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Microwave spectroscopy of vortex dynamics in ortho-II YBa2Cu3O6.52
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We present measurements of the vortex-state surface impedance, Zs = Rs + iXs , of a high-quality, ortho-II-
ordered single crystal of the cuprate high-temperature superconductor YBa2Cu3O6.52 (Tc = 59 K). Measurements
have been made at four microwave frequencies (ω/2π = 2.64, 4.51, 9.12, and 13.97 GHz) for magnetic fields
ranging from 0 to 7 T. From these data we obtain the field, frequency, and temperature dependence of the
vortex viscosity, pinning constant, depinning frequency, and flux-flow resistivity. The vortex viscosity, η(ω,T ),
has a surprisingly strong frequency dependence and bears a striking resemblance to the zero-field quasiparticle
conductivity, σqp(ω,T ), suggesting that the dominant dissipative mechanism for the flux lines is induced electric
fields coupling to bulk, long-lived d-wave quasiparticles outside the vortex cores. This is in sharp contrast to
the conventional Bardeen-Stephen picture, in which dissipation takes place inside quasinormal vortex cores.
The strong frequency dependence of the vortex viscosity in the microwave range requires us to treat it as a
complex response function, with an imaginary part that is predicted to contribute to the apparent pinning force
on the vortices. Measurements of the frequency dependence of the pinning force confirm that this term is
present, and in a form consistent with the requirements of causality. At low temperatures the flux-flow resistivity,
ρff ∝ 1/η, has the form ρff (T ) = ρ0 + ρ1 ln(1/T ), reminiscent of the dc resistivity of cuprates in the pseudogap
regime.
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I. INTRODUCTION

The frictional force experienced by a quantized flux line
moving in a conventional superconductor arises primarily from
induced vortex electric fields coupling to charge excitations
within the vortex core. This was first captured by Bardeen
and Stephen,1 who treated the vortex core as a cylinder of
normal metal embedded in a superconducting background.
Their theory is applicable to conventional superconductors for
two reasons: the vortex cores are large and support a nearly
continuous spectrum of single-particle states; and s-wave
pairing symmetry results in a low density of extended states
surrounding the vortex cores. In cuprate superconductors the
opposite situation holds: small vortex cores contain at most
a few discrete states,2,3 with a continuum of low-lying states
outside the vortex cores due to the nodes in the d-wave energy
gap.4–6 Bardeen-Stephen theory is therefore unlikely to apply
in its original form, but how it should be extended to the
cuprates is not at all obvious.

The dissipation associated with a moving flux line is
parameterized by a vortex viscosity η, giving the linear
coefficient of friction per unit length of flux line. Vortex
viscosity, like flux-flow resistivity, is usually thought of as a
static property of a type-II superconductor. However, η should
more generally be regarded as a frequency-dependent response
function,7 in a manner similar to the extension of electrical
conductivity to high frequencies. We will show that η has a very
strong frequency dependence in ortho-II YBa2Cu3O6.52 and
that this frequency dependence carries the fingerprints of the
microscopic processes responsible for the vortex dissipation,
namely, the charge dynamics of d-wave quasiparticles in the
superconducting state outside the vortex cores.

As well as being interesting in its own right,1,8,9 vortex
viscosity has additional significance in the cuprates: low
superfluid density10 makes these materials prone to phase
disordering by vortex-antivortex fluctuations,11–18 with vortex
viscosity an important parameter in theoretical models of
these effects.19–24 There is also the possibility that the viscous
response contains dynamical signatures that could identify
whether vortex fluctuations are occurring in the pseudogap
regime; this would provide information complementary to
other experiments that may be probing local pairing and
phase-disordered superconductivity.25–29

In this paper we report a comprehensive study of the vor-
tex dynamics of high-purity, ortho-II-ordered YBa2Cu3O6.52.
Remarkably, the observed η(ω,T ) mimics the behavior of the
zero-field microwave conductivity σqp(ω,T ), in which it has
been established that the dominant contribution comes from
the charge dynamics of nodal d-wave quasiparticles.30–34 Our
data therefore suggest that bulk d-wave quasiparticles outside
the vortex cores are the primary source of frictional force on
vortices in this material, in marked contrast to the situation in
conventional s-wave materials. One consequence is that η(T ),
like σqp(T ), has a characteristic peak at intermediate tempera-
tures due to a competition between quasiparticle lifetime and
quasiparticle density. This leads to low-temperature upturns
in the flux-flow resistivity, ρff(T ) ∝ 1/η(T ), which, on closer
inspection, are seen to follow a log(1/T ) form, similar to the
resistivity observed in the pseudogap regime of the underdoped
cuprates.35,36

The paper is organized as follows. We start with the standard
dynamical model of a flux line and discuss the observability
of the vortex Hall effect in microwave measurements. Vortex
pinning is then introduced into the dynamical model, through
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a redefinition of the vortex viscosity. Next, we consider a
more general situation, in which the vortex viscosity itself is
frequency dependent, and show that this leads to a dynamical
contribution to the effective pinning constant. We then present
detailed measurements of the surface impedance of a high-
quality single crystal of ortho-II YBa2Cu3O6.52 as a function of
field, temperature, and frequency. From these data we obtain
the vortex viscosity, pinning constant, depinning frequency,
and flux-flow resistivity. As well as supplying insights into the
origin of the various forces experienced by the vortices, the
experiments provide a stringent test of the use of single-vortex
dynamical models in the interpretation of high-frequency
measurements.

II. VORTEX DYNAMICS

A. Hall effect in a conventional metal

The vortex Hall effect has useful parallels with that of a
normal metal, so we begin by considering the magnetocon-
ductivity of a metal in which the carriers have density n, mass
m, and charge q. If scattering is treated in the relaxation-time
approximation, the steady-state force equation is

q (E + v × B) − mv
τ

= 0 , (1)

where v is the carrier drift velocity and τ the relaxation time.
We let the magnetic field B = (0,0,Bz). The resistivity tensor
that relates electric field E to the current density, j = nqv, is

ρ = ρ0

⎛
⎜⎝

1 −ωcτ 0

ωcτ 1 0

0 0 1

⎞
⎟⎠ , (2)

where ωc = qB/m is the cyclotron frequency and ρ0 =
m/nq2τ the resistivity. The Hall angle θH measures the
deflection of the charge currents by the magnetic field:
tan(θH ) = ωcτ . The magnetoconductivity tensor is

σ = ρ−1 = σ0

1 + (ωcτ )2

⎛
⎜⎝

1 ωcτ 0

−ωcτ 1 0

0 0 1+(ωcτ )2

⎞
⎟⎠ , (3)

where σ0 = 1/ρ0. Note that σxx and σyy depend on ωc, while
the diagonal components of ρ do not. Under conditions of
constant current bias j, the power dissipation per unit volume
is

j�ρ j = ρ0j
2 , (4)

independent of ωc. On the other hand, if a constant electric
field E is applied transverse to B, the power dissipation per
unit volume is

E�σ E = σ0

1 + (ωcτ )2
E2 , (5)

which is a function of ωc. Whether a longitudinal transport
experiment is sensitive to the Hall effect therefore depends
crucially on whether constant current or constant electric field
is applied.

B. Vortex Hall effect

The starting point for much work on vortex dynamics is the
vortex equation of motion7,8,37–45

ηvv + αH vv × ẑ = 
0j × ẑ , (6)
where 
0 = h/2e is the superconducting flux quantum, j the
applied transport current density, vv the vortex velocity, η the
vortex viscosity, αH the Hall coefficient, and we assume that
magnetic field is applied along the direction ẑ. (Pinning effects
are not included at this point: we show in Sec. II C how pinning
can be folded into a complex generalization of the vortex
viscosity. Vortex inertia is also ignored, as it is negligible in
the microwave frequency range. Similarly, thermal flux creep
is not included in models of microwave-frequency dynamics,
as the creep rate is expected to be much lower than the
measurement frequency.45)

By requiring that the vortex dynamics be consistent with the
magnetoconductivity of the electron fluid, Blatter et al. argue
that the viscosity and Hall coefficient must have the form43

η = η0
1

1 + (ωcτ )2
, (7)

αH = η0
ωcτ

1 + (ωcτ )2
, (8)

where η0 is the bare viscosity. The vortex Hall angle θH is given
by tan(θH ) = αH/η = ωcτ . Here ωc = qB/m is the cyclotron
frequency corresponding to the relevant magnetic field scale
in the vortex core, and τ is the relaxation time of the charge
carriers responsible for damping the vortex motion. Similar
results are obtained from microscopic calculations.39,40,46 Note
that η and αH have a form similar to that of σxx and σxy in the
magnetoconductivity tensor of a normal metal, Eq. (3).

From the vortex equation of motion, Eq. (6), we can read
off the vortex viscosity tensor,

η =
(

η αH

−αH η

)
, (9)

defined so that

η vv = 
0 (j × ẑ)t , (10)

where (...)t denotes the component of the vector transverse to
the magnetic field and vv now refers to the transverse compo-
nent of vortex velocity. To obtain the effective resistivity, we
solve for the vortex velocity

vv = 
0η
−1 (j × ẑ)t (11)

and use the Josephson relation for moving vortices,47

E = B × vv , (12)

to obtain the average electric field:

E = B ẑ × vv (13)

= B
0ẑ × (η−1 jt ) × ẑ (14)

= B
0η
−1 jt . (15)

(Here it is understood that the cross product of ẑ with a 2D
transverse vector is a π/2 rotation in the transverse plane.) The
vortex resistivity is then

ρv = B
0η
−1 = B
0

η2 + α2
H

(
η −αH

αH η

)
. (16)
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Under conditions of constant current density j, the power
dissipation per unit volume is

j�ρv j = 
0Bj 2 η

η2 + α2
H

, (17)

equivalent to that for an effective vortex viscosity η∗ = η +
α2

H /η. However, when we substitute for the field dependencies
of η and αH , given by Eqs. (7) and (8), we obtain a cancellation:

η∗ = η0

(
1

1 + (ωcτ )2
+ (ωcτ )2

1 + (ωcτ )2

)
= η0 . (18)

That is, the relevant viscosity is the bare viscosity, independent
of the vortex Hall angle. As pointed out by Golosovsky et al.,45

both the direction of the vortex motion and the magnitude of
the viscosity are changed, but if the system is driven by an
external source of constant current, the effects cancel and the
effective viscosity is the same as if θH = 0. The situation we
have in the microwave experiments is indeed one of constant
j: the superconducting sample has a surface impedance in the
m� range, tiny compared to the characteristic impedance of
free space. The sample is placed into the microwave resonator
at a magnetic field antinode (electric field node), and the
microwave H field imposes a constant surface current density.

C. Pinning and complex vortex viscosity

In any real superconductor, local material imperfections
lead to pinning, preventing the free flow of flux lines.48

Pinning effects can be particularly strong in the cuprate
superconductors, especially at low temperatures, making flux-
flow resistivity difficult to measure. One approach is to use
a dc current in excess of the critical current to push the
vortices into a state of free flux-flow.49,50 However, this is
a nonlinear method and must be applied and interpreted
carefully. An alternative approach, which has been used
extensively,38,44,51–70 is to probe the reversible vortex motion—
the linear response of the vortices to a high-frequency driving
force. An ac current shakes the flux lines harmonically about
their equilibrium positions and, when the measurements are
carried out in a manner that is sensitive to both magnitude and
phase, allows dissipative and reactive forces to be resolved
separately. The technique permits a clean determination of
the viscous and elastic parameters and, since these make
contributions of comparable magnitude in the gigahertz range,
is ideally carried out at microwave frequencies.

The usual way to include pinning and elastic forces in
the vortex equation of motion is through a pinning force
of the form Fp = −αpx, where αp is the effective pinning
constant,38 and x is the displacement of the vortex from
equilibrium. This harmonic approximation should work well
in the linear-response regime, in which the displacement of the
vortex is small compared to the intervortex spacing (typically
1 Å vs 100 Å in our experiments). However, a concern now
arises over whether we can continue to describe the dynamics
of the system in terms of a single, average vortex: in contrast
to viscous and electromagnetic forces, which originate from
interactions with the electron fluid on a microscopic scale,
the elastic forces on a vortex arise from random material
imperfections, potentially giving rise to a broad distribution of
pinning constants. Statistical averages over such a distribution

do not necessarily correspond to the behavior of an average
vortex.

Nevertheless, there are several situations in which the
distribution of local pinning constants should be narrowly
defined and therefore the single-vortex approach valid. At
high fields, in the collective-pinning regime, the density of
flux lines is much greater than the density of pinning sites:
vortices interact predominantly with one another and only
indirectly with the pinning sites, smoothing out point-to-point
variations in local pinning constant. In addition to this, there
are two other favorable situations, specific to high-frequency
experiments. First, as we will show below, the vortex viscosity
can have a substantial imaginary component, which acts as
an additional contribution to the effective pinning constant
and can even dominate over the elastic component in the
microwave frequency range. This dynamical contribution to
pinning arises from interactions with the electron fluid and can
be assumed to be the same everywhere in the sample. Secondly,
in a high-frequency experiment, the only vortices visible to
the microwaves are close to the sample surface. (Microwave
cavity perturbation is a power-absorption technique, so the
relevant length scale is half the rf penetration depth.) In clean
materials, the interaction with the sample surface can become
the dominant elastic force for these near-surface vortices.71

This type of pinning is predominantly electromagnetic, arising
from the interaction of the vortex with its image vortex. In our
geometry this provides an intrinsic pinning mechanism that
acts along the entire length of the flux lines, rather than at
particular points.

We therefore proceed with the single-vortex approach,
focusing on a one-dimensional model of vortex motion that
includes viscous, pinning, and Lorentz forces, but ignores the
vortex Hall effect, for reasons discussed in the previous section.
In the simplest version of this model we have

ηv + αpx = 
0j (t) . (19)

Here the vortex velocity v is the time derivative of the
vortex displacement x. Using a phasor representation for time-
harmonic quantities, in which the transport current density is
j (t) = Re{J0 exp(iωt)}, we have(

η + αp

iω

)
ṽeiωt = 
0J0eiωt , (20)

where ṽ is the phasor vortex velocity. We see that the inclusion
of pinning can be incorporated into a redefined, complex
viscosity, η̃ = η + αp/iω.

In addition to the pinning term, there is the possibility
that the bare viscosity itself has frequency dependence—
something that indeed occurs in ortho-II YBa2Cu3O6.52.
In this case, η̃ = η(ω) + αp/iω and, because we are deal-
ing with a physical response function, the bare viscosity
must have real and imaginary parts, η(ω) = η′(ω) − iη′′(ω).
Causality requires that these be related by Kramers-Krönig
relations, e.g.,

η′′(ω) = 2ω

π
P

∫ ∞

0

η′(ω′)
ω2 − ω′2 dω′ , (21)

where P denotes the principal part of the integral. The main
physical effect is that in systems with a strong frequency
dependence of η′ (i.e., in systems with long-lived charge
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excitations) the apparent pinning constant will depend on
frequency:

αeff(ω) = αp + ωη′′(ω) . (22)

As an example, the model we will use below to describe the
viscosity of ortho-II YBa2Cu3O6.52,

η′(ω) = η0 + η1
1

1 + ω2/�2
, (23)

must, by causality, be accompanied by a pinning constant of
the form

αeff(ω) = αp + η1
ω2/�

1 + ω2/�2
. (24)

We will see that this model provides an excellent description
of the data.

Solving Eq. (20) for the phasor vortex velocity, we have

ṽ = 
0

η(ω) + αp

iω

J0 = 
0

η̃(ω)
J0 . (25)

By the Josephson relation, Eq. (12), the electric field associated
with the vortex motion is

Ẽ = B
0

η̃(ω)
J0 , (26)

implying a complex, effective vortex resistivity

ρ̃v = B
0

η̃(ω)
. (27)

D. Vortex electric fields

The interaction of the vortex with the surrounding electron
fluid (including states in the vortex core) arises from the
coupling of charge excitations to the electric field induced
when the vortex moves.1 This electric field can be obtained
from the London acceleration equation72

E = ∂(�jv)

∂t
, (28)

where � is the London parameter and, in our case, jv is the
supercurrent density circulating around the vortex. The time
rate of change of jv arises solely from the motion of the vortex:

∂jv
∂t

= −(vv · ∇)jv . (29)

We will illustrate this in the particular case of a vortex with
cylindrical symmetry, moving in the positive y direction at
speed v. The screening supercurrent density will be azimuthal,
and its magnitude will depend only on distance from the center
of the vortex: i.e., jv = j (r)θ̂ . In this case we can show that
the Cartesian components of the electric field are

Ex = v

�

[
cos2 θ

j (r)

r
+ sin2 θ

∂j

∂r

]
, (30)

Ey = v

�
sin θ cos θ

[
j (r)

r
− ∂j

∂r

]
. (31)

Electric field plots are shown in Fig. 1 for two cases: a Bardeen-
Stephen–like vortex, for which j (r) ∝ 1/r outside the core
radius a and is zero within; and a more realistic vortex core, in
which the supercurrent density varies smoothly through r = a,

0 1 2 3 4
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0.6

0.8
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jr

0 1 2 3 4

1 0 1

1

0

1

x a
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r/ar/a

Bardeen–Stephen
vortex

realistic vortex

FIG. 1. (Color online) Supercurrent screening profiles and in-
duced electric fields for vortices with cylindrical symmetry. The
panels on the left show the situation in an idealized Bardeen-Stephen
vortex:1 the supercurrent profile (upper panel) has the form j (r) ∝
1/r outside the core radius a, and is zero inside. For vortex motion
in the positive y direction, the resulting electric field (lower panel) is
uniform inside the vortex core (solid circle, r = a) and has dipolar
form outside. The panels on the right depict a more realistic situation
in which the supercurrent profile varies smoothly with radius.73

The configuration shown (upper panel) uses the approximate form
j (r) ∝ tanh (r/a)/

√
r2 + a2. As with the Bardeen-Stephen vortex,

electric field is also relatively uniform near r = 0, with a dipolar form
for r > a. The principal differences are a much smoother variation
with position, with less intense electric field in the core region r < a.

falling linearly to zero as r → 0. For the latter case, we take
the approximate form

j (r) ∝ tanh (r/a)√
r2 + a2

. (32)

We see that the qualitative behavior of the electric fields is
similar in both cases: roughly uniform inside the vortex core,
with a dipole form outside. The use of accurately calculated
current profiles that break cylindrical symmetry74 will not
substantially change this picture, since the form of the current
density (j (r) ∼ 1/r,a < r < λ) is tightly restricted by the
vortex topology. As a result, the electric field profile will
always be similar to that shown on the right-hand side of
Fig. 1.

For the purpose of vortex-dynamics experiments, the
important point is that a moving vortex acts as a local
concentration of electric field, and that the reaction force
experienced by the vortex is the result of the electric field
interacting (resistively and reactively) with conducting degrees
of freedom in the vicinity of the vortex core. For the case of
ortho-II YBa2Cu3O6.52, a large part of this response appears
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to be due to bulk d-wave quasiparticles outside the vortex
cores.

E. Extraction of vortex parameters

For measurements made at microwave frequencies, in
addition to the complex vortex resistivity ρ̃v , given in Eq. (27),
we must also take into account the finite impedance ρ̃s of the
superconducting medium in which the vortices are embedded.
The electrodynamics of this problem have been solved by
Coffey and Clem,75 and Brandt,76 who find the following
simple, additive form to be appropriate in the limit of low
temperature and weak field (B � Bc2):

ρ̃eff ≈ ρ̃s + ρ̃v = ρ̃s + B
0

η̃(ω)
. (33)

Here the effective complex resistivity ρ̃eff is the experimentally
accessible quantity in a microwave experiment, being directly
related to the complex surface impedance, Zs = Rs + iXs , by
the local electrodynamic relation, ρ̃ = Z2

s /iωμ0.77 To a good
approximation, the background contribution from the super-
conducting medium ρ̃s can be obtained from a measurement in
zero field. To the extent that nodal quasiparticles in a d-wave
superconductor give rise to a nonlinear Meissner effect,78

there will be some weak field dependence of ρs . However,
this effect is known to be much weaker in the YBa2Cu3O6+y

system than theoretically expected,79,80 and is negligible
in the current context. The experimental procedure is then
that

ρ̃eff = Z2
s (B,T )

iωμ0
, (34)

ρ̃s ≈ Z2
s (B = 0,T )

iωμ0
. (35)

The vortex contribution is isolated by taking the difference,
ρ̃v = ρ̃eff − ρ̃s , and from this we obtain the rest of the
parameters in the vortex-dynamics model, in the following
way:

η̃ = B
0

ρ̃v

, (36)

η′ = B
0Re
{
ρ̃−1

v

}
, (37)

αeff = ωB
0Im
{ − ρ̃−1

v

}
, (38)

ρff ≡ lim
ω→0

B
0

η(ω)
= lim

ω→0

1

Re
{
ρ̃−1

v

} . (39)

It should be pointed out that an analysis of this sort is
only possible if both real and imaginary parts of the surface
impedance are measured. In our experiment these are obtained
at the same time, on the same sample.

III. EXPERIMENTAL METHODS

A. YBa2Cu3O6.52 sample preparation

Single crystals of high-purity YBa2Cu3O6+y were grown
using a self-flux method in a chemically inert BaZrO3

crucible.81 Oxygen concentration was set to YBa2Cu3O6.52

by annealing in flowing oxygen at 748◦C, followed by a
homogenization anneal at 570◦C for 10 days in which the

crystal was sealed inside a quartz ampoule with a large
volume of ceramic at the same oxygen content. The sample
was mechanically detwinned at 200◦C under uniaxial stress,
without changing the oxygen content. Ortho-II ordering, in
which the oxygen content of the CuO chains alternates between
full and empty, was achieved by annealing at 85◦C for one day
and then 50◦C for one week. Note that the highest degree
of ortho-II ordering is obtained when the oxygen content is
slightly more than needed for filling every other chain; hence
the oxygen doping YBa2Cu3O6.52.

B. Surface impedance measurements

There are several key technical requirements for making
accurate microwave measurements of vortex dynamics. High
sensitivity is needed, as the resistive dissipation of submil-
limeter, high-quality single crystals is typically very small. In
addition, the technique must measure both real and imaginary
parts of the impedance to allow an unambiguous separation of
viscous and reactive effects. We have used cavity perturbation
of high-Q TiO2 (rutile) dielectric resonators, operating in
TE0np modes,82 to carry out measurements at four microwave
frequencies (ω/2π = 2.64, 4.51, 9.12, and 13.97 GHz). In
contrast to microwave measurements in zero field, for which
the resonator is typically a superconducting cavity, the TiO2

dielectric resonator is housed within a normal metal (copper)
enclosure, enabling it to be used in an applied magnetic field.
The low loss tangent and high dielectric constant of rutile
allow quality factors of 106–107 to be achieved. In addition,
the compact size of the resonator gives a much higher filling
factor than cavity resonators operating at the same frequencies.
The good mechanical stability of dielectric resonators and the
absence of weak superconducting links, combined with a high
Q and filling factor, result in a system that has comparable or
better surface-impedance resolution than a superconducting
cavity system and is capable of operating in high magnetic
fields.

A single crystal of ortho-II YBa2Cu3O6.52 with dimensions
a × b × c = 0.54 mm×0.63 mm×10 μm was mounted on
the end of a sapphire hot finger83 and introduced into the
resonator through a hole bored along the axis of the rutile
cylinder. The sample was mounted so that the static magnetic
field B was applied along the c direction of the crystal, as
shown in Fig. 2. The microwave field Hrf was also applied
along the c direction in order to induce a-b plane screening
currents. All measured quantities are a-b averages. This
geometry has a high demagnetizing factor but offers the
advantage of avoiding screening-current loops that close along
the c direction, something that is particularly important for
electrically anisotropic materials such as YBa2Cu3O6.52. The
sapphire hot finger allows the temperature of the sample to
be regulated separately from that of the resonator, which was
kept fixed at 4.2 K. In our system the hot finger was mounted
on a movable, pumped helium pot, giving a base temperature
of 1.1 K. The introduction of the sample into the resonator
causes a change in resonant frequency f0 and bandwidth fB .
Subsequent changes of sample temperature, and applied field,
lead to further changes in f0 and fB . The surface impedance
of the sample, Zs = Rs + iXs , is obtained using the cavity
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Jrf

Hrf

B

FIG. 2. (Color online) Sample geometry in the microwave exper-
iment. The sample is a platelet single crystal, thin in the c direction.
The sample is cooled through Tc in a strong, static magnetic field B

that is applied perpendicular to the CuO2 planes and sets up the vortex
lattice. In this picture, vortex cores are represented schematically by
dots on the upper surface of the sample; a number of vortex-lattice
unit cells are shown in the center of the diagram. A weak microwave
field Hrf is applied parallel to B. This induces a microwave transport
current density Jrf which, due to strong demagnetizing effects in this
geometry, is concentrated near the edges of the crystal.

perturbation relation82,84

Rs(B,T ) + i�Xs(B,T )=�

(
�fB(B,T )

2
− i�f0(B,T )

)
.

(40)

Here T is the sample temperature, � is an empirically
determined scaling factor, Rs(B,T ) is the absolute surface
resistance, �Xs(B,T ) is the shift in surface reactance with
respect to zero field and a reference temperature T0, �fB(B,T )
is the shift in resonator bandwidth on introducing the sample
into the empty resonator in an applied field B, and �f0(B,T )
is the shift in resonant frequency with respect to B = 0
and T = T0. Note that the absolute surface reactance cannot
be inferred from a measurement of the frequency shift on
inserting the sample into the resonator, as the microwave skin
depth is much smaller than the effective size of the sample.
Instead, absolute zero-field reactance is set using published
penetration depth data.85 All measurements reported here were
made with the sample in a field-cooled state, in order that
the sample magnetization be close to its equilibrium value.
Microwave power levels were regulated so that the microwave
H field in the resonator was held constant during the course
of the experiment, eliminating contributions that might arise
from power dependence of the resonator frequency and
quality factor. Field- and temperature-dependent background
measurements were made on the empty resonator and sapphire
sample holder and used to apply a small correction to the
sample signal.

An estimate of the amplitude of the vortex motion can
be obtained from the microwave power level and the pinning
force constant. In the following, we use worst-case values
for the various quantities (e.g., low-temperature Q, high-
temperature αp) to obtain an upper bound on the range of
motion. The input power to the resonator itself is typically
Pin = 1 nanowatts or lower. (This includes a correction for
the insertion loss of the cryogenic microwave cables and the

fact that the resonator is operated at weak coupling.) For
a quality factor Q = 106 (characteristic of low-temperature
operation) and a resonant frequency of 2.64 GHz, the stored
energy in the resonator is E = PinQ/ω = 6 × 10−14 J. For
an effective resonator volume of 0.5 cm3 (taking into account
the concentrating effect of the dielectric resonator), this corre-
sponds to a peak energy density U = 1.2 × 10−7 J/m3. From
this we obtain the strength of the microwave magnetic field
at the center of the resonator, Hrf = (U/μ0)1/2 = 0.3 A/m.
We assume that demagnetizing effects enhance this magnetic
field by a factor of sample width/sample thickness,86 giving
Hedge = 60Hrf = 18 A/m. For a skin depth δ = 0.2 μm, this
corresponds to a current density Jrf = Hedge/δ = 108 A/m2.
The force per unit length on the individual vortices is
F� = 
0Jrf = 2 × 10−7 N/m. For a pinning constant αp =
103 N/m2 (characteristic of high temperatures) we obtain
a maximum vortex displacement xmax = F�/αp = 2 Å. We
emphasize that this is an upper bound, based on worst-case
assumptions, and that we have sufficient signal-to-noise ratio
to operate at input powers several orders of magnitude lower.
In every case, data were checked for power dependence in
order to avoid nonlinearities.

IV. RESULTS AND DISCUSSION

A. Surface impedance

Surface impedance data, Zs = Rs + iXs , are presented in
Fig. 3 at each of the measurement frequencies (ω/2π = 2.64,
4.51, 9.12, and 13.97 GHz) and for magnetic fields ranging
from 0 to 7 T. In zero field, the superconducting transition is
preceded by some rounding due to superconducting fluctua-
tions, but there is a sharp downturn in Zs(T ) at Tc = 59 K. This
downturn softens as the magnetic field is applied but remains
visible in Xs(T ) as a slight kink, even at higher fields. This
is due to the onset of pinning as the vortex lattice freezes. In
surface resistance, the system remains strongly dissipative to
much lower temperatures, with a substantial decrease in Rs(T )
only occurring below the vortex-lattice melting transition.

B. Vortex viscosity

The real part of the frequency-dependent vortex viscosity
is obtained from the microwave surface impedance using
Eq. (37) and is plotted in Fig. 4 as a function of temperature,
with each panel showing results for a different magnetic
field. The qualitative behavior of η′(ω,T ) is the same in
each case: η′(T ) rises strongly on cooling, with a peak in
the 8–20 K temperature range. The peak is highest for the
2.64-GHz data and decreases in magnitude with increasing
frequency up to 13.97 GHz. The strong frequency variation
of η′ at low temperatures indicates the existence of long-lived
charge excitations.88 In fact, the frequency and temperature
dependence of η′ is strikingly similar to that of the zero-field
microwave conductivity σqp(ω,T ), plotted in Fig. 5 using
data from Ref. 34. In the case of the zero-field conductivity,
the peaks in σqp(T ) are due to the competing effects of
a quasiparticle lifetime that increases rapidly on cooling
below Tc, and a decreasing normal fraction as quasiparticles
condense into the ground state. The width of the low-frequency
quasiparticle spectrum σqp(ω) provides a measure of the
average quasiparticle relaxation rate, with narrow widths in
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FIG. 3. (Color online) Surface impedance Zs = Rs + iXs at
ω/2π = 2.64, 4.51, 9.12, and 13.97 GHz, for B = 0, 0.75, 1, 2,
3, 4, 5, 6, and 7 T (from bottom to top). Left-hand plots show surface
resistance Rs on a logarithmic scale. Right-hand plots show surface
reactance Xs on a linear scale. In each case the field is applied at a
temperature T > Tc and held constant during the temperature sweep.

the low-gigahertz range, indicating long transport lifetimes
and mean-free paths of several micrometers.32–34 Interestingly,
the peak temperatures in η′(T ) and the peak widths in
η′(ω) are very similar to those in σqp(ω,T ). Taken together,
these observations strongly suggest that d-wave quasiparticles
outside the vortex cores provide the dominant mechanism for
vortex viscosity in this material. This is completely different
from the situation in conventional superconductors, in which
the normal-metal cores are responsible for the vortex viscosity.

While the qualitative similarities between η′(ω,T ) and
σqp(ω,T ) suggest that d-wave quasiparticles are the underlying
mechanism, an important consistency check is provided by
testing whether the zero-field quasiparticle conductivity is
of sufficient magnitude to be responsible for the observed
viscosity. There are several ways this could be done, but a
conceptually clear method is to express the viscosity in terms
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FIG. 4. (Color online) Real part of the frequency-dependent
vortex viscosity η′(T ,B) at frequencies ω/2π = 2.64, 4.51, 9.12,
and 13.97 GHz, and for magnetic fields from 0.75 to 7 T. Tm denotes
the vortex-lattice melting temperature at each field, obtained from
Ref. 87. Td denotes the dynamical crossover temperature, defined to
be the point at which the frequency variation of η′ becomes less than
20% in our measurement range.

of a length scale �η that represents the area π�2
η over which

the vortex electric fields would need to couple to the electrical
conductivity in order to give rise to the observed viscosity. In
a conventional superconductor the relevant conductivity is the
normal-state conductivity and the length scale is the vortex
core size ξ . Bardeen-Stephen theory gives η = σ
2

0/2πξ 2,
and therefore �η = ξ = 
0

√
σ/2πη. We can now apply a

similar analysis to ortho-II YBa2Cu3O6.52. We perform the
comparison at T = 8 K, the temperature of the peak in η′(T ).
The low field viscosity at this temperature, and at 2.6 GHz, is
1.45 × 10−6 N s m−2. Instead of a normal-state conductivity,
we use the zero-field quasiparticle conductivity, as our asser-
tion is that the viscous drag arises from quasiparticles outside
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FIG. 5. (Color online) Zero-field quasiparticle conductivity
σqp(ω,T ) for ortho-II YBa2Cu3O6.52. Data are the geometric mean of
a- and b-axis microwave conductivity data from Ref. 34. The strong
rise in σqp(T ) on cooling is a result of a rapid decrease in inelastic
scattering of d-wave quasiparticles in the superconducting state.
Low-temperature peaks in σqp(T ) arise from a competition between
increasing quasiparticle lifetime and decreasing quasiparticle density
on cooling.

the core. The a-b averaged zero-field conductivity34 at 8 K
and 2.6 GHz is ≈ 4.5 × 107 �−1 m−1. From this we obtain
�η = 48 Å. This is of the same order as the vortex core size
in YBa2Cu3O6.52,80,87 establishing quantitative consistency
between the observed vortex viscosity and a mechanism based
on the electrical conductivity of bulk d-wave quasiparticles.

As magnetic field increases, η′(ω,T ) undergoes smooth
changes in shape, but its low-temperature form and overall
magnitude are not strongly affected. The most noticeable
change with increasing field is the emergence of a band of
temperature, immediately below Tc, in which η′(ω,T ) has
very weak frequency dependence, indicating that the viscous
dissipation is being caused by the vortices coupling to charge
excitations whose frequency spectrum extends well beyond
the microwave range (i.e., excitations that relax more rapidly
than on microwave time scales). To demarcate this regime we
define a temperature Td above which the frequency variation
of η′ is less than 20%. This signifies a qualitative change in the
relaxation dynamics, which we explore further below, using
fits to complex viscosity spectra. We will see that below Td , the
strongly frequency-dependent part of η′ rides on top of a broad
background. This indicates that the long-lived excitations
coexist with more rapidly relaxing ones. Td is marked on
Fig. 4 along with the vortex-lattice melting temperature Tm

from Ramshaw et al.87 There is no sharp change in viscosity at
the melting transition, just the beginning of a gradual downturn
in η′(T ) that takes place over a roughly 10 K range between
Tm and Td . The melting curve Bm(T ) and dynamical crossover
Bd (T ) are also plotted in a B-T phase diagram in Fig. 6.

C. Pinning constant

The effective pinning constant at microwave frequencies
αeff is extracted using Eq. (38). The 2.64-GHz data are plotted
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FIG. 6. (Color online) Field–temperature phase diagram showing
the vortex-lattice melting line Bm(T ), from Ref. 87, and the dynam-
ical crossover Bd (T ) derived from the frequency-dependent vortex
viscosity. Bc2(T ) is the BCS upper critical field, plotted assuming
Bc2(T → 0) = 40 T.87

in Fig. 7 on a semilog plot, for each of the magnetic fields.
(We will later see that, over most of the temperature range,
the 2.64-GHz traces are close to the static limit of αeff(ω),
which, according to the discussion in Sec. II C, is the elastic
pinning constant αp.) The pinning constant drops rapidly
with increasing temperature, following an approximately ex-
ponential temperature dependence, αeff(T ) ≈ α0 exp(−T/T0),
with α0 = 2 × 105 N/m2 and T0 = 11 K. Similar exponential
behavior has been reported in measurements of pinning
constant56,65 and critical current density89,90 on optimally
doped YBa2Cu3O7−δ: in that material, a typical value of α0

is 3–4 × 105 N/m2 (Refs. 56 and 65), with T0 in the range
20–25 K (Refs. 56,65 and 90). An elegant theory of this
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FIG. 7. (Color online) Temperature dependence of the effective
pinning constant αeff (T ) at 2.64 GHz for B = 0.75, 1, 2, 3, 4, 5, 6,
and 7 T (from right to left). Dashed lines are guides to the eye and
denote α(T ) = α0 exp(−T/T0), with T0 = 11 K. Tm and Td indicate
the melting and dynamical crossover temperatures at each field.
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behavior has been developed by Feigel’man and Vinokur,91

in which small-amplitude thermal motion of the vortex lattice
softens the apparent pinning potential: the specific form of the
exponential temperature dependence arises from vortex lattice
Debye-Waller factors.

The vortex-lattice melting transition is clearly visible in
the pinning-constant data, with αeff(T ) dropping by an order
of magnitude on passing through Tm(B). Above the melting
transition the pinning constant remains finite, even when we
take into account dynamical effects: we will argue below that
this is peculiar to surface impedance measurements and is due
to surface pinning. At higher temperatures, above Td , αeff(T )
reverts back to an exponential trend, with a value of T0 similar
to that at low temperature.

The frequency dependence of αeff(T ) is shown in Fig. 8
for fields of 4 and 7 T. As we will see in more detail in
Sec. IV E, αeff has substantial frequency dependence at almost
all temperatures, but in Fig. 8 this is most apparent above
the melting temperature due to the low level of static pinning
in the vortex-liquid regime. We will show that the frequency
dependence of αeff is due to dynamical effects arising from the
vortex viscosity.
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FIG. 8. (Color online) Frequency-dependent pinning constant
αeff (T ) for B = 4 T (upper panel) and 7 T (lower panel). Solid curves
show data at ω/2π = 2.64, 4.51, 9.12, and 13.97 GHz (from bottom
to top). The dashed curves show the dc limit αp(T ) obtained from fits
to Eqs. (23) and (24). Tm and Td indicate the melting and dynamical
crossover temperatures.
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FIG. 9. (Color online) The depinning frequency, ωp/2π ≡
αp/ηdc, for B = 0.75, 1, 2, 3, 4, 5, 6, and 7 T. Here αp and
ηdc ≡ η0 + η1 are the dc limits of the pinning and viscous force
constants obtained from the fitting procedure.

D. Depinning frequency

In the conventional Gittleman-Rosenblum model of vortex
dynamics, viscosity and pinning constant are frequency-
independent constants.38 There is then a well-defined depin-
ning frequency, ωp = αp/η, at which the viscous and elastic
forces are equal. In our measurements, viscosity and pinning
constant are strongly frequency dependent, and a substantial
part of the reactive force experienced by the vortex is due
to dynamical effects arising from the viscosity, rather than
elasticity due to pinning. The idea of a depinning frequency
is therefore not well defined. Nevertheless, we can make an
estimate from the dc limits of the pinning and viscous force
constants, obtained from the fits to complex vortex viscosity
presented in the next section: ωp ≡ αp/ηdc. Data for ωp are
plotted in Fig. 9. Over most of temperature range, ωp/2π

is in the low-gigahertz range, indicating that viscous effects
are predominant at our measurement frequencies. At low
temperatures, however, ωp/2π increases to be 10–25 GHz
(depending on field) due to the exponential increase in αp(T )
on cooling. In this regime it is essential that vortex dynamics
be probed with a technique that accurately measures both real
and imaginary parts of the surface impedance.

E. Complex vortex viscosity

One of our initial motivations for carrying out
multiple-frequency microwave measurements on ortho-II
YBa2Cu3O6.52 was as a test of the validity of the single-vortex
dynamical model outlined in Sec. II. Single-vortex theories
are often treated with skepticism: there is a suspicion that they
appear to work only because they have as many adjustable
parameters (αp and η) as there are degrees of freedom in the
data (real and imaginary parts of ρ̃v). Multiple-frequency data
therefore offer the prospect of a stringent test. A complication
arises if the parameters in the vortex model have intrinsic
frequency dependence, as appears to be the case in ortho-II
YBa2Cu3O6.52. Testing the vortex model then becomes a more
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FIG. 10. (Color online) Simultaneous fits to η′(ω) (left panels)
and αeff (ω) (right panels) at B = 1 T, using the procedure described
in Sec. IV E.

subtle process: as discussed in Sec. II C, causality means that
the dissipative and reactive parts of the dynamical response
must obey Kramers-Krönig relations.

On purely empirical grounds, an observation of coexisting
fast and slow relaxation processes in the viscosity suggests
that we represent η′(ω) by a two-component spectrum. The
simplest possibility is that given by Eq. (23), in which a
Drude-like Lorenztian spectrum, of magnitude η1 and width
�, rides on top of a broad background of magnitude η0. By
causality, there must be an associated imaginary component
η′′(ω). This combines with the elastic contribution αp to form
the effective pinning constant αeff(ω), given by Eq. (24).
Using this model, we have carried out simultaneous fits to
the measured frequency dependence of η′ and αeff , at all fields
and temperatures. Representative results, in 10-K temperature
steps up to 50 K, are shown in Figs. 10, 11, and 12 at fields of
1, 4, and 7 T, respectively.
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FIG. 11. (Color online) Simultaneous fits to η′(ω) (left panels)
and αeff (ω) (right panels) at B = 4 T, using the procedure described
in Sec. IV E.

At all but the lowest temperatures and fields, the ability of
the model to capture the observed dynamics is outstanding.
(For the T = 10 K, B = 1 T data, the discrepancy in αeff(ω) is
consistent with proximity to a cyclotron resonance, something
that is very interesting in its own right and will be investigated
in detail in future measurements.) Importantly, the multiple
frequency data now overconstrain the model and, although
these are four-parameter fits, only two of the parameters (η1

and �) relate to frequency dependence: η0 and αp are additive
offsets. It is therefore impressive that at all but the highest tem-
peratures, the frequency dependence of η′ essentially predicts
that of αeff , and vice versa. We draw two conclusions from
the goodness of the fits: that the measurements themselves are
accurate and that the single-vortex model provides a very good
representation of the microwave dynamics.

The need for a two-component spectrum is a clear indication
that fast and slowly relaxing excitations coexist in the vortex
state. At first sight this is not surprising, since quasiparticles
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FIG. 12. (Color online) Simultaneous fits to η′(ω) (left panels)
and αeff (ω) (right panels) at B = 7 T, using the procedure described
in Sec. IV E.

in d-wave superconductors are known to have strongly
energy-dependent relaxation rates as a consequence of the
nodal quasiparticle spectrum.31 However, the fast-and-slow
dichotomy observed in η′(ω,T ), especially at higher fields,
is too pronounced to arise from thermal averaging over a
distribution of relaxation rates dependent on energy alone. An
alternative explanation, more in keeping with the disconnected
nature of the broad and narrow parts of η′(ω,T ), is that the
fast and slow processes are occurring in spatially distinct
regions. Since the narrow component of η′(ω,T ) appears to
be characteristic of d-wave quasiparticle physics, the slow
processes are most naturally associated with regions outside
the cores. By extension, we would then associate fast relaxation
with processes involving the vortex cores. A picture of spatially
separate relaxation mechanisms also helps to make sense of
the sudden disappearance of slow relaxation above Td seen in
Fig. 4. As can be seen in the field-temperature phase diagram
in Fig. 6, Bd (T ) lies in the vortex-liquid regime, above the

vortex-lattice melting line Bm(T ),87 showing that, on its own,
melting of the vortex lattice does not eliminate the long-lived
excitations. Instead, Bd (T ) is likely a dynamical crossover at
which thermally fluctuating vortices begin to move on a time
scale similar to that of the microwave measurement frequency.

The parameters from the fits to Eqs. (23) and (24) are
the elastic pinning constant, αp; the viscosity terms η0 and
η1; and the viscosity relaxation rate, �. αp(T ) is plotted
in Fig. 8 as the dc limit of αeff(ω): note that αp fairly
closely follows the 2.64-GHz pinning constant data. We see
that it remains finite above the melting temperature. This
is at odds with bulk measurements, for which the melting
transition marks the resistive onset.87,92–96 A likely reason
for this is that surface pinning plays an important role in
the microwave measurements: the loss of shear stiffness
experienced at the melting transition has a profound effect
on the ability of pointlike defects to pin the vortex lattice;
for planar defects such as the sample surface, shear stiffness
is irrelevant. This observation also serves as a warning that
microwave techniques are not necessarily a good probe of bulk
pinning. Nevertheless, by narrowing the distribution of elastic
forces experienced by vortices visible to the microwave fields,
surface pinning likely works to our advantage, improving
the applicability of the single-vortex model. The dynamical
component of αeff also helps in this respect, as it arises from
interactions with the electron fluid rather than from randomly
distributed defects.

The viscosity terms η0(T ) and η1(T ) are shown in Fig. 13,
with the latter quantity appearing as part of ηdc ≡ η0 + η1.
η0(T ) closely tracks the 13.97-GHz viscosity, and is very sim-
ilar in magnitude to the viscosity inferred by Parks et al. from
terahertz measurements on YBa2Cu3O7−δ (Tc = 85–88 K),
suggesting that the η0 component of the viscosity extends over
a very broad frequency range, up to terahertz frequencies.

The final fit parameter from Eqs. (23) and (24), �(T ), is
plotted separately, in Fig. 14. At the lowest temperatures, �/2π

is of the order of several gigahertz. This is comparable to the
width of zero-field quasiparticle conductivity spectra in ortho-
II YBa2Cu3O6.50,33,34 providing one of the pieces of evidence
linking vortex dissipation to the d-wave quasiparticles. �(T )
initially grows linearly with temperature, also in accord with
the behavior inferred from zero-field measurements, in which
the form of the temperature dependence of the scattering in
ortho-II YBa2Cu3O6.52 is taken as being indicative of weak-
limit scattering of nodal quasiparticles.33,34 It is interesting that
�(T ) is comparable to the quasiparticle relaxation rate in zero
field, as it indicates that the vortex lattice does not contribute
strongly to quasiparticle scattering. Vortices are large on the
scale of the Fermi wavelength and would be expected to
act as a source of small-angle scattering: such processes are
known to be ineffective at relaxing charge currents in d-wave
superconductors.97 In contrast, small-angle scattering should
have a strong effect on the rate of intranodal transitions
and should be very effective at randomizing the quasiparticle
group velocity.97 As a result, quasiparticles should become
diffusively confined in the vortex lattice, even while electrical
transport measurements, such as the ones presented here,
indicate mean-free paths much larger than the intervortex
spacing. The vortex lattice should instead be responsible for
new quasiparticle effects, such as pair-breaking induced by
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FIG. 13. (Color online) Real part of the frequency-dependent
vortex viscosity η′(T ,B), plotted along with the fit parameters η0

and η1 from Eqs. (23) and (24). Long dashes show the fit parameter
η0(T ); short dashes the dc limit, ηdc(T ) = η0(T ) + η1(T ). As in
Fig. 4, Tm denotes the vortex-lattice melting temperature,87 and Td

gives the dynamical crossover temperature above which the frequency
dependence of η′ is very weak.

Doppler shifting of quasiparticle energies.98 These should
grow in importance with B and may be responsible for
the increase in η0(T ) at higher fields. On passing through
the melting temperature, �(T ) starts to increase rapidly
and then appears to plateau above the dynamical crossover
with �/2π ≈ 20 GHz in the higher-field data sets. This
frequency scale is substantially smaller than that expected
for quasiparticle scattering in this temperature range and is
perhaps connected to superconducting fluctuations.

F. Flux-flow resistivity

Finally, we obtain an estimate of the flux-flow resistivity
ρff from the vortex-dynamics data. As mentioned in the
Introduction, we are faced with a trade-off when measuring ρff
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FIG. 14. (Color online) The relaxation rate of the viscous dynam-
ics �(T ) for B = 1, 4, and 7 T, obtained from fitting to the complex
viscosity spectra.

in any real material, due to the presence of pinning: we must
either use large currents that depin the vortices (for cuprates,
an increasingly difficult prospect as temperature is lowered50),
or measure the linear response at high frequencies and work
back towards the static limit. Having taken the latter approach,
we define a frequency-dependent flux-flow resistivity ρff(ω) ≡
B
0/η

′(ω), which is plotted in Fig. 15. At all fields and
frequencies, ρff(T ) shows an initial drop on cooling through
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FIG. 15. (Color online) Frequency-dependent flux-flow resis-
tivity, ρff (ω) ≡ B
0/η

′(ω), for ω/2π = 2.64, 4.51, 9.12, and
13.97 GHz, on semilogarithmic axes, for B = 0, 0.75, 1, 2, 3, 4,
5, 6, and 7 T (from bottom to top). At the lower frequencies, the low-
temperature behavior follows the form ρff (T ) = ρ0 + A log(1/T ). At
9.12 and 13.97 GHz, the low-temperature divergence appears to be
cut off by finite frequency effects.
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Tc, a broad minimum in the 8–20 K range, and an upturn at
low temperatures—this is a reflection of the peaked structure
in η′(T ). The most remarkable aspect of the data is that, at
the lower frequencies, the low-temperature upturns appear to
follow a log(1/T ) form. This is reminiscent of the behavior
of the dc resistivity in the pseudogap regime,35,36 raising the
interesting possibility that the two effects are connected.

V. CONCLUSIONS

In summary, this work builds on a number of technical
advances in microwave spectroscopy of the vortex state: the
use of high-Q dielectric resonators, allowing high-sensitivity
measurements on small single crystals; the ability to simulta-
neously measure real and imaginary parts of the impedance
at each frequency, allowing a clean separation of viscous and
elastic effects; measurement over a wide range of microwave
frequencies; and measurements as a function of magnetic
field. Applied to a high-purity single crystal of ortho-II
YBa2Cu3O6.52, these developments come together to reveal

the vortex dynamics in unprecedented detail, uncovering a
close connection between the vortex viscosity η′(ω,T ) and the
zero-field dynamics of the d-wave quasiparticles. The vortex
viscosity is revealed to have strong frequency dependence
and, when treated as a complex-valued quantity, is consistent
with the tight constraints causality places on physical response
functions. This gives us a great deal of confidence in both the
experimental technique, and the use of single-vortex models
of microwave-frequency vortex dynamics.
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J. R. Waldram for useful discussions. Research support for
the experiments was provided by the Natural Science and
Engineering Research Council of Canada (NSERC) and the
Canadian Foundation for Innovation. Research support for
sample preparation was provided by NSERC and the Canadian
Institute for Advanced Research.

*Department of Physics, University of Colorado, Boulder, CO 80309,
USA.
1J. Bardeen and M. J. Stephen, Phys. Rev. 140, 1197 (1965).
2I. Maggio-Aprile, C. Renner, A. Erb, E. Walker, and O. Fischer,
Phys. Rev. Lett. 75, 2754 (1995).

3P. I. Soininen, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 50,
R13883 (1994).

4W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang,
Phys. Rev. Lett. 70, 3999 (1993).

5D. J. Scalapino, Phys. Rep. 250, 330 (1995).
6H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. F.
Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki,
Phys. Rev. B 54, R9678 (1996).

7E.-J. Choi, H.-T. S. Lihn, H. D. Drew, and T. C. Hsu, Phys. Rev. B
49, 13271 (1994).

8P. Nozières and W. F. Vinen, Philos. Mag. 14, 667 (1966).
9A. I. Larkin and Y. N. Ovchinnikov, JETP Lett. 23, 187 (1976).

10Y. J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F.
Carolan, W. N. Hardy, R. Kadono, J. R. Kempton, R. F. Kiefl,
S. R. Kreitzman, P. Mulhern, T. M. Riseman, D. L. Williams, B. X.
Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A. W. Sleight, M. A.
Subramanian, C. L. Chien, M. Z. Cieplak, G. Xiao, V. Y. Lee, B. W.
Statt, C. E. Stronach, W. J. Kossler, and X. H. Yu, Phys. Rev. Lett.
62, 2317 (1989).

11V. J. Emery and S. A. Kivelson, Nature (London) 374, 434 (1995).
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