyonic state
in addition to attaching a phase to a charge or flux excitation,
which can be implemented by the pair

ρ(g) = {Wg,dφg}, ∀ g ∈ Gs, (11)

where Wg is some GL(N,Z) matrix and dφg a constant N -
component vector, called a shift vector, such that

φI → ηWIJ φJ + dφI , K → WT KW = ηK, (12)

where the second line follows from our requirement that K

is fixed, and η = 1 for unitary actions and −1 for antiunitary
actions such as time-reversal symmetry. However, we do not
consider any time reversal in this paper and hence set η ≡
1 here onward. As reasoned in Sec. II, this representation
is, in general, a projective (or even more general nonlinear)
representation of Gs . In particular, to be consistent with the
fusion group of the anyons, the action of the identity e ∈ Gs can
transform individual anyons but has to preserve the physical
quasiparticles, namely the bosons, modulo 2π ; i.e.,

lIB
(
(W e)IJ φJ + dφe

I

) = lIBφI (mod 2π ), (13)

where lB labels the charge vector of a boson. Then we a
posteriori look for Higgs terms invariant under the above
action and finally check for the presence of any remaining
ungapped edge modes, or a gapped edge that dynamically
breaks the symmetry.

One can immediately infer from Eq. (13) that the action
of {W e,dφe} does not depend on Gs ; it is simply the set of
transformations that is as exotic as possibly allowed by the
fusion group. It is equivalent to a projective representation of
the identity of Gs . Recalling the discussion in Sec. II, when
Gs is present, {W e,dφe} furnishes a linear representation of
an emergent gauge group Ng . We thus reemphasize here that a
projective representation {Wg,dφg|g ∈ Gs} can be interpreted
as a linear representation of a total group G that is an extension
of Gs by Ng . This will be played out explicitly in our examples.

Here is how one computes {Wg,dφg}. Because Eq. (13)
must hold for any boson, one readily sees that W e ≡ 1. Then
one needs to solve Eq. (13) for dφe with W e = 1 plugged in.
One would obtain a vector with a number of integer parameters
determined by the fusion group. Each choice of the parameters
renders the corresponding dφe a generator of the emergent
gauge group Ng; each such generator then determines what
Ng is for this choice.

With {W e,dφe} in hand, one can then solve for {Wg,dφg}
by solving a set of equations, which follow from the group
compatibility conditions of Gs . This is a list of independent
group multiplication relations that completely specifies the
group structure. For a simple example, if Gs = Z2, there is just
one such compatibility condition, g2 = e, ∀ g ∈ Z2, which is
then translated into the following equations:

(Wg)2 = W e = 1,

Wg(Wgφ + dφg) + dφg = W eφ + dφe

⇒ Wgdφg + dφg = dφe.

More complicated Gs may have more than one and more com-
plicated group compatibility conditions. Among all solutions
for Wg , one can only choose those satisfying Eq. (12). The
shift vector dφg contains the parameters of dφe and its own
parameters in general. If the parameters in dφe are all switched
off, it implies that the extension of Gs is simply a direct product
G = Gs × F. Otherwise, one may need to work out the group
compatibility conditions to determine precisely the type of
group extension and the total group, for each choice of the
parameters. Although Gs is an Abelian group in this paper,
the actions by the projective representation of two distinct
elements on an anyon do not necessarily commute. This is
particularly true when at least one of the actions is represented
by a nontrivial Wg . This noncommutativity is ubiquitous in
our examples, e.g., as explicitly discussed in Sec. VI B.

1. Note of caution: Residual gauge symmetry

It is important to realize that the K matrix construction
suffers from a lot of redundancy. Different K matrices can
describe identical phases, if they are related by relabeling of
the anyons, leading to K → XT KX for some X ∈ GL(N,Z).
As aforementioned, we would be working with a specific K

matrix which is known to describe the topological phases we
are interested in. Even with a fixed K matrix, however, one
is still haunted by the relabeling redundancy, because there is
residual reparametrization X which keeps a given K matrix
fixed. As a result, different global symmetry transformations
may not be uniquely defined. For those related by X in fact
describe precisely the same phase. More precisely two sets of
transformations {Wgi ,dφgi } and {W̃ gi ,d̃φ

gi } describe the same
physics if they are related by3

K = XT KX,

W̃gi = X−1Wgi X, (14)

d̃φ
gi = X−1(dφ + �φ − Wgi �φ),

where �φ is an arbitrary vector. These relations will help in
locating the most convenient representative among equivalent
solutions for Wg and dφg .

IV. SEP(Z2 × Z2,Z2) PHASES

In this section we construct our first example of SET
phases characterized by fusion group Z2 × Z2 and global
symmetry Z2. It is known that this fusion group is shared
by two admittedly distinct models of topological order, the
double-semion model described by the K matrix ( 2 0

0 −2 ) = 2σz

and Kitaev’s toric code model defined by the K matrix
( 0 2

2 0 ) = 2σx . We incorporate Z2 symmetry to these t0o models
in order in the following two sections, then study the relations
between these phases.

A. SEP(Z2 ×Z2,Z2) from the semion model

As aforementioned, the double-semion model is defined
by the K matrix 2σz, which is invariant under the GL(2,Z)
transformation ±12, and ±σz. The quasiparticle content of
this model is determined by the self-statistics in Eq. (2) and
described as follows in terms of the vectors lT = (l1,l2).
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Semions. The self-statistics (K−1)IJ lI lJ = ±1/2 (mod 2)
demands l1 = l2 + (2m + 1), l1,l2,m ∈ Z. Hence, a generic
semion is

lS = (l,l + 2m + 1), l,m ∈ Z.

The elementary semions (of opposite chiralities) are thus sL =
(1,0)T and sR = (0,1)T .

Bosons. The self-statistics (K−1)IJ lI lJ = (l2
1 − l2

2)/2 = 0
(mod 2) sets l1,l2 ∈ 2Z. Thus, a generic boson takes the form

lTB = (2m,2n),m,n ∈ Z,

which is an authentic boson because it has trivial mu-
tual statistics with an arbitrary quasiparticle lT = (l1,l2):
2(K−1)IJ lIBlJ = 2(ml1 − nl2) = 0 (mod 2). The elementary
bosons are (2,0) and (0,2).

Bosonic bound states of semions. There are also quasiparti-
cles consisting of both elementary semions that have bosonic
self-statistics but nontrivial mutual statistics with the semions.
These take the general form

lTbb = (2m + 1,2n + 1),m,n ∈ Z,

where the subscript “bb” stands for bosonic bound states.
Sets of independent condensable bosons. A condensable

boson is a boson as defined above, with the additional
requirement that its self-statistics is identically zero instead
of only zero modulo 2π . A condensable boson therefore has
to satisfy

(K−1)IJ lIBlJB = 2(m2 − n2) = 0, ⇒ m = ±n.

Multiple condensable bosons can condense at the same time
only if their mutual statistics is also identically zero. In this
case, therefore, the two independent sets are given by {k(2,2)}
and {k(2,−2)} for all k ∈ Z.

Here we remark that fermions are not in the quasipar-
ticle spectrum of the double-semion model because l2

1 −
l2
2 	= 2 (mod 4),∀ l1,l2 ∈ Z, which disallows fermionic self-

statistics. Having listed the quasiparticles in the model, we can
try to solve for all possible (projective) representations that are
consistent with the fusion properties of the quasiparticles when
incorporating a global symmetry. The idea is that the identity
element of any global symmetry must act trivially on each
and every boson, a condition already described in Eq. (13).
Yet this does not necessarily imply that it acts trivially on
all quasiparticle excitations, although that is one obvious and
trivial option. Therefore, the first step we take is to solve for all
possible nontrivial “identity transformation” compatible with
Eq. (13), which we label by {W e,dφe}.

For the semion model, the solution to Eq. (13) is given by

W e = 1, dφe = π (n1,n2)T , n1,n2 ∈ {0,1}. (15)

This means that we have altogether four different options at
our disposal. We can pick one to be the identity transformation
for each independent symmetry group we introduce for each
phase. Each such choice gives rise to an emergent Ng =
Z2 when a global symmetry is incorporated. As we will
see, however, some of these difference choices could still
potentially lead to the same phase. Next we have to solve for
the rest of the symmetry transformations for a given symmetry
group. For simplicity, we consider incorporating a Z2 global
symmetry here. This requires solving for the transformation

corresponding to the single generator of the group, which we
label as {Wg,dφ(g)}. Since g2 = 1, this transformation must
satisfy

Wgdφg + dφg = dφe (mod 2π ),
(16)

(Wg)2 = W e = 1.

The sets of {Wg,dφg} that satisfy the above equations are listed
as follows:{

Wg = ±1,dφg = π

(
t1 + n1

2

t2 + n2
2

)
, t1,t2,n1,n2 ∈ {0,1}

}
,

{
Wg = ±σz,dφg = π

(
t1 + n1

2

t2 + n2
2

)
, t1,t2,n1,n2 ∈ {0,1}

}
.

(17)

At first sight there are many possibilities. However, we note
that when Wg = −1, the transformation dφg is not invariant
under residual gauge transformation and can be entirely
gauged away. Therefore, this choice corresponds to the same
phase as the semion model without symmetry. Also we note
that the choice for t1,t2 has no effect on the transformation of
any bosons up to shifts of multiples of 2nπ . Therefore, it has
no bearing on the allowed Higgs terms, and therefore different
choices of which would lead only to the same phase. Therefore,
without loss of generality, we consider the representative case
where they are chosen to be zero. When Wg is not the identity,
the group action corresponds to swapping quasiparticles or
anyons around. This is considered in a later section. We focus
on Wg = 1 and consider separate choices of n1,n2 in turn.

Case Ia: S10. For later convenience, we label the phase
for {n1,n2} = {1,0} by S10, where “S” stands for the semion
model. The invariant Higgs terms are given by

SS01
E =

∑
m∈Z

Cm cos(4m(φ1 − φ2)). (18)

As a result, the bosons with charge vector 2(2n + 1)(1,−1)
which is shifted by π under dφg would either acquire a vev
due to the Higgs terms above and thus break the Z2 symmetry,
or would remain gapless.

Case Ib: S01. The case S01 works very similarly since,
as far as the Higgs terms are concerned, it is a relabelling of
bosons by φ1 → −φ2, φ2 → −φ1. The edge therefore remains
gapless.

Case II: S11. The invariant Higgs terms are given by

SS11
E =

∑
m∈Z

Cm cos(2m(φ1 − φ2)). (19)

Clearly, in this case all mutually condensable bosons in the set
2m{1,−1} can all be simultaneously gapped. Therefore, the
S11 phase has a trivial edge.

B. SEP(Z2 ×Z2,Z2) from the Z2 spin liquid

The K matrix taken as our starting point here is given by
K = 2σx . Similar to the semion model, we begin by listing all
the quasiparticles.

Self-commuting “boson.” These are excitations that have
bosonic self-statistics; however, they do not have trivial mutual
statistics with all other excitations, which is why they are
labeled as “bosons” in quotes. Their charge vectors are
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lT = {(m,n)|m,n ∈ Z,m = n + 1 (mod 2)}. Hence, the ele-
mentary “bosons” are (1,0) and (0,1).

Fermionic bound states. These are the set of particles
that have fermionic self-statistics = π (mod 2π ). The charge
vectors are given by lT = {2n + 1,2m + 1}, n,m ∈ Z. The
elementary “fermion” is given by charge vector (1,1).

Bosons. These are true bosons with 2nπ mutual statistics
with all quasiparticle excitations, and 2nπ self-statistics.
Repeating precisely the same exercise as in the case of
semions, we arrive at the set of charge vectors

lTB = (2n,2m), n,m ∈ Z. (20)

Sets of independent condensable bosons. Straightforwardly,
the two independent sets of mutually commuting condensable
bosons are {(2n,0)} and {(0,2n)}.

Similar to the semion model, we can solve for all possible
“identity transformations.” The solution is identical to that in
Eq. (15). Consider again imposing a global Z2 symmetry on
the Z2 gauge theory, we then solve for sets of transformation
matrix {Wg,dφg}. The distinct solutions are

{Wg = 1,dφT = π/2(n1,n2), n1,n2 ∈ {0,1}},
(21)

{Wg = ±σx,dφT = π/2(n1,n2), n1,n2 ∈ {0,1}},
where we have already hidden a possible π (t1,t2) in dφT under
a rug for the same reason as before. Focusing on the solution
on the top line Wg = 1, the distinct phases are as follows.

Case I: T10. We adopt similar labeling of the distinct
phases, and “T” is an allusion to the toric code model due
to Kitaev, which is a popular solvable model realizing the Z2

gauge theory. Here, the allowed Higgs terms are

ST10
E =

∑
m∈Z

Cm cos(2mφ2). (22)

This clearly exhausts an entire set of mutually commuting
condensable boson. Therefore, the T10 phase has trivial edge.
Since the T01 phase is obtained by a relabeling φ1 ↔ φ2, it
labels the same phase.

Case II: T11. Here the allowed Higgs terms (from a single
mutually commuting set of bosons) are

ST11
E =

∑
m∈Z

Cm cos(4mφ1). (23)

Bosons with charge vector 2(2n + 1)(1,0) therefore either
remain gapless or break the symmetry. Therefore, T11 has
a nontrivial edge.

C. A (quasi)group structure between the phases

Now we would like to discuss a (quasi)group structure that
emerges by superposing the distinct phases with global Z2

symmetry we have obtained using the semion model and the
Z2 gauge theory as the starting point.

Our discussion of a group structure closely follows that
in Ref. 3. The basic idea there is that one can define a
group product between two phases A and B, within a class
of phases with a given symmetry, by stacking one on top
of the other. The combined phase would generally allow for
extra Higgs terms, gapping further edge modes. When a group
structure is well defined, one could show that the combined

phase, described by a new K matrix that is the direct sum
of those of the component phases, can be transformed after
appropriate reparametrizations, into a direct sum of a trivial
SPT phase with a gapped edge and another that is a member C

of the original class of phases with the given symmetry. This
allows one to identify a group product A ⊕ B = C.

There is a crucial difference between SPT phases and our
LRE phases. In the case of SPT phases, |K| = 1, which is
preserved as we superpose phases. This allows one to naturally
dump the SPT phase whose edge is trivially gapped after
we stack the phases. This is no longer the case when we
have |K| > 1. Therefore, the group structure we are aiming
for is not strictly a group. However, consider the following
situation. Suppose we put two phases, A and B together, each
with a nontrivial edge and put them together exactly as in the
procedure described above. Suppose also that there exists a
relabeling of the bosons such that the new reparametrized K

matrix becomes again a direct sum of two topological phases
with the Higgs terms now diagonalized in each component
phase and that at least one of which has entirely gapped edges,
and the other, called phase C, is recognizable as one of the
phases we defined before the superposing. Then there is indeed
some notion of a group structure where the group product is
A × B = C and that all phases with trivial edge are treated as
the identity element. As we find below, such a group structure
indeed exists, but the group product is closed only if we are
allowed to include both the S (semion) and T (toric code)
models in the group product.

We consider superposing different phases with nontrivial
edges found above alternately.

T 11 × T 11. Consider superposing T11 phase with whose
edge modes are denoted {φ1

L,φ1
R} and another T11 with edge

fields {φ2
L,φ2

R}. The K matrix of the combined system is the
direct sum of that of the constituent models. In this case,
therefore, it is given by KT11T11 = 2σx ⊕ 2σx . One allowed set
of Higgs terms within a chosen set of mutually condensable
bosons is given by

ST11×T11
E =

∑
m∈Z

C1
m cos

(
2m

(
φ1

L − φ2
L

))
+

∑
m∈Z

C2
m cos

(
2m

(
φ1

R + φ2
R

))
. (24)

One can check that this exhausts an entire set of mutually
condensable bosons. The combined phase is left with a trivial
edge. To display the group structure, we now consider a
relabelling of modes given by the following conjugation
K → XT KX for some SL(4,Z) matrix X:

X =

⎛
⎜⎝

1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1

⎞
⎟⎠ . (25)

This matrix X leaves KT11T11 invariant. However, one can
check that under this reparametrization where φ → X−1φ, the
group action dφg = π/2(1,1,1,1)T after the transformation
becomes

X−1dφg = π/2(1,2,0,1)T . (26)
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The entry with value 2 in the transformation vector above acts
trivially on physical bosons, whose charge vectors consist only
of components divisible by 2. Therefore, T11 × T11 is indeed
the direct sum of two phases that we have already encountered
previously:

T11 × T11 = T10 ⊕ T01 ∼ 1, (27)

and each of T10 and T01 has trivial edge, and so we replace
them with “1”, the identity element.

S10 × S10. Following the same logic as before, by su-
perposing two S10 phases, we arrive at the model KS10S10 =
2σz ⊕ 2σz. The allowed Higgs terms are

SS10×S10
E =

∑
m∈Z

C1
m cos

(
2m

(
φ1

L − φ1
R − φ2

L − φ2
R

))
+

∑
m∈Z

C2
m cos

(
2m

(
φ1

L − φ1
R + φ2

L + φ2
R

))
. (28)

Despite the appearance of two independent sets of Higgs
terms, one can see that there are further mutually condensable
bosons that breaks the symmetry. They are {2m(φ1

L − φ1
R)}

and {2m(φ2
L + φ2

R)}. Therefore, S10 × S10 contains nontrivial
edge. To make contact with the original 2 × 2 K matrices, we
consider again a conjugation transformation of KS10S10 by X̃:

X̃ =

⎛
⎜⎝

1 0 2 0
0 1 −1 0
2 1 1 −1

−2 −1 −2 1

⎞
⎟⎠ . (29)

This transformation does not leave KS10S10 invariant. It is
transformed upon conjugation into X̃T KX̃ = 2σz ⊕ 2σx . Cor-
respondingly the group action dφg = π/2(1,0,1,0)T becomes

X̃−1dφg = π/2(3,−1,−1,3)T ∼ π/2(1,1,1,1)T , (30)

where we use symbol ∼ to mean that X̃−1dφ when
acting on physical bosons is indistinguishable from the final
transformation vector on the right. Therefore, we conclude that

S10 × S10 = S11 ⊕ T11 ∼ T11, (31)

where S11, as we recall, has a trivial edge, and we define
our group structure that is only sensitive to the phase that has
nontrivial edge states.

S10 × S10 × T 11 ∼ S10 × S10 × S10 × S10. From the
above, we can immediately conclude that

S10 × S10 × T11 ∼ T11 × T11 ∼ 1 (32)

and that

S10 × S10 × S10 × S10 ∼ T11 × T11 ∼ 1. (33)

S10 × S01. One can easily check that the combined phases
allows the set of Higgs terms

SS10×S01
E =

∑
m∈Z

C1
m cos

(
2m

(
φ1

L − φ2
R

))
+C2

m cos
(
2m

(
φ1

R − φ2
L

))
, (34)

which exhausts all mutually condensable bosons and thus has
a trivial edge.

Therefore, one may be tempted to collect all the phases
characterized by the fusion group Z2 × Z2 with Z2 symmetry

and arrange them according to the emergent group structure

SEP(Z2 × Z2,Z2) ⊃ Z4

= {1 ∼ [T00,T10,S00,S11],S01,T11 ∼ S012,S10}. (35)

Let us also clarify here that taking the phases [T00,T10,

S00,S11] to be the identity of the group structure is not to
be understood as identifying these phases. In fact, as also
emphasized in Ref. 36 these phases cannot be connected
smoothly without a phase transition or breaking the symmetry.
We note that this collection of phases in Z4 does not include
phases that involve nonlocal transformations of the anyons by
Wg = ±σz in the double-semion model and Wg = ±σx in the
toric code model. As we see in Sec. VI A, there are additional
phases whose edge always remains gapless, and stacking them
together never leads to a gapped edge.

V. GENERALIZATION TO ZN GAUGE THEORIES WITH
GLOBAL ZM SYMMETRIES

The discussion in the previous section over endowing the
semion/Z2 gauge theories with a Z2 symmetry can be readily
generalized to the case of taking some (generalized) ZN gauge
theories and introducing ZM symmetry.

A (generalized) ZN gauge theory can be described by a K

matrix of the form

K[N,l] =
(

0 N

N 2l

)
, (36)

where N,l ∈ Z, and l ∈ {0,1, . . . ,N − 1}. They are in one-to-
one correspondence with the Dijkgraaf-Witten lattice gauge
theories, or equivalently the TQD models.27

Given K(N,l), one could readily obtain the general form of
the physical bosonic excitations in the model. They are given
by charge vectors lB = (l1,l2)T of the form

l1 = Nm1, l2 = Nm2 + 2m1l, (37)

where m1,m2 ∈ Z.
There are two independent sets of condensable bosons:

A := {m(0,N )T }, B :

{
Nr

gcd(N,l)
(N,l)T

}
r∈Z

. (38)

One could solve for the set of {W e,dφe}. It is given by

W e = 1, dφe = 2π

N

(
n1 − 2ln2

N

n2

)
, (39)

for ni ∈ {0,1, . . . ,N − 1}. From Ref. 16 it is asserted that
the allowed projective representations of the symmetry group
consistent with the fusion algebra always take values in the
fusion algebra itself. For any l, the fusion algebra is additively
generated by dφe with all possible choices of n1 and n2 values,
which can be straightforwardly derived as

F =
{

ZN × ZN, l = 0,

ZkN × ZN/k, l 	= 0,
(40)

where k = N/ gcd(2l,N ) for N ∈ 2Z and k = N/ gcd(l,N )
for N ∈ 2Z + 1. On the other hand, since we are considering
a single Gs = Z2 symmetry, the “gauge group” Ng that is
involved in extending Gs is additively (mod 2π ) generated by
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a particular dφe with a specific pair of n1 and n2 values, as
shown in the following equation:

Ng =
⎧⎨
⎩
ZN/x, ln2 = 0,

ZyN , 2lan2 < N,

ZN/z, 2lan2 � N,

(41)

where

x = min[gcd(n1,N ), gcd(n2,N )],

y = N/ gcd(2ln2,N ),

z = min[gcd(|n1 − 2ln2/N |,N ), gcd(n2,N )].

The corresponding transformation generated by the gener-
ator of a ZM global symmetry takes the form

Wg = 1,dφg = 2π

M

(
t1 + 1

N

(
n1 − 2ln2

N

)
t2 + n2

N

)
, (42)

where here we are still focusing on cases that do not involve
rotation of anyons, and ti ∈ {0,1, . . . ,M − 1}.

To determine whether the edge is gapped in each of these
cases, we compute the transformation of bosons in each of the
two complete condensable sets of bosons. If either set can be
completely gapped, the edge is gapped, but otherwise remain
gapless.

The transformation of the bosons in each set is given by
dφg ,

lIAdφ
g

I = 2πm

(
Nt2 + n2

N

)
M

,

(43)

lIBdφ
g

I = 2πr
N2t1 + Nlt2 + Nn1 − n2

gcd(N,l)M
.

The edge would be gapped if either transformation vanishes
modulo 2π with no further constraint on m or r . In general,
it would require specifying M and N and also the set
{ti ,ni} before one could determine if an edge has been
gapped. Nevertheless, let us illustrate in a few examples some
representative cases.

A. M = 2, N = odd

For simplicity, let us begin with a very specific example.
In this case, we find that as soon as Nt2 + k2 is even, set A
is completely gapped, and thus the edge is gapped. Therefore,
we need only to consider what happens if Nt2 + k2 is odd.
In that case, we have to determine if set B can be gapped.
Let gcd(N,l) =: x, such that N = xa and l = xb, with a,b

relatively prime; the condition that all set B bosons are gapped
is then given by

a(Nt1 + n1) + b(Nt2 − n2) = 0 (mod 2). (44)

Recall that both a and Nt2 − n2 are assumed odd here. This
suggests that if b is even, the edge is gapped when Nt1 + n1

is even, and if b odd, so should Nt1 + n1.

B. Special case: M = N

In this special case, the above shift transformation acting
on any one set of the condensable bosons takes a particularly

simple form:

lIAdφ
g

I = 2πm

(
t2 + n2

N

)
,

(45)

lIBdφ
g

I = 2πr

gcd(N,l)
(Nt1 + lt2 + n1 − ln2/N),

and a nontrivial edge is formed if neither of the two sets of
condensable bosons can be completely gapped out without
breaking the global ZN symmetry. From the behavior of the
bosons in set A, it is immediately clear that whenever

n2 = 0 (mod N ), (46)

set A is gapped, independently of the value of ti and n1. In
fact, one can check that the value of ti is immaterial in the
transformation of any physical bosons. Therefore, they do not
parametrize distinct phases and are dropped from now on.

Suppose that gcd(N,l) = x, so that we can write N = xa

and l = xb for a,b relatively prime. Then the gapping of set B
modes requires that

n1 − bn2 = 0 (mod N ). (47)

Nontrivial edges thus arise if Eqs. (46) and (47) are not satisfied
at the same time. This leaves, for each l a set of phases with
nontrivial edges parametrized by(

n1

n2

)
=

(
(s1 + bn2)mod N

n2

)
, s1,n2 ∈ {1, . . . N − 1}.

(48)

C. A quasigroup structure

For the general case where N > 2, we find ourselves in a
large network of phases, and it is by no means obvious that
the simple quasigroup structure we find for N = 2,M = 2 that
arises as we stack multiple phases on top of one another should
also arise here. Rather than giving a complete survey of the
matter, which seems much more complicated, we restrict our
attention to the case N = M = 3 and l = 0 and demonstrate
that in this restricted scenario, a quasigroup structure still exists
between the phases.

When l = 0, the phases with nontrivial edge modes are
parametrized by different dφg as follows:

dφg = 2π

N2
(n1,n2)T , (49)

where n1,n2 ∈ {0,1,2}. We focus on phases with symmetry
here, as that with n1 = n2 = 0 is equivalent to the usual
topological phase without symmetry. Given that when n1 = 0
(n2 = 0), the corresponding phase can by fully gapped by
condensing with the variable 3mφR , we focus only on the
phases labeled by nonzero n1 and n2: There are, up to
interchanging n1 and n2 by renaming of quasiparticles, three
phases respectively given by (n1,n2) = (1,1),(2,2),(1,2).

1. Stacking (11) with (12) or (22) with (12)

In these two scenarios, we find that the edges of the
aggregate phase can be completely gapped out. The Higgs
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term takes the following form:

S11⊕12
E =

∑
m∈Z

C1
m cos

(
3m

(
φ1

L − φ2
L

))
+C2

m cos
(
3mφ1

R + φ2
R

)
. (50)

The corresponding Higgs terms for S22⊕12
E takes the same form

as the above, except that the signs of φ2
L and φ2

R are flipped.

2. Stacking up three phases of the same kind

It is not hard to check, however, that stacking two phases of
the same kind lead to nontrivial edges still. The next simplest
option is to stack up three phases of the same kind. Consider
for example stacking up three (11) phases. One can check that
there is a complete set of Higgs terms that gap out the edge,
given by

S11⊕11⊕11
E =

∑
m1,m2,m3∈Z

Cm1,m2,m3 cos
(
3m1

(
φ1

L + φ2
L + φ3

L

)
+ 3m2

(
φ1

R − φ2
R

) + 3m3
(
φ2

R − φ3
R

))
. (51)

The same set of Higgs terms applies also to stacking three of
the (22) phases or (12) phases.

3. Stacking two (11) and a (22), or vice versa

The above results already give us hints of a group structure.
However, to prove our point, we consider also this case. It
turns out that this is again completely gapped. One choice of
the complete set of Higgs terms is given by

S11⊕22⊕11
E =

∑
m1,m2,m3∈Z

Cm1,m2,m3 cos
(
3m1

(
φ1

L + φ2
L

)
+ 3m2

(
φ2

L + φ3
L

) + 3m3
(
φ1

R − φ2
R + φ3

R

))
. (52)

Having looked at the stacking above, we can recognize
that the emerged group structure corresponds to a Z3, if we
identity (11) and (22), which is justified from the fact that
stacking three layers of (11) or two layers of (11) with one
layer of (22) both lead to a gapped phase. The (12) phase is
the inverse of both (11) and (22), again pointing to identifying
(11) and (22) in this group structure. (We note that we have
not defined carefully the procedure to preserve the GSD |K|
as in the case of the Z2 gauge theory and double-semion
model. However, the similarity with the previous case makes
it sufficiently evident that it should work very similarly here.)

VI. SEP PHASES INVOLVING THE ROTATIONS
OF QUASIPARTICLES

As already mentioned while we analyzed the Z2 gauge
theory and semion model in detail, there are interesting choices
of symmetry transformation involving a transformation matrix
Wg that is not the identity. Such a possibility was already
explored in the K matrix construction of SPT phases without
topological order.3 When there is topological order, such trans-
formations have a particularly vivid physical interpretation.

A. A return to Z2 theories with Z2 symmetry

Let us return to the Z2 gauge theory with K matrix
2σx and recall that the allowed choice of Wg = σx which

implements a global Z2 symmetry on the theory. Its action on
the φ is accordingly φ → Wg −1φ, which alternatively acts
on the charge vector l as l → Wg T l. Recall that lT = (10)
corresponds to the “electric” excitation, and that lT = (01)
the “magnetic” excitation, this suggests that the action of
Wg = σx is precisely to exchange the anyons, implementing an
electric-magnetic duality in this case. In fact, more generally,
whenever Wg 	= 1 it permutes the anyon excitation. Such
a symmetry operation is nonlocal and is not considered in
Ref. 16.

We note also that whenever Wg 	= 1, only eigenvectors of
Wg could stay invariant, up to a sign (since determinant of
Wg = ±1). However, since Wg is directly proportional to the
K matrix (and its inverse) itself, it implies immediately that
these eigenvectors cannot be self-null at the same time. In
other words, no condensable bosons could be left invariant
by Wg the Z2 gauge theory or the semion model. Therefore,
all of these phases have nontrivial edges, and no amount of
stacking among these phases can lead to a gapped edge. In this
case, Wg can be either σx or −σx , indicating a Z × Z group
of phases with gapless states. Note that, as compared to our
discussion in Sec. IV C, where a Z class is referring to the fact
that we keep getting new phases as we stack phases on top
without ever hitting a phase with trivial edge, in the current
case we have relaxed our definition of a quasigroup structure
of phases because we do not define a corresponding procedure
to remove part of the system to preserve the torus GSD |K|;
hence, strictly speaking, these extra phases may not belong to
SEP(Z2 × Z2,Z2).

The same consideration applies equally to the semion
model, except that an admissible choice of Wg which keeps its
K matrix invariant is given by ±σz, indicating also a Z × Z
group of SEPs.

B. More exotic examples: Z2 ×Z2 symmetries
in Z2 gauge theories

Such a global symmetry is considered also in Ref. 17. When
the symmetry group is a direct product of groups, one could
imagine that there are several relations among the groups. In
the case of Z2 × Z2, it amounts to the following:

g2
L = 1, g2

R = 1, gLgRgLgR = 1, (53)

where gL and gR are, respectively, in the left and right Z2

factors of the global symmetry. For each relation, one needs not
have the same choice of {W e,dφe} replacing the action of the
identity, up to some consistency constraints. Had we chosen,
however, WgL = WgR = 1 as in the previous sections, the only
transformation has to come from the shifts dφ. We would end
up with the statement that the operators implementing gL and
gR necessarily commute. The analysis that follows from taking
WgL = WgR = 1 would be very much similar to what we have
already considered in the previous sections, which we do not
repeat here.

The choice of WgL = WgR = 1 indeed does not exhaust
all the possibilities. Particularly, as we inspect the examples
given in Ref. 17, models have been directly constructed
where the symmetry transformations implementing gL and
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gR anticommute. Before diving into a thorough comparison
of the K matrix construction with other constructions, we
would like to explore such a possibility in K matrix con-
struction, specifically by understanding the Z2 topological
theories.

Therefore, to construct a model such that the action of the
generators gL and gR satisfy nontrivial commutation relations
and at the same time allowing for the possibility that charges
fractionalize, WgL 	= WgR . Let us therefore consider K = 2σx

and make the following choice

WgL = 1, WgR = σx. (54)

The corresponding dφgL and dφgR are then given by

dφgL = π

(
t1 + nL

1

2
,t2 + nL

2

2

)T

,
(55)

dφgR = π (δ1,δ2)T , δ1 + δ2 = nR
2 (mod 2),

where n
L(R)
1,2 correspond to the identity action dφe we choose

for the group relation g2
L(R) = 1, and that for consistency we

require also that nR
1 = nR

2 .
One could now compare the action of gLgR and that of

gRgL. They now lead to different shifts, which are given by

dφgLgR = π

2

(
nL

1 + 2t1 + 2δ1,n
L
2 + 2t2 + 2δ2

)T
,

(56)
dφgRgL = π

2

(
nL

2 + 2t2 + 2δ1,n
L
1 + 2t1 + 2δ2

)T
.

These relations demonstrate the following. First, that t1 and
t2 can now make a difference since they can determine the
eigenvalue of dφgL under WgR = σx . Second, it is clear
that the action of gL and gR on a fundamental anyon
[i.e., (1,0)T or (0,1)T ] can be anticommuting if dφgL is an
eigenvector of σx with eigenvalue −1. Nevertheless, such a
commutativity is most natural when the representation of gL

is, in fact, projective; otherwise, a linear representation, which
has nL

1 = nL
2 = 0, would imply that the action of dφgLgR on a

fundamental anyon produces a factor of exp(π ) while that of
dφgLgR a factor of exp(−π ), which are, in fact, identical.

There is, however, one special situation where fraction-
alization is not necessary for anticommutative actions on a
fundamental anyon, which is achieved by taking t1 = 1,t2 = 0
and that δ1 = δ2 = 1. In which case,

dφgLgR = π (2,1)T , dφgRgL = π (1,2)T . (57)

One can see that each fundamental anyon acquires the opposite
sign under the action of gLgR and gRgL. In this case also, since
WgR is proportional to the K matrix and also its inverse, the
edges cannot be trivially gapped.

VII. SEP(Z4 ×Z4,Z2) PHASES

We now consider the case where we incorporate a globalZ2

symmetry into the topological phases described by the theories

defined by a family of eight K matrices:

K =

⎛
⎜⎝

−2n1 2 n2 0
2 0 0 0

−n2 0 −2n3 2
0 0 2 0

⎞
⎟⎠ ,

(58)

K−1 = 1

4

⎛
⎜⎝

0 2 0 0
2 2n1 0 n2

0 0 0 2
0 n2 2 2n3

⎞
⎟⎠ ,

where n1,n2,n3 ∈ {0,1}. These K matrices all have |K| = 16,
indicating that there are 16 quasiparticle types in theory defined
by each such K matrix. If n2 = 0, it is clear that these K

matrices turn out to be the direct sum of the 2 × 2 K matrices
in Sec. IV; hence, we can infer that with Z2 global symmetry
incorporated, the SET phases will be just those already found
in SEP(Z2 × Z2,Z2). New phases with nontrivial boundary
modes may thus appear only if n2 is turned on, such that the
K matrix is not block diagonal. We arrange the three integers
n1 through n3 into an array [n1n2n3] and use this to denote the
eight cases to be studied.

A. Fusion and gauge groups

In this basis of the K matrices, a generic quasiparticle l =
(l1,l2,l3,l4) has its components l1 and l3 labeling the charges
and l2 and l4 labeling the corresponding fluxes.18 The self-
statistics is
θl

π
= l1l2 + 1

2

(
l2
2n1 + l2l4n2 + l2

4n3
) + l3l4 (mod 2), (59)

which obviously can take values in {0,1/2,1,3/2}. Hence,
there are 16 elementary quasiparticles all told, consistent with
|det(K[010])| = 16. We would not record all these elementary
quasiparticles here but note that they can be obtained by
allowing l1 through l4 in Eq. (59) to be either 0 or 1 and
grouped by their self-statistics.

The fundamental quasiexcitations are the two charges,
e1 = (1,0,0,0) and e2 = (0,0,1,0), and the two fluxes, m1 =
(0,1,0,0) and m2 = (0,0,0,1). These four fundamental excita-
tions all have the bosonic self-statistics but not trivial mutual
statistics with all other quasiparticles, as can be easily checked.
However, they can fuse to physical bosons. We would like to
nail down the general charge vectors of bosons in terms of
these fundamental excitations, which also allows us to read off
the fusion algebra of the quasiparticles in this theory.

Let lB = (l1,l2,l3,l4)T be a generic boson and l′ =
(l′1,l

′
2,l

′
3,l

′
4)T an arbitrary quasiparticle; their mutual statistics

is

θlB l′

π
= l2l

′
1 +

(
l1 + l2n1 + l4n2

2

)
l′2

+ l4l
′
3 +

(
l2n2

2
+ l3 + l4n3

)
l′4, (60)

which must be 0 (mod 2). The terms in the above equation are
grouped as in the second row therein because the free variables
are l′1 through l′4, whereas l1 through l4 are constrained such
that the mutual statistics is trivial. Now that l′1 through l′4 are
free and independent, the four terms in the second row of
Eq. (60) must be equal to 0 (mod 2) individually. We then
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infer that the most general constraints on l1 through l4 are
l2 = 2b, l3 = 2c − bn2, l4 = 2d, and l1 = 2a − dn2, where
a,b,c,d ∈ Z are free integer parameters. Quite naturally, these
constraints are independent of n1 and n3. Thus, the physical
bosons of the theory take the following general form:

lB = (2a − dn2,2b,2c − bn2,2d), a,b,c,d ∈ Z. (61)

We can thus identify the following four elementary bosons:

(2,0,0,0),(0,2,−n2,0),(0,0,2,0),(−n2,0,0,2). (62)

The fusion algebra is generated by the fusion rules of the
previously defined four fundamental quasiparticles, namely
e1, e2, m1, m2. Since bosons are considered equivalent to the
trivial particle 0 = (0,0,0,0) in the fusion algebra, Eq. (62)
leads to the relations

e1 × e1 = 0, e2 × e2 = 0,
(63)

m1 × m1 × (e2)n2 = 0, m2 × m2 × (e1)n2 = 0,

where the exponent is formal, meaning that (ei)
0 = 0 and

(ei)
1 = ei , i = 1,2. It is straightforward to check that the fusion

algebra F[n1n2n3] of the 16 quasiparticles respecting the above
relations turn out to be

F[n1n2n3] =
{
Z4 × Z4, n2 = 1,

(Z2 × Z2) × (Z2 × Z2), n2 = 0.
(64)

These two fusion groups can also be verified by the projec-
tive representation {W e,dφe} of the identity of whichever
global symmetry is to be incorporated, as we now show.
Since this identity must preserve any boson up to a 2π

shift, namely, lIBφI → lIBφI + lIBdφe
I = lIBφI (mod 2π ), we

immediately have W e = 14 and the following constraint on
dφe:

lIBdφe
I = 2adφe

1 + b
(
2dφe

4 − n2dφe
1

) + c
(
2dφe

2 − n2dφe
3

)
+ 2ddφe

3 = 0 (mod 2π ), (65)

where lTB takes the general form in Eq. (61) and the terms are
grouped by the free integer parameters a through d. As such,
each term in Eq. (66) should be 0 (mod 2π ). Clearly, dφe

1 and
dφe

3 can always be either 0 or π , and their value determines
the possible values of dφe

4 and dφe
2, respectively. It is therefore

not hard to write the allowed dφe in a compact form as

W e = 1, dφe = π

⎛
⎜⎜⎝

t1

t2 + t3
2 n2

t3

t4 + t1
2 n2

⎞
⎟⎟⎠ , ti=1,...,4 ∈ {0,1}, (66)

which readily generate additively (mod 2π ) the fusion group
Z4 × Z4 if n2 = 1 and the group (Z2 × Z2) × (Z2 × Z2)
otherwise, as those in Eq. (72). Again for Gs generated by
a single generator, the possible “gauge group” Ng involved in
extending Gs is generated by a dφe with one specific choice
of t1 through t4. There are only two possibilities:

Ng =
{
Z4, t1n2 	= 0 or t3n2 	= 0,

Z2, otherwise.
(67)

B. Case with [n1n2n3] = [0n20]

Seen from Eq. (66), n2 dictates whether the K matrix
K[n1n2n3] has two decoupled blocks and thus the form of the
fusion group. Since n1 and n3 play no role in the fusion group,
let us set them to zero; i.e., we have [n1n2n3] = [0n20] = [n2].
The K matrix in Eq. (58) becomes

K[n2] =

⎛
⎜⎝

0 2 −n2 0
2 0 0 0

−n2 0 0 2
0 0 2 0

⎞
⎟⎠,

(68)

K−1
[n2] = 1

4

⎛
⎜⎝

0 2 0 0
2 0 0 n2

0 0 0 2
0 n2 2 0

⎞
⎟⎠.

The GL(4,Z) transformations that preserve K[010] are the
matrices

Xα = ±
(

12 αδ21

−αδ21 12

)
, Xβ = ±

(
12 (β − 1)δ21

βδ21 −12

)
,

Xγ = ±
(

γ δ21 12

12 −γ δ21

)
, Xλ = ±

(
(λ − 1)δ21 12

−12 λδ21

)
,

(69)

where 12 and δ21 are, respectively, the 2 × 2 identify matrix
and the 2 × 2 matrix ( 0 0

1 0 ), and α,β,γ,λ ∈ Z parametrize an
infinite family of these X matrices.

According to Eqs. (61) and (65), we immediately see that in
the absence of global symmetry, all edge modes can be gapped
by condensing any of the sets of bosons

A1 := {(0,2b,2c − n2b,0)| b,c ∈ Z}, (70a)

A2 := {(2a,0,2c,0)| a,c ∈ Z}, (70b)

A3 := {(2a − dn2,0,0,2d)| a,d ∈ Z}, (70c)

or any set in the following two infinite one-parameter families
of sets Bp∈Q and Bq∈Q:

Bp :=
{

(−2cp,2b,2c − bn2,2bp)

∣∣∣∣p ∈ Q,

b,c,bp ∈ Z, n2
bp

2
− cp ∈ Z

}
, (70d)

Bq :=
{

(−2dq,2b,2bq − bn2,2d)

∣∣∣∣q ∈ Q,

b,d,bq ∈ Z, n2
d

2
− dq ∈ Z

}
. (70e)

Note that if n2 = 0, the system is only a stack of two copies
of the toric code model that is studied in our first example;
hence, the above sets in Eq. (70) of independent, condensable
bosons will recombine to merely four sets, each of which
consists of one of the four combinations of the independent
bosons, respectively, in the two toric code models with Z2

symmetry.

1. Representations of the Z2 global symmetry

Similar to previous examples, for Z2 global symmetry
to be incorporated, we look for (projective) representations
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{Wg,dφg}g∈Z2 of the Z2 global symmetry group that trans-
forms the fundamental fields but may allow certain indepen-
dent Higgs terms. We should first demand that for all g ∈ Z2,
(Wg)2 = 14 and (Wg)T K[n2]W

g = K . The latter condition
guides us to find the correct Wg matrices from the X matrices
in Eq. (69); hence, we obtain Wg = ±14, Xβ,Xγ . We are
interested in inequivalent Wg transformations, and since Wg =
Xβ and Wg = Xγ are are related by a GL(4,Z) transformation
preserving the K matrix, as X−1

λ Xγ Xλ = −Xβ , they are,
in fact, equivalent and will not be considered separately.
Moreover, for any value of γ , one can always apply a GL(4,Z)
transformation by certain X matrix in Eq. (69) that preserves
the K matrix, while keeping the form of dφe in Eq. (66) up to
redefinition of the parameters t1 through t4, to set γ = 0 in Xγ .
Thus, we conclude with the inequivalent Wg transformations

Wg = ±14, Wg = Xγ=0 = ±12 ⊗ σx, (71)

where σx is the usual Pauli matrix and ⊗ the usual matrix
tensor product. Note that the matrices with a + sign and a −
sign in the front are not equivalent to each other under the
transformation in Eq. (14).

Before we proceed to nail down the corresponding dφg , let
us remark on the behavior of Wg = ±12 ⊗ σx . The action of
Wg on a quasiparticle l is given by (Wg)T l, and to manifest
the physics we let l = (e1,m1,e2,m2), where e1 and m1 (e2 and
m2) are, respectively, the charge and flux associated with the
first Z2 (second Z2) gauge group of the total Zz × Z2 gauge
group. Then for Wg = 12 ⊗ σx we have

(Wg)T l = (±12 ⊗ σx)T l = ±

⎛
⎜⎝

e2

m2

e1

m1

⎞
⎟⎠, (72)

which signifies a nonlocal exchange of the two types of
dyons, (e1,m1,0,0) and (0,0,e2,m2), respectively, of the two
Z2 sectors of the gauge group. Such a nonlocal exchange
transformation by the global symmetry is evidently beyond
the scope of symmetry fractionalization, as also reported in
Ref. 17. Note that this exchange transformation exists for any
choice of [n1n2n3], even if n2 = 0.

We now solve for dφg . Since in any extension of Z2 by
Z2 × Z2 the latter exists as a normal subgroup, the group
compatibility conditions demand that

(1 + Wg)dφg = dφe (73)

for any dφe in Eq. (65). We solve the above equation for dφg

in different cases of Wg .
(i) Wg = −14. Equation (73) has the unique, inequivalent

solution dφg = 0 and t1 = t2 = t3 = t4 = 0 must be set in
dφe. Since cos(lI dφ

g

I ) is invariant under Wg = −1, the global
symmetry Z2 does not transform the quasiparticles at all,
implying that the edge modes can be completely gapped out,
resulting in a boundary-trivial phase that is identical with the
phase without the global symmetry.

(ii) Wg = 14. The solution of Eq. (73) clearly is

dφg = π

⎛
⎜⎝

p1

p2

p3

p4

⎞
⎟⎠ + 1

2
dφe, pi=1,...,4 ∈ {0,1}. (74)

This nontrivial shift vector, in general, prevents the edge modes
from being fully gapped, as it forbids any of the sets of
independent variables in Eq. (70). Special cases do exist; e.g.,
t1 = t3 = 0 in dφg would allow the entire set A2 to condense,
resulting in a boundary-trivial phase. Nevertheless, a thorough
study of all boundary-nontrivial phases and their quasigroup
structure in this case turns out to be rather complicated because
we lack a convenient and systematic algorithm for computing
the new sets of independent, condensable bosons in a stacking
of many phases for large-size K matrices. While we are not
able to unveil the full quasigroup structure of the phases in this
case, we do have a partial result to summarize as follows, but
include the details in Appendix A.

A study of how the independent bosons in Eq. (70)
transform by the shift vector in Eq. (74) shows that the
relevant parameters in Eq. (74) are t1, T2 = t2 − n2p3, t3, and
T4 = t4 − n2p1, where new parameters T2 and T4 are defined
in terms of the old ones. As such, our experience tells us that
we can label all possible phases by the values of the string
[t1T2t3T4], leading to 16 phases. Tabulated in Appendix A, 12
out of these 16 phases actually have a fully gapped edge state
without symmetry breaking. There are four edge-nontrivial
phases remaining in Eq. (A4) with a nontrivial edge:

[t1T2t3T4] =

⎧⎪⎨
⎪⎩

[1010]
[1011]
[1110]
[1111]

. (75)

We have not explored the quasigroup relations between these
four phases, which gets cumbersome as larger K matrices are
involved. This should be worth a future attempt.

(iii) Wg = ±12 ⊗ σx . In this case, one can apply the
equivalence transformation in Eq. (14) first to turn arbitrary
dφg into a common simpler form by removing any redundancy.
It is not hard to show that by choosing X = 1 in Eq. (14), for
any dφg , one can always find a shift �φ to eliminate the first
two components of the dφg , without affecting Wg . As such,
one can assume that, in general, dφg = (0,0,x,y)T , where x

and y are to be solved. The equation above now becomes
(±x,±y,x,y)T = dφe, which is soluble only when t1 = ±t3
in dφe, leading to

dφg = ±π

⎛
⎜⎜⎝

0
0
t1

t2 + t1
2 n2

⎞
⎟⎟⎠ , (76)

with constraints t1 = ±t3 and t4 = ±t2 on dφe enforced.
Interestingly, however, since this dφg does not yield any

nontrivial shift to the boson variables in the set A2 in Eq. (70b),
as lIA2

dφ
g

I ≡ ±2πct1 = 0 (mod 2π ),∀ lA2 ∈ A2, one can gap
out all the edge modes by condensing the independent Higgs
terms constructed from the bosons in set A2 as∑
a,c

Ca,c

∫
dtdx

{
cos

[
2
(
aφe

1 + cφe
2

)] + cos 2
(
aφe

2 + cφe
1

)]}
,

(77)

where φe
1(2) are respectively the electric edge modes associated

with, respectively, the left and the first and the second Z2

factors of the Z2 × Z2 gauge group. Therefore, despite a
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nontrivial exchange of the two quasiparticle types under
Wg = ±12 ⊗ σx and even symmetry fractionalization due to
the nontrivial dφg , the corresponding phase remains boundary-
trivial.

VIII. BEYOND CENTRAL EXTENSION

Our examples in the previous two sections demonstrate
some novel features in the transformation properties of anyons
when one relaxes a crucial requirement imposed in Ref. 16,
namely that the symmetry operators transforming the anyons
have to be local. In the previous two sections, we have provided
several examples where the exchange of anyons, a glaringly
nonlocal transformation, can give rise to more exotic phases,
some of which, for example, have already been reported in
Ref. 17.

There is another important class of phases which also
generally involve nonlocal transformation of the anyons.
Reiterating Ref. 16, restrictions to local transformations have
led to a classification of phases via different allowed projective
representations consistent with the fusion rules. That, in other
words, is equivalent to a classification of different central
extensions of the global symmetry group Gs by an Abelian
gauge group Gg that is taken to be the fusion algebra Gg = F

of the topological phase on top of which global symmetry
is built.16 The restriction to central extensions has been
raised to include more general group extensions.18 In this
case, the global symmetry group becomes the quotient group
Gs = G/Gg , and the gauge group is the normal subgroup of
a bigger group G. Different phases correspond to different
choice of the total group G for given Gs and Gg . In this
construction, Gg is no longer the center of the group G, and so
one does not expect the group action of Gg and Gs to commute.
From the previous sections, therefore, it almost immediately
follows that such group actions necessarily involve exchange
of anyons. In fact, the examples in the previous sections can be
understood within this framework of general group extension.

In this section we would like to make such a construction
within the K matrix framework more explicit and illustrate
these principles using a particular set of examples, where the
total group G is chosen to be one of the dihedral groups DN

for some odd N .

A. Step 1: Obtaining a linear representation of G

The virtue of identifying a total group G in the classification
of phases with symmetry is that any nontrivial or nonlinear
transformation under the action of the global symmetry group
Gs can be reduced to a simple linear group action in a suitable
G. Here, we focus our attention on realizing G = DN for N

odd via K matrices.
In DN one can specify each group element by a pair (A,a),

where A = ± and a = {0,1, . . . ,N − 1}. Group multiplication
between two such pairs is given by

(A,a) · (B,b) = (A · B,(Ab + a)modN ). (78)

A representation of each group element (A,a) is given by
(W (A),dφa), where W (+) = 1 and for some nontrivial W (−)

that keeps the K matrix invariant and that (W (−))2 = 1. On
the other hand, dφa = 2πa

N
dφ(−), where dφ(−) is an eigenvector

of W (−) with eigenvalue −1. The aggregate action of (A,a) ·
(B,b) is then given by

W (A)(W (B)φ + dφb) + dφa = W (A)W (B)φ + W (A)dφb + dφa.

(79)

Since dφb is an eigenvector of W (A) with eigenvalue A

and components of φ are defined only up to multiples of
2π , we conclude that the above representation is a faithful
representation of DN .

In the special case where K = Nσx , for example, W (−) can
be chosen to be W (−) = σx , and dφ(−) T = (1,−1).

B. Step 2: Identifying the normal subgroup
with the gauge group

Having constructed a linear representation, we would then
have to identify a normal subgroup Gg of the total group G

such that the group action of Gg is taken to be unphysical. In
other words, Gg is taken as some kind of gauge group that
does not have any visible effect on any physical, or gauge
invariant, excitations. Therefore, admissible Gg is strongly
restricted by the fusion group F. In fact, they are embedded
inside F. In other words, the normal subgroup Gg can only be
chosen whose group action on physical bosons in a K matrix
theory is trivial, i.e.,

lTB(Wgφ + dφg) = lTBφ (mod 2π ). (80)

Now we return to our dihedral group DN . Suppose we would
like to pick the ZN normal subgroup as our gauge group.
This ZN subgroup consists of pairs (A = +,a), where the first
component is +. The group action is then given by {W (+) =
1,dφa}. This can be admitted as a gauge group only if lTBdφa =
0 (mod 2π ). This already suggests that ZN must be at least a
subgroup of the fusion group. For example, K = Nσx , where
lTB = N (n1,n2), for any ni ∈ Z, and dφa = 2πa/N (1,−1)T ;
indeed we have lTBdφa = 0 (mod 2π ), and therefore we are
allowed to take ZN to be the gauge group.

C. Step 3: Implementing the global symmetry group

The global symmetry Gs = G/Gg . In this case, where G =
DN and Gg = ZN , Gs = Z2. The group elements of Gs are
the cosets of G with respect to Gg . The identity element of Gs

is the coset which is, in fact, spanned by the normal subgroup
Gg itself. In this case, therefore, it comprises all the pairs
(+,a). Other cosets are generated by the normal subgroup by
left multiplication gg × g, gg ∈ Gg , and g ∈ G. We note that
right multiplication would yield identical cosets for normal
subgroups Gg . The other nontrivial coset corresponding to the
nontrivial element in Gs = Z2 is the set of pairs (−,a).

Now, the final step is to pick any representative in one of the
nontrivial coset, whose group action is now interpreted as that
of the global symmetry group. It automatically acts nonlinearly
on the anyons. Its action is closed as a group, up to group action
of Gg , which is now so aligned with the fusion algebra F that
physical bosons transform trivially. For our example at hand,
we can take the generator of Gs = Z2 for K = Nσx to be
{σx,

2πa
N

(1,−1)T } for any a ∈ {0,1, . . . ,N − 1}. Note that the
shift 2πa/N (1,−1) on any boson leads to shifts proportional
to 2π . Therefore, we need only to worry about W (±). Given
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that W (−) = σx , it immediately reduces to a situation we have
encountered already in Sec. VI A, where not a single edge
mode can be gapped as we continue stacking; hence, in this
case, the quasigroup of the phases is Z.

We note that the idea of central extensions works in
precisely the same way, except that the group action is
restricted to be commutative. Here we demonstrate how a
nontrivial group extension can be implemented within the
framework of K matrix construction.

IX. COMPARISON WITH OTHER WORKS

Endowing topological phases with symmetry is a novel and
important question that has been a subject of much interest
recently. In the previous sections, we have provided yet another
construction of these phases based on K matrix. Among the
scenarios we have studied, various have already been discussed
in the literature. We would therefore like to make a comparison
with known results.

A. Comparison with Ref. 16

To begin with, we comment on the relationship of our work
with that in Ref. 16. In Ref. 16, the main targets are Abelian
topological phases endowed with global symmetries whose
action is localized near the vicinity of the anyons excited
in the system. In those cases, it is demonstrated that the
anyons can transform under projective representations of the
symmetry group concerned. These projective representations
are consistent with fusion rules, namely that the identity
element must act trivially on any physical bosonic excitations,
even if the bosonic state is a composite of fused anyons.
This constrains the possible projective representations allowed
for individual anyons. There are limited choices of how the
identity element of the symmetry group can act on any anyon.
In our explicit construction via K matrices, it is clear that the
requirements on dφe coincide with the discussion of allowed
action of the identity element. Among all the specific cases we
studied, of G = ZN gauge theories and their twisted versions
such as the double-semion model for N = 2, every single
consistent choice of projective representations as dictated in
Ref. 16, which are classified by H 2(Gs,F), is realized in our
constructions.

B. A comparison with Ref. 18

It is also of interest to compare our work with Ref. 18.
In Ref. 18 it is proposed that a systematic construction of
topological phases with symmetry is to consider topological
terms of SPT theories with symmetry group G, whose normal
subgroup N is subsequently gauged. Such a theory should
describe a topological phase with global symmetry given
by the quotient group Gs = G/N . Specific examples where
G = Z4 and separately Z2 × Z2 are considered, in which
N and Gs are both Z2 in each case. Therefore, these two
possible G’s correspond to different (central) extensions of
the global symmetry group. Moreover, for each choice of
G there are several choices of topological terms, classified
by H 3[G,U (1)]. They led to many different possible phases.
One distinguishing feature between these different phases
constructed is the braiding of excitations around magnetic

charges of the global symmetry group; by magnetic charges,
they really correspond to multivalued field configurations with
branch cuts that end at a branch point. In the K matrix
construction, however, all field configuration is single valued,
and these extra braiding statistics are invisible to us. If
we ignore them, then there is a one-to-one correspondence
between the phases we constructed and the phases studied
there. In the case where G = Z4, there are four phases
constructed in Ref. 18, which is parameterized by a topological
term with coefficient m which can take values in {0,1,2,3}. The
correspondence with our construction is as follows:

m = 0, T10,

m = 2, T11,
(81)

m = 1, S01,

m = 3, S10.

On the other hand, when G = Z2 × Z2 there are eight phases
with three independent topological terms, each parametrized
by a coefficient ni = {0,1}, for i = {1,2,3}. It is demonstrated
there18 that fractionalization occurs if and only if n2 is
nonvanishing. There are four phases, therefore, that admit
fractionalization, and again each of them directly corresponds
to our construction:

(010), T01,

(110), T01,
(82)

(011), S11,

(111), S11.

We note that in the above, two phases are mapped to the same
K matrix phase because, as emphasized already, these phases
differ only if magnetic charges of the global symmetry are
visible, which they are not in our K matrix construction. It
is perhaps also surprising that here all the phases have trivial
edge excitation.

We finally note that the general proposal of Ref. 18
generalizes the classification of phases via central extension
to a general group extension of the global symmetry group
Gs , although explicit examples considered there lie within
the framework of central extension. In this work we provide
first such examples of a general group extension realizing the
proposal in Ref. 18.

C. Comparison with Ref. 17

Finally, we would like to comment on the relationship of
our work with that of Ref. 17. In Ref. 17, a (lattice) topological
gauge theory as defined in Refs. 37 and 38 is taken as a starting
point, whose gauge group G is chosen to be a direct product of
G and Gs . The action amplitude of the theory is characterized
by difference choice of “topological terms” ν which are group
cocycles in H 3[G,U (1)]. The Gs part is then ungauged, by
restricting field configurations to be pure gauge; i.e. for each
field configuration where degrees of freedom sit on the links
of the lattice, each of which labeled by a pair (gg,gs), where
gg ∈ G and gs ∈ Gs , each gs at a particular link in the collection
of degrees of freedom can always be written as gs = sis

−1
j ,

where si,j ∈ Gs and i,j label the vertices connected by the link
concerned. In other words, each set of link variables {gs} can be
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replaced by a set of vertex variables {si}. G, however, remains
gauged, supplying the long-range entanglement needed in a
topological phase. It is observed in various explicit examples
that the pure electric excitations always transform linearly
under Gs , and that by picking different topological terms ν,
magnetic or dyonic excitations of G can transform nonlinearly.
In particular, anyons can transform in different nontrivial
representations of the global symmetry group Gs , including
the projective representations as discussed in Ref. 16, but not
restricted to them.

We specifically wish to comment on two of our examples
which are motivated by observations in Ref. 17. Before that,
one should note the role played byG in these topological gauge
theory constructions. In particular one should be cautious
and observe that the residual gauge group G is not to be
confused with the fusion algebra F between all the anyons.
As already emphasized in our overview of the paper, G is
the “deconfined” gauge group, and it is (subgroups of) F

that is often being identified as the gauge group in Ref. 16,
which we have denoted Ng throughout most of our paper.
It is, however, as expected that in these models, G forms
the subfusion algebra involving only the pure electric exci-
tations. Without going into technical details, we can identify
the K matrix description that corresponds to G = Z2 and
Gs = Z2 × Z2, which is discussed in Sec. VI B. We found
examples where the action of the generators of the two
Z2 symmetries anticommute. In Sec. VII, we also found
examples corresponding to G = Z2 × Z2 and Gs = Z2, where
the group action of Gs is manifestly nonlocal and exchange
the gauge electric and magnetic charges between the two Z2

gauge groups. Both of these cases are considered in Ref. 17
and where such novel transformations are also observed. As
mentioned above, while these novel transformations are absent
among pure electric charges in Ref. 17, they are ubiquitous
in the K matrix construction, which naturally provides the
flexibility to incorporate nonlinear transformations on any
excitations, as long as they are consistent with the full fusion
algebra. For this reason, our specific choice of the group
action on the electric and magnetic charges may not generally
coincide with the examples in Ref. 17. We believe that the
distinction between electric and magnetic excitations there
is an artifact of the topological gauge theory construction.
Given the direct connection between G and the fusion algebra
of purely electric excitations, one realizes that to achieve
nontrivial transformations also among pure electric charges
in the framework set forth in Ref. 17, one is compelled to
consider topological gauge theories where G is taken to be a
nontrivial extension of Gs by G other than the direct product
that is being considered.18

X. DISCUSSIONS AND OUTLOOK

In this paper, we have been studying intrinsically topo-
logical phases endowed with a global symmetry—the SEPs
as we dubbed—aiming at their classification and edge-state
properties, by means of the celebrated K matrix formulation
of effective theories of Abelian topological order. While
methodologically we extend the application in Refs. 3 and 4
of K matrices in classifying SPT phases to LRE phases
with symmetry, we systematically adapt and integrate several

principles introduced in Refs. 3, 16–18, and 39, particularly
of how a global symmetry may transform the anyons in
a topological phase. These principles and the K matrix
method guide us to constructing examples of SEPs, along with
clarifying a few important conceptual questions, particularly
the roles that various different groups play in classifying
different phases. As noted in Ref. 16 it is the fusion group
F of the anyons under consideration that constrains the action
of a global symmetry Gs , in a way such that the identity
of Gs acts trivially on any physical bosons although it may
transform any individual anyon exotically, in which case the
anyons may undergo local symmetry charge fractionalization
and perhaps accompanied by nonlocal transformations such as
anyon exchange. The “gauge group” Ng involved in extending
Gs is a subgroup of F that is projected (as the kernel of the
projection map) into the identity of Gs and thus preserves
the bosons, which indicates the existence of a larger group G

that contains Ng as its normal subgroup and Gs is its quotient
group G/Ng = Gs . Therefore, two different Gs actions do not
commute in general, nor does the action of Gs and that of Ng ,
as shown in some of our examples.

The K matrix approach offers a convenient way of analyz-
ing the relations among the SEPs by stacking the phases, in the
sense of arranging the K matrices, respectively characterizing
the phases into a direct sum and the corresponding Gs

representations in a direct sum in the same order. In the
examples we have shown, the various SEPs for a given F

and Gs constitute a quasigroup structure. In particular, in the
case with F = Z2 × Z2 and Gs = Z2, as explained in Sec.
IX B, the phases in the corresponding quasigroup are identified
with the phases under the same setting in Ref. 18. To emphasize
the prominent role F plays in these SEPs we label the phases
accordingly as SEP(F,Gs). This notion not only covers the
symmetry enriched LRE phases but also embraces the SPT
phases: The fermionic SPT phases with a given symmetry Gs

comprise SEP(Z2,Gs) because the fusion group of fermions is
Z2, whereas the bosonic SPT phases all fall into SEP(Z1,Gs)
because bosons have trivial fusion group Z1.

Most of the examples we constructed are inspired by
Ref. 17, but there are important differences that should be noted
in our construction and discussion. First, we have carefully
defined the notion of “gauge group.” In particular, similar to
Ref. 16, it is what we denoted Ng that is pertinent, whereas in
Ref. 17, the term “gauge group” refers exclusively to what we
have denoted G. Second, the constructions in Ref. 17 give rise
only to flux fractionalization; however, the K matrix method
treats charge and flux on an equal footing, naturally allowing
charge, flux, and dyons to fractionalize simultaneously.

The K matrix method has another virtue: It enables us
to study the fate of the edge modes explicitly, obtaining
the condition when a phase may have gapless edge modes
protected by the symmetry. Seen in the examples we con-
structed, symmetry charge fractionalization or more exotic
transformations of the anyons under global symmetry in a
LRE phase is neither a sufficient nor a necessary condition for
the phase to possess nontrivial edge states. Although we do not
know if these phases that have trivial edges, despite displaying
exotic transformations under the action of the global symmetry,
may still be adiabatically connected to an LRE phase without
any symmetry, as far as the edge property is concerned, in the

195103-16



K MATRIX CONSTRUCTION OF SYMMETRY-ENRICHED . . . PHYSICAL REVIEW B 87, 195103 (2013)

quasigroup of all phases in a given SEP(F,Gs), we may treat
those phases having a trivial edge on an equal footing with the
phase with the same fusion group but without the symmetry,
as if they are projected into the identity of the quasigroup.

Our first example, i.e., SEP(Z2 × Z2,Z2), is also partly
discussed in Ref. 16, which already exemplifies the important
role the fusion group of anyons plays. We realized every phase
that appears in the classification in Ref. 16. Our construction,
however, also involves phases that do not appear in Ref. 16,
when we allow for nonlocal group actions that exchange
anyons. Furthermore, in Ref. 16, the classification of SEPs
is equivalent to the classification of the central extensions of
Gs by Ng; however, our examples also include a noncentral
extension of Gs = Z3 by Z2 to the dihedral group D3, as
anticipated in Ref. 18.

Inspired by Ref. 39, having observed that the various groups
involved in characterizing a SEP are related by F ⊃ G ⊃
Ng and G/Ng = Gs and that Ng acts trivially but Gs acts
nontrivially on the condensed edge modes, we are encouraged
to redraw our picture of SEPs as an example of the Hopf
symmetry breaking, first proposed and phrased in Refs. 28, 29,
and 39 to account for anyon condensations, generalizing Lan-
dau’s symmetry breaking. This new paradigm of generalized
symmetry breaking may become most suitable to cope with
the non-Abelian anyons endowed with a symmetry. We shall
report our detailed studies elsewhere.31

Let us close with a discussion of interesting questions that
should be more thoroughly addressed in the future. We now
describe them briefly below.

(1) While we have a detailed analysis of SEP(Z2 × Z2,Z2)
that probably exhausts all the phases in the class, our treatment
of other examples requires further analysis. Particularly it
would be of interest to explore whether a quasigroup structure
can be generally defined. At the moment it appears that the
order of any such quasigroup in ZN gauge theories grows at
least linearly in N , which makes an analysis very cumbersome
quickly. A more efficient method is necessary for a thorough
understanding.

(2) As far as clarifying a group structure of ZN gauge
theories is concerned, there is another specific question to be
addressed. In our first example, we have seen two different
models with topological order, i.e., the double-semion model
and the toric code model, which share the same fusion group.
When the same symmetry group is incorporated, they together
lead to a set of SEPs belonging to the same quasigroup: In
particular, the Z2 symmetric double-semion model acts as a
generator. These two models are actually described by the set
of K matrices ( 0 2

2 2n ) with a single paramter n = ±1, which
defines the double-semion model when n = 1 and the toric
code model when n = 0. In more general cases, a class of
different models of topological order can be specified by
a multiparameter K matrix. For instance, the K matrix in
Eq. (36) characterizesN models respectively for the N

values of the parameter l = 0, . . . ,N − 1. These models
have different fusion groups as in Eq. (40). Ultimately, this
parameter l labels the N 3-cocycles in the cohomology group
H 3[Zn,U (1)] that classifies the corresponding N models, we
are not able to answer at this moment the question of whether
the SEPs characterized by respectively the fusion groups in

Eq. (40) with the same symmetry group Gs would belong to
the same quasigroup in a nontrivial way, as opposed to simple
direct product of the quasigroups characterized respectively
by the N fusion groups and Gs . We are not able to answer
this question in general either and hence leave it for future
exploration.

(3) We have considered only discrete gauge groups and
unitary symmetries in this paper. It is of interest to construct
more cases with continuous symmetry groups Gs and also
those involving time reversal.

(4) Having observed nonlocal transformations of quasipar-
ticles under Gs , e.g., the dyon exchange discussed below
Eq. (72), and since nonlocality is rather intrinsic to non-
Abelian anyons, we look forward to extending our studies
to the interplay between non-Abelian topological order and
global symmetry. Unfortunately, this is beyond the reach of
the K matrix formalism and thus begs for new approaches.

(5) A recent paper by Vishwarnath and Senthil40 found that
some SET phases in 2 + 1 dimensions can only exist as the
boundary of some SPT phase in 3 + 1 dimensions. We have
realized some new phases based on general group extensions
using the K matrix. It would be interesting to understand if the
K matrix or strictly 2 + 1 models can exhaust all the phases
based purely on consideration of group extensions or whether
some extra phases are again only realizable as boundaries of
higher dimensional nontrivial phases.

(6) In the last stage of preparing this paper, we noticed a
very recent paper by Levin41 that studies the conditions that
allow for gapless edge states in a pure Abelian, nonchiral
topological order without any global symmetry. It turns out
that nontrivial edges can appear and that they are protected
by the quasiparticle braiding statistics in the bulk, instead of
by any symmetry. One such example is the ν = 2/3 fractional
quantum Hall system. The topological phases studied in our
paper, however, have fully gapped edges in the absence of
symmetry. It is of interest to extend our investigation to
incorporating global symmetry in these novel phases discussed
in Ref. 41.

As we finish our paper, we were informed of the work of Lu
and Vishwanath,36 which contains also substantial discussion
of Z2 gauge theories and the double-semion model enriched
by Z2 symmetry. The number of phases they have obtained
in cases restricted to local on-site symmetry action is exactly
twice ours. The extra phases there can be obtained by stacking
each of our phase, namely {T00,T10,T11,S00,S10,S01,S11}
on top of a nontrivial Z2 SPT phase, leading altogether to six
distinct T phases and eight S phases. It would be of interest to
understand possible extra phases also in the other constructions
we have in the current paper by stacking them with SPT
phases.
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APPENDIX A: PHASES IN SEP(Z4 ×Z4,Z2) WITH W g = 1

In this Appendix we explain how one may arrive at Eq. (75).
Given the experience we have gained by looking for condens-
able bosons in the other examples in this paper, here we shall
be as brief as we can. Taking the scalar product of the inde-
pendent bosons in the sets A1,A2,A3,Bp, and Bq in Eq. (70)
with the dφg in Eq. (74), we can find all the relevant terms
involving the parameters in dφg , which are the terms that are
not immediately equal to 0 (mod 2π ) and are tabulated as

A1 bT2 + ct3
A2 at1 + ct3
A3 at1 + dT4

Bp

(
bn2p

2
− cp

)
t1 + bT2 + ct3 + bpT4 − c′pt1 + c′t3

Bq

(
dn2

2
− dq

)
t1 + bT2 + bqt3 + dT4

+
(

d ′n2

2
− d ′q

)
t1 + d ′T4

,

(A1)

where T2 = t2 − n2p3 and T4 = t4 − n2p1. Note that the
coefficients in the last two rows of in the above equation must
meet the constraints in Eqs. (70d) and (70e). Now that the
only relevant parameters are t1, T2, t3, and T4, we can use a
string [t1T2t3T4] to label all possible phases in this case; hence,
there are 16 of them. Since the sets A1 to A3 are apparently
much simpler than the infinite families of sets, we first see
which among the 16 phases can have their edge modes fully
gapped by condensing the bosons in these simpler sets. It is
immediate from the first three rows in Eq. (A1), as long as any
one of the pairs (T2,t3), (t1,t3), and (t1,T4) is (0,0), one can
condense the bosons in the set whose relevant terms are turned
off by the corresponding vanishing pair of parameters. Thus,
the following phases have trivial edge modes as completely
gapped:

[t1T2t3T4] Condensable sets
[0000] Any one
[0001] A1 or A2
[0010] A3
[0100] A2 or A3
[0101] A2
[0110] A3
[1000] A1
[1001] A1

. (A2)

Now we have eight phases left. We have two infinite families
of sets at our disposal. Consider the family Bp first, if we
take p ∈ Z + 1

2 , i.e., half integers, the constraints c′p ∈ Z
and bp ∈ Z in Eq. (70d) demand that c′,b,c ∈ 2Z; hence,
we can let b = 2j , c′ = 2k and assume p = 1/2 for simplicity
without losing any generality, which renders another constraint
(bpn2/2 − cp) ∈ Z in Eq. (70d) as j = 2m + c with m ∈ Z.
With these in mind, the two relevant terms of Bp become(

jn2

2
− c

)
t1 + 2jT2 + ct3 + 2mT4 + cT4 − kt1 + 2kt3

= jn2

2
t1 + c(t3 + T4) (mod 2),

where an overall π factor is dropped. Then, clearly, if t1 =
0 and t3 + T4 = 2, the equation above automatically holds,
indicating that the edge modes in phases [0011] and [0111] can
be completely gapped out by condensing any set Bp∈Z+1/2.

Now let us turn to the family Bq . Since, as argued before
in Sec. VII B, n2 = 0 is equivalent to stacking two copies
of toric code model that is studied in our first example, we
focus on n2 = 1 from now on for simplicity. First, consider
q = (4k − 1)/2, k ∈ Z, according to Eq. (70e), this readily
constrains that b = 2j ∈ 2Z and that d ′/2 − d ′q = 2kd ′ + d ′.
Hence, the two relevant terms of Bq in Eq. (A1) become(

d

2
− d

4k − 1

2

)
t1 + 2jT2 + 2j

4k − 1

2
t3 + dT4

+ (2kd ′ + d ′)t1 + d ′T4

= (d + d ′)(t1 + T4) − j t3 (mod 2),

where n2 = 1 is assumed. Thus, if t3 = 0 and t1 + T4 = 2,
the two relevant terms will become irrelevant, implying that
the edge modes in the phase [1101] can be fully gapped by
condensing any Bq∈2Z−1/2.

One can verify by similar procedures that condensing any
set Bq with q ∈ 2Z + 1/2, the phase [1100] has a completely
gapped edge without breaking the symmetry. We catalog the
above results in the following table:

[t1T2t3T4] Condensable sets
[0011] Bp, p ∈ 2Z − 1/2
[0111] Bp, p ∈ 2Z − 1/2
[1100] Bq, q ∈ 2Z + 1/2
[1101] Bq, q ∈ 2Z + 1/2

. (A3)

We remark that the second column in the above is not meant to
be complete, in the sense that other choices of p and/or q may
also do the job. However, the point is that no set of independent
bosons can condense without breaking symmetry to gap the
edge modes of the remaining four phases:

[t1T2t3T4] = [1010], [1011], [1110], [1111]. (A4)

APPENDIX B: SOME USEFUL MATRICES

K matrices of the form

K[N,l] =
(

0 N

N 2l

)
(B1)

for l ∈ {0,1, . . . ,N − 1} feature frequently in our discussion
of topological phases which descend from deconfined G = ZN

gauge theories.
We give a list of SL(2,Z) matrices X(N,l) that keep K(N,l)

invariant.
There are three special cases where there are general

solutions of X:

X[N,0] = σx,

X[N,1] =
(

1 0
−N −1

)
, (B2)

X[N,N−1] =
(

N − 1 N − 2
−N 1 − N

)
.
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More generally, it can be parametrized as

X[N,l] =
(

h/k (h2 − k2)s/N
−N/(k2s) −h/k

)
, (B3)

where l = h × k × s for h,k,s ∈ Z. The parametrization
follows from Euler’s parametrization of Pythagorean triples.
We note that not all l’s therefore allow for an X[N,l] ∈ SL(2,Z).

APPENDIX C: FROM SPT TO TOPOLOGICAL PHASES

As noted first in Ref. 20 and elaborated in Refs. 17, 18, and
21, there is a close relation between a bosonic SPT phase with
symmetry group Gs and a topological phases characterized
by a deconfined gauge group G where G = Gs . Using the
precise relation one can turn a SPT phase with only SRE into
a topological gauge theory with long-range entanglement by
introducing an extra set of gauge fields and gauging Gs .

This procedure has a direct analog also in the context K

matrix construction.
Recall that a generic bosonic SPT phase can be constructed

by taking K = σx as the starting point and then imposing
global symmetry by incorporating suitable Higgs terms that
respect the symmetry.3 The Chern-Simons Lagrangian is thus

LK = − 1

4π
εμνρa

I
μKIJ ∂νa

J
ρ . (C1)

Let us be specific and consider in particular SPT phases with
ZN symmetry. In that case, the symmetry transformation is
characterized by Ref. 3:

{Wg,dφT } = {1,2π/N (1,q)}. (C2)

This dictates how the anyonic excitations characterized by
charge vector l created by bi = exp(ilI φI ) transform. Recall
also that the Chern-Simons construction is the “dual frame” de-
scription of these bosons,42 where the currents of these bosons
are related to the CS gauge fields by jμ = iεμνρ/(2π )∂νaρ .
(This is a standard normalization. See, e.g., Refs. 42 and 43.)
Therefore, we can write the current of the ZN symmetry in
terms of aI

μ, which is given by

jμ = iεμνρ

2π
∂ν

(
a1

ρ + qa2
ρ

)
. (C3)

Following the standard procedure, we gauge the ZN symmetry
by minimally coupling it to a gauge field

Lgauge = −jμA1
μ, (C4)

where we understand that while A1
μ is a U (1) gauge field, we

are preserving only a ZN subgroup by restricting A1
μ to take

discrete values 2πa/N , for some integer 0 � a < N .

In the topological gauge theory, we have conservation
of both the electric and the magnetic charges. We should
introduce therefore another gauge field A2

μ that couples to
magnetic excitations of the “global turned local” symmetry. As
is already evident in the discussion in Refs. 17, 18, and 21, the
excitation of the gauge fields of the gauged ZN is responsible
for generating these magnetic configurations. Another way to
see that is that in the Lgauge term, by an integration by parts
∂A1 becomes electric sources of the a1,2 gauge fields, and it is
well known that the electric charges of a correspond to vortex
excitations of the bosons b alluded to above in the “direct”
frame. Therefore, we introduce the following coupling

Lmagnetic = − N

2π
εμνρ∂μA1

νA
2
ρ. (C5)

The normalization is also dictated by the fact that we expect
unit electric charge coupled to A1 should gain a phase of 2π/N

when it moves around a unit magnetic charge coupled to A2

(cf. discussion in Ref. 18).
The total Lagrangian is then given by

L = LK + Lgauge + Lmagnetic. (C6)

Finally, let us integrate out a1,2. Since this is a quadratic action,
this procedure can be most readily done by obtaining their
equations of motion from the total action and then evaluating
L on-shell. The equations of motion are

da1 + idA1 = 0, da2 + iqdA1 = 0. (C7)

We end up with

L = −εμνρ

4π
AI

μKIJ ∂νA
J
ρ , (C8)

where

K =
(

2q N

N 0

)
, (C9)

which is the expected K matrix of the topological phase
corresponding to a (deconfined) topological gauge theory with
gauged ZN .

This procedure can be readily checked for other bosonic
SPT phases. One could readily check that the same procedure
works for more general Abelian symmetry groups, such as
Z2 × Z2. We note that our gauging procedure depends on the
fact that a ZN symmetry can be understood as a subgroup
of U (1), which admits a natural gauging procedure. For
more general non-Abelian discrete symmetries we believe
an analogous procedure should exist by embedding it in a
non-Abelian Lie group.
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