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c-axis optical conductivity from the Yang-Rice-Zhang model of the underdoped cuprates

Phillip E. C. Ashby*

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

J. P. Carbotte†

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1
and The Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8

(Received 13 February 2013; revised manuscript received 9 April 2013; published 31 May 2013)

The c-axis optical response of the underdoped cuprates is qualitatively different from its in-plane counterpart.
The features of the pseudogap show themselves more prominently in the c-axis than in-plane. We compute
both the c-axis optical conductivity and the in-plane optical conductivity using the Yang-Rice-Zhang model of
underdoped cuprates. This model combined with coherent interlayer tunneling is enough to explain the qualitative
differences between the in-plane data and the c-axis data. We show how pseudogap features manifest themselves
in the infrared and microwave conductivity within this model.
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I. INTRODUCTION

The nature of the pseudogap phase in the underdoped
cuprates is believed to be central to the understanding of
high-Tc superconductivity.1 Many ideas have emerged to help
us understand the origin of the pseudogap. Examples of
theories include the idea of preformed Cooper pairs2 or a
competing order parameter, such as d-density wave order.3

An alternative picture has its roots in Anderson’s resonating
valence bond (RVB) order.4,5 Within the RVB framework the
pseudogap can emerge naturally as one dopes a Mott insulating
state with holes.6 The model of the underdoped cuprates by
Yang, Rice, and Zhang (YRZ) is based on these ideas.7

Since the YRZ model was put forward, it has proved
successful in describing many features of the underdoped
cuprates that cannot be understood from conventional BCS
theory. The essential new feature is the presence of an
additional energy scale, namely, the pseudogap. In the YRZ
model the pseudogap is responsible for reconstructing the
antinodal portion of the Fermi surface into closed Luttinger
pockets. With this modification, the YRZ model has been able
to qualitatively capture the physics of Raman spectra,8,9 angle-
resolved photoemission spectroscopy (ARPES),10,11 specific
heat,12 penetration depth,13 and tunneling spectroscopy.14

More recently, we have applied the YRZ model to the c-axis
transport properties where we showed that the YRZ model
is able to explain the insulting-like c-axis behavior while
remaining metallic in-plane.15 It has also been shown to
account for the c-axis violation of the Ferrell-Glover-Tinkham
sum rule.16 It is remarkable that such a simple modification
is capable of capturing the physics of such a diverse range of
topics. The recent ARPES observation of fully closed pockets
in Bi2212 (Ref. 11) adds further support for the YRZ model.
In fact, the results of Yang et al.11 show that the size and shape
of the Fermi pockets are in excellent agreement with those of
the YRZ model.

The optical response of the c-axis is known to be dramati-
cally different from the in-plane response, for both infrared17

and microwave18 frequencies. In this paper we examine the
differences between in-plane and c-axis optical responses. We
compute the optical conductivity using the YRZ formalism.

We show that the YRZ model is able to capture the qualitative
behavior of the ac optical conductivity both in-plane and along
the c axis. We use the conductivity to extract information about
the behavior of the superfluid density, as well as the distribution
of optical spectral weight. Last, we use the low-frequency
portion of our data to extract the microwave conductivity
and find good agreement with experimental findings. In
Sec. II we introduce the formalism required to compute the
optical conductivity within the YRZ model. We present our
numerical results for the infrared optical conductivity in Sec.
III and discuss optical sums and the microwave conductivity in
Sec. IV. We summarize and conclude in Sec. V.

II. OPTICAL CONDUCTIVITY IN THE YRZ MODEL OF
THE UNDERDOPED CUPRATES

The real part of the c-axis optical conductivity in the
bubble approximation can be expressed in terms of the spectral
density, A(k,ω), and the Gorkov anomalous spectral density,
B(k,ω), through the Kubo formula:

Re[σc(ω,T )]

= −e2d2

ω

∑
k

t2
⊥(k)

∫ ∞

−∞

dω′

2π
[f (ω′ + ω) − f (ω′)]

× [A(k,ω′)A(k,ω′ + ω) + B(k,ω′)B(k,ω′ + ω)]. (1)

Here e is the electron charge, f (ω) is the Fermi distribution
function, t⊥(k) is an interlayer hopping matrix element, and d

is the interlayer distance. We often make comparisons with the
in-plane conductivity where t2d2 should be replaced by v2

kx
, the

electron velocity. The YRZ model provides the coherent part
of the Green’s function from which we can extract the required
spectral densities. For a doping, x, the Green’s function is given
by

G(k,ω) =
∑
α=±

gt (x)Wα
k

ω − Eα
k − �2

sc/
(
ω + Eα

k

) . (2)

In the above gt (x) is a Gutzwiller renormalization factor and
is given by gt (x) = 2x/(1 + x). The two energy branches and
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weights are given by

E±
k = 1

2

(
ξk − ξ 0

k

) ± Ek (3)

and

W±
k = 1

2

(
1 ± ξ̃k

Ek

)
. (4)

Here

Ek =
√

ξ̃k
2 + �2

pg, (5)

ξ̃k = ξk + ξ 0
k

2
, (6)

ξ 0
k = −2t(x)(cos kx + cos ky), (7)

and

ξk = ξ 0
k − 4t ′(x) cos kx cos ky

− 2t ′′(x)(cos 2kx + cos 2ky) − μp. (8)

μp is a chemical potential that is determined from the
Luttinger sum rule. The hopping parameters are t(x) =
gt (x)t0 + (3/8)gs(x)Jχ , t ′(x) = gt (x)t ′0, and t ′′(x) = gt (x)t ′′0 ,
where gs(x) = 4/(1 + x)2 is another Gutzwiller renormaliza-
tion factor, J = t0/3, χ = 0.338, t ′0 = −0.3t0, and t ′′0 = 0.2t0.

In Eq. (5), �pg is the pseudogap energy scale which is taken
to have d-wave symmetry, along with the superconducting gap.
That is,

�sc = �0
sc(x)

2
(cos kx − cos ky), (9)

�pg = �0
pg(x)

2
(cos kx − cos ky). (10)

The doping-dependent magnitudes mimic a simplified version
of the cuprate phase diagram (see left panel of Fig. 1):

�0
sc(x) = 0.14[1 − 82.6(x − 0.2)2], (11)

�0
pg(x) = 0.6(1 − x/0.2). (12)

This functional form places both optimal doping (the maxi-
mum of the superconducting dome, shown in dashed purple in
Fig. 1) and the vanishing of the pseudogap energy scale (shown

FIG. 1. (Color online) The phase diagram and Fermi surface for
the YRZ model. The quantum critical point at which the pseudogap
emerges is set to x = 0.2 in this work and corresponds to optimally
doped superconductivity. As the pseudogap grows with reduced
doping the Fermi surface reconstructs from the large band structure
Fermi surface at optimal doping into closed Luttinger pockets.

by the solid blue line in Fig. 1) at x = 0.2, in accordance with
the original YRZ paper.7 Unless otherwise specified, we use
all parameters in the band structure for the YRZ model as they
appear in the original publication.7 In principle, one could alter
these parameters to obtain fits to experimental data, but in this
work we only wish to show that YRZ captures the essential
physics. For the magnitude of the superconducting gap, we
use the ratio 2�0

sc(x,T = 0)/(kBTc) = 6. We work in units
where h̄ = 1 and measure all of our energies in terms of t0, the
nearest-neighbor hopping amplitude.

From the Green’s function we obtain the spectral densities

A(k,ω) = 2πgt (x)
∑
α=±

Wα
k

[
(uα)2δ(ω − Eα

s )

+ (vα)2δ
(
ω + Eα

s

)]
(13)

and

B(k,ω) = 2πgt (x)
∑
α=±

Wα
k (uαvα)

× [
δ
(
ω − Eα

s

) − δ
(
ω + Eα

s

)]
. (14)

The Bogoliubov quasiparticle energies, Eα
s , and amplitudes,

uα and vα , are given by

Eα
s =

√
E±2

k + �2
sc, (15)

uα =
√

1

2

(
1 + Eα

k

Eα
s

)
, (16)

and

vα =
√

1

2

(
1 − Eα

k

Eα
s

)
. (17)

The right-hand frame of Fig. 1 shows the normal state
[�0

sc(x) = 0] Fermi surface reconstruction brought about by
the emergence of the pseudogap. Only the upper-right quadrant
of the Brillouin Zone (BZ) is shown. The dashed black line
indicates the antiferromagnetic BZ (AFBZ) boundary. The
solid green curve in the upper frame is the large Fermi surface
of Fermi liquid theory for a doping of x = 0.2. The Fermi
liquid contour crosses the AFBZ but is unaffected by it and
is characteristic of a good metal. As the doping is reduced
towards half filling the Mott insulating state is approached
and the Fermi surface contours change radically. The lower
frame is for a doping of x = 0.13 where the Fermi surface
has reconstructed into a Luttinger hole pocket. The backside
of the Luttinger pocket at x = 0.13 closely follows the AFBZ
boundary and has very small weight [Wk in Eq. (4)]. On the
other hand, the front side is heavily weighted and is very
close to the underlying Fermi liquid surface (�pg = 0) in the
nodal direction. As x is reduced further the Luttinger pocket
continues to shrink and only a small number of well-defined
quasiparticles remain in the nodal direction. This fact is very
important for much of the physics that we describe in this
paper.

These small holelike pockets are a prediction of the
YRZ model and are in excellent agreement with recent
photoemission data.11 However, it is believed that some of the
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transport properties in the pseudogap phase are electronlike.
Experimentally, it is found that both the Hall and Seebeck
coefficients are negative in the pseudogap phase. This apparent
contradiction is nicely overcome in a recent proposal by
Harrison and Sebastian.19 They show how a nodal holelike
Fermi arc can be reconstructed into electronlike pockets. Their
reconstruction mechanism is due to bilayer charge ordering.
The wave vectors associated with the charge modulation are
responsible for the reconstruction from the holelike Fermi sur-
face into the electronlike one. Importantly, the reconstruction
happens with the nodal piece of Fermi surface in their model.
The YRZ model naturally makes hole pockets with long-lived
quasiparticles along the nodal direction. Additionally, YRZ
predicts that these hole pockets are heavily weighted along the
front side of the pocket, and so this reconstruction mechanism
should apply in exactly the same way as they describe. This
extra reconstruction offers a nice explanation for why these

transport coefficients are observed as negative in this part of
the phase diagram.

Using the above spectral functions, the conductivity can be
written as the sum of two terms, Re[σ ] = Re[σD] + Re[σIB].
The first term, Re[σD], is peaked around ω = 0 and is a Drude-
like response, while the second term, Re[σIB], arises from
interband transitions between the different energy branches. In
our calculations we take into account the effect of impurities
by replacing the Dirac δ functions by Lorentzians of half-width

. In the clean limit we find

Re[σD] = −2πe2d2g2
t

∑
k

t2
⊥(k)δ(w)

×
[
W+2

k
∂f (E+

s )

∂E+
s

+ W−2
k

∂f (E−
s )

∂E−
s

]
(18)

and

Re[σIB] = 2πe2d2g2
t

∑
k

t2
⊥(k)W+

k W−
k

{
(u−v+ − u+v−)2 1 − f (E+

s ) − f (E−
s )

E+
s + E−

s

[δ(ω − E+
s − E−

s ) + δ(ω + E+
s + E−

s )]

− (u+u− + v+v−)2 f (E+
s ) − f (E−

s )

E+
s − E−

s

[δ(ω − E+
s + E−

s ) + δ(ω + E+
s − E−

s )]

}
. (19)

When using the clean limit formulas, one must instead replace
the Dirac δ functions by Lorentzians of half-width 2
.

For the interlayer tunneling matrix element we fol-
low Chakravarty et al.20 and choose t⊥(k) = t⊥[cos(kx) −
cos(ky)]2. This choice reflects the geometric arrangement of
the atoms between adjacent CuO2 planes. For the ab plane
the velocity is simply vkx

= dξ/dkx . The last free parameter
we have is the scattering rate which broadens the Dirac δ

functions. We used


 =
{

0.001 + 0.1
(

T
Tc

)3
, T � Tc,

0.051 + 0.05 T
Tc

, T > Tc.
(20)

A linear in T quasiparticle scattering rate has been associated
with the inelastic scattering in the high-Tc oxides. It is taken
to be a characteristic of their normal state. The marginal
Fermi liquid phenomenology21 is based on this observation
as well as the idea that the dominant scattering processes
involve spin and charge excitations of the electronic system
itself. On entering the superconducting state, the emergence
of the superconducting gap reduces both the charge and
spin susceptibility and leads to a reduction in scattering.
This reduction in scattering is a hallmark of an electronic
mechanism for the inelastic scattering and is often referred to
as the collapse of the inelastic scattering rate.22–26 This collapse
of the scattering rate is the accepted explanation of the large
peaks observed in the microwave27 and thermal conductivity28

of the cuprates well below Tc. While the normal fluid density
(which is resistive) is reduced with temperature, the inelastic
scattering lifetime increases. The increase ceases when the
residual scattering becomes dominant and it is the further

reduction in normal fluid density that drives the conductivity
to zero as observed in the experiment.27

III. NUMERICAL RESULTS

After all of these choices we can evaluate the conductivity.
In all of our plots Re[σab] is in units of e2/d while Re[σc]
is measured in units of e2dt2

⊥. This choice of units does not
limit us to a particular material. Once one chooses values for
t⊥, d, and the band structure parameters (which determine the
Fermi velocity), then our calculations can be compared to any
cuprate superconductor. Note that in these units, the in-plane
conductivity need not be greater than its c-axis counterpart,
which it is for any realistic value of Fermi velocity and
tunneling matrix element. Figure 2 shows the result of a
calculation at T = 0.25Tc for optimal doping (x = 0.20) as
well as underdoped (x = 0.13). We chose x = 0.2 to highlight
the physics in the absence of a pesudogap. By contrast, the
x = 0.13 case has sizable pseudogap and superconducting
energy scales. This choice allows us to see the effect of
both energy scales in our data most easily. In the x = 0.20
case (bottom two frames of Fig. 2), there is only a coherent
Drude-like response from the large Fermi surface in both the
ab plane and the c axis. The c-axis response is reduced as
compared with the ab response by the out-of-plane matrix
element t⊥(k) which gives less weight to the part of the Fermi
surface in the nodal direction. In the underdoped case (top
two frames of Fig. 2), there is still a Drude response from
the remaining Fermi surface. It is suppressed in both the ab

plane and the c axis due to both the shrinking size of the Fermi
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FIG. 2. (Color online) Top panel: The optical conductivity
[Re(σab) measured in units of e2/d , and Re(σc) measured in units of
e2dt2

⊥] at doping x = 0.13 and T = 0.25Tc. Both the ab plane and the
c axis contain a coherent Drude response (red/shaded area on left) and
an interband contribution from the presence of the pseudogap energy
(orange/shaded area on right). Bottom panel: The optical conductivity
at optimal doping (x = 0.20) and T = 0.25Tc. At optimal doping the
pseudogap vanishes and there is only a Drude contribution to the
conductivity.

surface and the Gutzwiller renormalization factors. There is
also a piece due to interband transitions at higher energies.
This piece is the signature of the pseudogap energy scale. It is
the dominant feature in the c-axis data.

With a more realistic treatment of the inelastic scattering
we expect this interband feature to broaden beyond what is
shown in Fig. 2. In the cuprates the inelastic scattering rate
is known to have a strong energy dependence29 in addition
to temperature variation. In Eq. (20) we have included only
temperature dependence through an impurity model; i.e.,
there is no dependence on ω. This model for the inelastic
scattering rate is perfectly adequate as far as dc properties
are concerned. It is oversimplified when the photon energy
falls in the infrared. In this energy range, 
(T ,ω) can be much
larger than its ω = 0 value, modeled in Eq. (20). Consequently,
the interband optical transition peak in Re[σ (t,ω)] will be
broadened.

In Fig. 3 the optical conductivity is shown as a function
of frequency for four temperatures: as labeled in the figure,
T = 4Tc, dashed blue line; T = 2Tc, solid orange line;

FIG. 3. (Color online) Top panel: The optical conductivity
[Re(σab) measured in units of e2/d , and Re(σc) measured in units
of e2dt2

⊥] at doping x = 0.13 for temperatures T = 0.25Tc, Tc, 2Tc,
and 4Tc. The Drude peak becomes increasingly broadened with
temperature. At low temperatures a feature of the pseudogap emerges
beyond ω = 0.3t0. This feature is a natural explanation for the broad
peak observed at 400 cm−1 in Homes et al.17 Middle panel: The optical
conductivity at doping x = 0.20 for temperatures T = 0.25Tc, Tc,
2Tc, and 4Tc. Both in-plane and c axis only have Drude contributions
which become increasingly broadened with temperature. Bottom
panel: The resistivity in the underdoped cuprates from the YRZ model
as a function of temperature at x = 0.05. The underdoped phase is
metallic in-plane and resistive along the c axis. Taken with permission
from Ashby and Carbotte.15
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T = Tc, in solid green with boxes and T = 0.25Tc in solid
black. The top two frames are for doping x = 0.13 and
the middle two frames are at optimal doping (x = 0.2). For
ω � 0.2t0 all curves are Drude like and order in temperature
in the usual way, except the c-axis curves in the underdoped
case. In this case, we see a different trend, the curves order in
the opposite sense as temperature is reduced. This behavior is
emphasized in the lowest frame where we show our results (for
x = 0.05) for the dc resistivity as a function of temperature.
We see that the c axis displays insulating like behavior (ρc

increases as T decreases), while the ab plane response remains
metallic (ρab decreases as T decreases). We stress that the
YRZ model captures this behavior though a coherent tunneling
Hamiltonian.15,30,31

The top two frames of Fig. 3 are to be compared with
the experimental work of Homes et al.17 on the c-axis
conductivity of yttrium barium copper oxide (YBCO). As
in the experiments, the signatures of the pseudogap are
more pronounced at low energies. This is characterized by
a flat region at low frequency which becomes increasingly
suppressed at lower temperatures. The reduction we calculate
is not as dramatic as that observed in the experimental data.
If one wished to obtain better fits to the experimental results
this could be achieved by adjusting the scattering rate or the
magnitude of the pesudogap energy scale. Note that the low-
frequency c-axis conductivity behaves very differently from
the in-plane conductivity as a function of temperature. Perhaps
the most striking feature in Fig. 3 is the broad interband feature
from ω ∼ 0.3t0 to ω ∼ 0.5t0 associated with the pseudogap.
This feature is a natural explanation for the broad peak
observed in Homes et al.17 at 400 cm−1. Taking t0 = 125 meV,
this feature falls in the range of 300–500 cm−1, in agreement
with the experiments. Previous explanations of this feature
invoke the existence of an interlayer plasmon collective
mode.32 Within the YRZ model this peak is produced only
from pseudogap physics with no need for this collective mode.

IV. OPTICAL SUM AND MICROWAVE CONDUCTIVITY

A. Optical sums

Sum rules and partial optical sums also provide useful
information. In a conventional superconductor, the suppres-
sion of Re[σ ] for T < Tc is connected to the appearance
of a superconducting condensate. The “missing” optical
spectral weight appears in a δ function of the appropriate
weight at ω = 0. This fact is usually presented as the
Ferrel-Glover-Tinkham sum rule. In terms of the superfluid
stiffness, ρs ,

NN − NS = ρs, (21)

where

NN =
∫ ∞

0+
dωRe[σn(ω,T )] (22)

is the normal state optical sum and

NS =
∫ ∞

0+
dωRe[σs(ω,T )] (23)

is the superconducting optical sum. While this sum rule holds
in-plane, it is known to be violated in the c axis.33 The

FIG. 4. (Color online) Normal state optical sum minus supercon-
ducting state optical sum as a function of temperature for doping
x = 0.13. The behavior of the superfluid density in the c direction is
qualitatively different from that in the ab plane.

YRZ model with the same interlayer tunneling matrix element
that we use displays a violation of this sum rule.16 This is
understood most simply in a limit of the YRZ model that
reduces to a Fermi arc model. In this model the Fermi surface
is confined about the nodal direction; the remainder of the
large Fermi surface from Fermi liquid theory is gapped out
by the pseudogap. Only the electrons on the arc contribute
the usual amount to the optical sum rule, while those on the
gapped out portion contribute less. In any case, NN -NS is
well defined and is shown in Fig. 4. The solid blue line is the
ab-plane result, while the orange dashed line applies to the c

direction. As a function of the reduced temperature, t = T/Tc,
those curves behave in much the same way as is found for the
superfluid density itself.13,34 The superfluid density follows
from the imaginary part of the conductivity as

1

λ2(T )
= lim

ω→0

4π

c2
ωIm[σ (T ,ω)], (24)

with c being the velocity of light. The temperature behaviors
are in agreement with the superfluid density inferred from
microwave experiments.18 The ab-plane superfluid density
decreases linearly with temperature while the c-axis is flat
at low temperatures.

A related quantity, the partial optical sum,

I (ω) =
∫ ω

0+
dω′{Re[σn(ω′,T )] − Re[σs(ω

′,T )]}, (25)

provides information about the distribution of spectral weight
that goes into the superconducting condensate. The partial
optical sums for the YRZ model, normalized to their value at
ω = 1, are shown in the top panel of Fig. 5. The solid blue
curve is for the ab plane and the dashed orange curve is for the
c axis. For a regular superconductor this curve would sharply
rise towards 1, with the scattering rate, 
, setting the energy
scale of the rise. In the YRZ model the presence of the pseudo-
gap causes a redistribution of spectral weight from the Drude
to the high-frequency region. This redistribution shows itself in
the suppressed flat region at low frequencies accompanied by
a pileup of spectral weight above the pseudogap energy scale.
This redistribution is much more pronounced for the c axis.
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FIG. 5. (Color online) Top panel: Partial optical sum at T =
0.25Tc for doping x = 0.13 for the ab plane and the c axis. The
gap scales are indicated in the figure. The pseudogap causes an
extra suppression and redistributes the charge carriers available for
condensation to high frequencies. Bottom panel: c-axis conductivities
in the superconducting and normal states for x = 0.13 at T = 0.25Tc.
The redistribution of spectral weight due to having superconductivity
leads to a shift in the interband peak.

Insight into these shifts in spectral weight can be gleaned from
the lower frame where we show the real part of the conductivity
as a function of frequency for x = 0.13 at T = 0.25Tc.
The dashed orange curve is the normal state (�pg = 0) and
the black curve is the corresponding superconducting case.
We see that the opening of the superconducting gap shifts the
interband transitions to higher energies. This shift accounts
for the large peak seen in the orange curve in the top frame of
Fig. 5 for ω � 0.4t0.

B. Microwave conductivity

The microwave data are qualitatively different for the in-
plane conductivity and the c axis conductivity.18 The in-plane

FIG. 6. (Color online) Microwave conductivity [Re(σab) mea-
sured in units of e2/d , and Re(σc) measured in units of e2dt2

⊥] for a
constant 
 = 0.005 as a function of temperature. This is proportional
to the number of particles able to absorb low-frequency radiation.
The behavior in-plane is linear in T , while the c axis behaves roughly
like T 5.

data contain a peak, while the c-axis data do not. The peak is
attributed to the interplay between the quasiparticle lifetime
and the amount of fluid which can absorb radiation. As the
system is cooled below Tc the quasiparticle scattering lifetime
changes. As the temperature decreases the normal component
of the fluid vanishes linearly (Fig. 6). If the lifetime increases
faster than the normal part of the fluid, this will lead to
an increasing conductivity. At low enough temperature, the
lifetime will saturate to the value set by the residual scattering
rate, and the conductivity will decrease as the remaining
normal fluid condenses. This behavior generally produces a
peak in the microwave data. It is thus, very surprising that
the c axis lacks a peak. This was originally interpreted as
evidence for incoherent c-axis transport.18 In this work we
take a coherent model for c-axis transport and interpret the
difference as a signature of how the superfluid density is
changing. This view is similar to the work of T. Xiang and
collaborators31,35 where they obtained good agreement with
the resistivity and microwave conductivity using a different
phenomenological model.

The microwave conductivity is obtained from the low-
frequency part of Re[σ (ω)]. We obtain the microwave con-
ductivity by taking limω→0 Re[σ (ω)]. In Fig. 6 we show
the microwave conductivity for a constant scattering rate,

 = 0.005. The solid black curve is Re[σ (T ,ω = 0)] for the ab

plane while the orange curve is for the c axis, both as a function
of reduced temperature, T/Tc. Their temperature dependence
is strikingly different as we would have expected based on
the results presented in Fig. 4 for NN -NS vs T/Tc. For a first
understanding of the experimental results for Re[σ (T ,ω = 0)],
it is helpful to take guidance from the two-fluid model. Under
the assumption that only the normal fluid component, n,
is involved in the absorption, the expression for the Drude
conductivity is

Re[σ ] = ne2

m

. (26)
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FIG. 7. (Color online) The in-plane and c-axis microwave con-
ductivity [Re(σab) measured in units of e2/d , and Re(σc) measured in
units of e2dt2

⊥] for x = 0.20 as a function of temperature for various
different forms of scattering rate.

Here e is the electron charge and m is the mass. We see
in Fig. 6 that n is nearly linear in plane and ∝ T 5 out of
plane.

In Fig. 7 we show the microwave conductivity at optimal
doping for different scattering rates. We used 
 = 0.001 +
0.1(T/Tc)α for α = 2,3,4. Dotted lines correspond to T 4 law,
dashed lines to T 3, and solid lines to T 2, with black for the
ab plane and orange for the c axis. The in-plane data always
contains a peak, as we expect. If the scattering rate becomes
too strongly temperature dependent, the c-axis conductivity
is no longer convex like in the experiments. Using the Drude
form for the conductivity with 
 = A + BT α and n ∝ T β

we can show that for the conductivity to be convex that
α < 1 − 2β + 2

√
2β(β − 1). Using β ≈ 5 from our constant

scattering rate calculation, we see this sets an upper bound of
α = 3.65.

FIG. 8. (Color online) The microwave conductivity [Re(σab)
measured in units of e2/d , and Re(σc) measured in units of e2dt2

⊥] in
the underdoped phase (x = 0.13) as a function of temperature. We
also show the calculation with �pg = 0. The pseudogap has almost no
effect on the in-plane conductivity, but leads to a dramatic suppression
for the c axis.

In Fig. 8 we show the microwave conductivity for x = 0.13.
To isolate the effect of the pseudogap, we redid the calculation
with �pg = 0. The solid curves are with the pseudogap and the
dashed curves are without. The low-temperature behavior is
unaffected by pseudogap formation. It does cause a dramatic
suppression of the c-axis conductivity at high temperatures,
but this effect is much more modest in-plane (Fig. 8). There
is a great similarity between the change in temperature
behavior of the c-axis microwave conductivity and the specific
heat.36 In both cases the low-temperature part of the curve
is unaffected since this region depends only on the thermal
excitations in the nodal direction. This part of the electronic
structure is not appreciably changed by the pseudogap. As
the temperature is increased towards Tc the specific heat is
strongly suppressed below its �pg = 0 value, much like the
c-axis conductivity. This is not surprising as both quantities
are closely tied to the electronic density of states. The in-plane
microwave conductivity is not and is seen to behave much
differently than its c-axis counterpart. Unfortunately c-axis
measurements are technically challenging and experimental
data only exist for optimal doping. It would be very interesting
to look for the effect of the pseudogap in an underdoped
sample.

V. DISCUSSION AND CONCLUSIONS

We have investigated the c-axis optical conductivity in the
underdoped cuprates using the YRZ model. We focused on
properties in the superconducting phase of the underdoped
cuprates at x = 0.2 (optimal doping) and x = 0.13 (under-
doped) to highlight the essential features of the model. For
the c-axis calculations we used a coherent tunneling matrix
element to describe interlayer hopping. Our choice of matrix
element is one related to the geometric alignment of atoms
between adjacent layers, but any matrix element which gives
little weight to states along the nodal direction should give
qualitatively similar results. We saw that the reduction in
the density of states caused by the pseudogap resulted in the
low-frequency region of the normal state optical conductivity
decreasing as temperature decreased instead of increasing as
observed in-plane. This is in agreement with the experimental
findings. This decrease continued in the superconducting state
with the spectral weight redistributed to higher energies set
by the pseudogap energy scale. This redistribution could
serve as an explanation for the observation of the broad
peak at 400 cm−1 in underdoped YBCO (YBa2Cu3O6.7)
which is not present in the optimally doped sample
(YBa2Cu3O6.95).17

We were also able to extract the behavior of the superfluid
density from both a sum rule and from the microwave
conductivity. The superfluid density behaves very differently
for in-plane and out-of-plane, which manifested itself in the
different shapes of the microwave conductivity as a function
of temperature. The in-plane microwave conductivity exhibits
a peak, while the c axis conductivity does not. A previous
interpretation18 took this observation to mean that the c-axis
interplane transport was incoherent. Here we attribute this to
the very different temperature law associated with the c-axis
superfluid density as compared to that of the ab plane. The
shape of the c-axis conductivity constrains the temperature
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dependence of the scattering in the superconducting state. We
also showed that the pseudogap suppresses the microwave
conductivity at high temperatures. It would be interesting to see
more c-axis measurements, as they display pseudogap physics
more strongly than the in-plane counterparts.
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