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Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions
under both dc and ac bias currents
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Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-
superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc
currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension.
At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic
nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of
neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase.
Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent
motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal
output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic
frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency
range the dynamically synchronized state has an alternative—a less ordered state with smaller amplitude of the
output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack.
Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is
observed for larger slopes of the sample edge.
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I. INTRODUCTION

Considerable effort has been devoted in the past to the
study of the dynamic properties of Josephson vortices (fluxons)
in arrays of Josephson junctions (JJs).1–7 The interest in the
Josephson vortex system is partly due to the possibility of
using JJ arrays as tunable high-frequency radiation sources, as
was for example proposed by Koyama and Tachiki.8 Followup
experimental9–12 and theoretical5,13–15 studies have shown that
the moving fluxons are responsible for the high-frequency
electromagnetic radiation which can open new avenues in
the field of superconducting THz devices (see Refs. 16 and
17 for review). Radiation power generated by the moving
vortex lattice was estimated in Ref. 18. In layered JJ systems,
the inductive interlayer coupling promotes the formation of
the triangular vortex lattice. However, to generate noticeable
radiation, oscillations induced by the moving lattice have to
be in phase in the different layers, which is realized only when
the moving vortices form a rectangular lattice. In this case, the
maximal radiation power is proportional to the square of the
number of layers in the stack.19 Theoretical studies showed
that the system mostly contains a triangular Josephson vortex
lattice, or similar noncoherent vortex configurations (see, e.g.,
Ref. 20). In-phase motion of vortices was observed only for
specific parameters of the system (i.e., small length and small
number of junctions, or higher bias currents and particular
magnetic fields).

Therefore, the major challenge in the field is to synchro-
nize Josephson oscillations in all junctions in the stack in
order to realize significant radiation.19 In-phase oscillations
can be achieved by a shunted circuit or by the radiation
fields.21,22 Effect of microwave irradiation on the properties
of JJ arrays have also been studied extensively in the past.
For example, the behavior of long JJs in the presence of

low-frequency microwave have been studied in relation to
their possible application in tuneable resonators,23 whereas mi-
crowave driven long junctions have been successfully used for
phase locking of Josephson flux-flow oscillators in integrated
superconducting submillimeter wave receivers.24 Particular
attention has been given to search for regimes in Josephson
flux flow synchronized by the external microwaves.25 Under
ac drive fluxons show complex dynamic behavior ranging from
the synchronized (phase-locked) dynamical regime26–29 to the
chaotic one.30,31 Of special interest are the dynamic properties
of JJs in the presence of external ac and dc forcing. Intriguing
transport phenomena have been reported in recent years,
including absolute negative conductance (i.e., a positive dc
current can generate a negative voltage across the junction)32

and/or negative nonlinear conductance.33 A different level of
complexity is added to the context when the neighboring
junctions have different parameters. A typical example is
the stack of JJs of different length realized, e.g., in mesa
structures from high-temperature superconductors, which
present natural stacks of atomistic-scale intrinsic JJs.12,34 Since
the junctions oscillate with different frequencies in different
stacks, it is difficult to put the whole system into a coherent
state.35

In this work we study the effect of a nonrectangular
cross section of an artificial stack of superconducting-normal-
superconducting (SNS) JJs on the dynamics of fluxons under
time-periodic ac and constant dc biasing currents. We show
that very small deviations of the sidewalls of the system from
its vertical position strongly affect the collective behavior of
the junctions, resulting in a transition from coherent motion
of fluxons to less ordered dynamics of fluxons. No phase
synchronization is observed for larger asymmetry in the
distribution of junction cross sections, where the dynamic state
is characterized by a chaotic motion of fluxons.
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FIG. 1. (Color online) Model system: a stack of superconducting
layers (of thickness d) separated by normal metal Josephson junctions
(of thickness s) in the presence of uniform external current I applied
through normal metal contacts. The angle α determines the length
of each junction. Horizontal black stripes show the position of the
potential contacts that measure the output voltage between the layers
1 and n.

II. THEORETICAL APPROACH

We consider artificial stack of superconducting layers of
thickness d separated by uniform normal metal junctions
(thickness s) in the presence of a uniform external current
I applied through the normal contacts at the top and bottom of
the sample (see Fig. 1). The system has nonvertical sidewalls,
where the lateral size of the sample is determined by the angle
α. To understand the dynamic properties of the system we used
the time dependent Ginzburg-Landau (TDGL) formalism and
solved numerically the following TDGL equation inside each
of the superconducting layers:

u

(
∂

∂t
+ iϕ

)
ψ = (∇ − iA)2ψ + (1 − |ψ |2)ψ + χ, (1)

where the last term is a small white noise, the size of
which is much smaller than the barrier height between the
different metastable states. The Josephson tunneling between
the superconducting layers is taken into account using the
following coupling (see the Appendix):

(−i∇z − Az)ψn|top boundary

= i

μs
[ψn+1(x,y,(n + 1)D)

× exp(−iĀn+1s) − ψn(x,y,nD + d)], (2a)

(−i∇z − Az)ψn|bottom boundary

= i

μs
[ψn−1(x,y,(n − 1)D + d)

× exp (iĀn−1s) − ψn(x,y,nD)], (2b)

on top [Eq. (2a)] and bottom [Eq. (2b)] of each superconduct-
ing layer, where d and s are the thickness of the superconduct-
ing and metallic layers, respectively, and D = d + s. Here Ā is
defined as Ān+1 ≡ (1/s)

∫ (n+1)D
nD+d

Azdz and μ is the ratio of the
mass of the Cooper pairs in the metallic and superconducting
regions. The superconducting-vacuum boundary condition
�a(−i∇ − A)ψ |a = 0 is applied in other boundaries with �a
being the unit vector normal to the surface. Additionally, we
use de Gennes boundary condition36 (−i∇ − A)ψ |a = iψ |a

at the superconducting-normal boundaries, to account for the
proximity effect. Equation (1) is coupled with the equation for
the electrostatic potential ϕ:

σ�ϕ = div(js), (3)

which follows from the continuity equation:

∂ρ/∂t = ∇ · [js − σ (∇ϕ + ∂A/∂t)], (4)

with assumptions that the charge relaxes fast (i.e., no charge
accumulation) and the variation of the magnetic field over time
is smaller than the other physical processes in the system. The
superconducting current is given by

js = 1

2i
(ψ∗∇ψ − ψ∇ψ∗) − A|ψ |2, (5)

with a Josephson component js⊥ (see the Appendix):

js⊥ = 1

2iμs
(ψn+1(x,y,(n + 1)D)

× exp(−iĀs)ψ∗
n (x,y,nD + d)

−ψ∗
n+1(x,y,(n + 1)D) exp(iĀs)ψn(x,y,nD + d)).

(6)

Assuming that the superconductor has a good contact with the
normal-metal current contacts at the top and bottom of the
sample, we set ψ = 0 at the contacts and inject the external
current through the boundary condition for the electrostatic
potential ∇ϕ|a = ±j , with j being the applied current density.
Since the superconducting current is zero at the contacts,
the current is injected to the system in the form of normal
current, which then converts to the superconducting one over
the distance of less than few coherence length (see, e.g.,
Ref. 37). In these equations, we express the length in units
of the coherence length ξ and the vector potential is scaled to
�0/(2πξ ) (where �0 is the magnetic flux quantum). Time is in
units of the Ginzburg-Landau relaxation time t0 = 4πλ2/c2ρn

(ρn is the normal-state resistivity), the electrostatic potential
is in units of V0 = c�0ρn/8π2λξ , and the current density is
measured in j0 = c�0/8π2λ2ξ . The parameter u, which is a
measure of the different relaxation times (e.g., the relaxation
time of the absolute value of the order parameter) in the
superconductor, is taken as u = 5.79.38 Using ξ (0) = 10 nm,
λ(0) = 200 nm, and ρn = 18.7 μ� cm, which are typical for
Nb thin films,39 we obtain t0 ≈ 2.69 ps and V0 = 0.12 mV
close to the critical temperature. We assume that the junctions
are unform in the x direction, which reduces the problem
to two dimensions. We also neglected the demagnetization
effects which are valid when the lateral dimensions of the
sample are much smaller than the Pearl length � = 2λ2/d. We
put the conductivity σ = 1 in the simulations. These coupled
nonlinear differential equations are solved self-consistently in
the y-z plane using explicit Euler (for ψ) and multigrid (for
ϕ) iterative procedures. Equation (1) is discretized using the
link variable approach (see, e.g., Ref. 40). To avoid extremely
time consuming simulations (due to the explicit simulation
method) we consider a limited number of junctions in the
stack (N < 10) and the results are presented here for zero
external magnetic field.
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III. DC BIASING—EFFECT OF NONVERTICAL
CROSS SECTIONS

We begin our analysis by demonstrating the properties
of our system in the presence of applied dc current by
constructing the time-averaged voltage versus applied current
(I -V ) and the voltage versus time (V (t)) characteristics of the
sample. As a representative example, we consider stacks of
six superconducting layers (of thickness d = 10.5ξ and base
length L = 256ξ ) separated by N = 5 metallic junctions of
thickness s = 0.5ξ , the I -V characteristics of which are shown
in Fig. 2 for three different values of the slope angle α. We first
discuss the results for α = 0 (solid black curve), which is the
situation when all the junctions have the same length. For the
given parameters of the junctions, zero resistance of the sample
is maintained up to a threshold current density jc = 0.09j0,
above which the system transits into a resistive state with a
finite-voltage jump. Notice that this critical current is much
smaller than the Ginzburg-Landau depairing critical current
(∼0.385j0), which corresponds to the penetration of
Abrikosov vortices in uniform thin film superconductors.41

Since we work in the zero external magnetic field regime, the
dissipation arises from the periodic nucleation and annihilation
of Josephson vortex-antivortex pairs as shown in panels
(1a) and (1b) of Fig. 2 where we plotted snapshots of the

(1a)

(2a) (2b)

(1b)

FIG. 2. (Color online) Time averaged voltage (V , measured
across the whole sample) vs current density (j ) characteristics of the
sample with five stacked junctions (N = 5) at zero applied magnetic
field for tilting angles α = 0 (solid black curve), α = 4.5◦ (dashed red
curve), and α = 9◦ (dotted blue curve). The base length of the sample
is L = 256ξ , the thickness of the superconducting layer is d = 10.5ξ ,
and the thickness of the normal layer is s = 0.5ξ . Panels (1a), (1b),
(2a), and (2b) show snapshots of the Cooper-pair density [(1a),(2a)]
and the phase of the order parameter [(1b),(2b)] at j = 0.95j0 for
α = 0 [(1a),(1b)] and α = 9◦ [(2a),(2b)] indicated by the points 1
and 2 on the I -V curves. White circles indicate the positions of the
Josephson vortices and antivortices.

Cooper-pair density (1a) and the phase of the order parameter
(1b).42 The locations of fluxons are highlighted by white
circles. The nucleation rate of the fluxon-antifluxon pairs
increases with increasing applied current resulting in a
monotonic increase of the output voltage. Dashed-red and
dotted-blue curves in Fig. 2 show the I -V curves of the sample
for finite slope of the sidewalls. Although the output voltage
decreases with increasing the tilting angle α, the critical current
density of the sample does not depend on the junction cross
section. For the considered values of the tilting angle, the
entire sample switches into the resistive state when the critical
current is reached. This resistive state is still characterized
by the periodic nucleation of fluxon-antifluxon pairs in each
junction [see panels (2a) and (2b) in Fig. 2].

To show properties of the resistive state of the system,
and the role of the mutual interactions between the fluxons
in neighboring junctions, we plotted in Fig. 3 the time
evolution of the output voltage for the sample of Fig. 2 with
α = 0, together with snapshots of the Cooper-pair density. We
have chosen the small dc current regime to retain a single
fluxon-antifluxon mode and to avoid possible self-heating at

FIG. 3. (Color online) Voltage vs time characteristics of the
sample in Fig. 2 for α = 0 and j = 0.095j0. Voltage is calculated
across the whole sample (thicker black curve) and across each
junction indicated by V1, . . . ,V5 [see left axis of panel (1) for indexing
of the junctions]. To avoid overlap of the curves the results are shifted
by 0.1V0 for V5, 0.25V0 for V2, 0.35V0 for V4, 0.45V0 for V3, and 0.4V0

for the voltage curve across the sample. Panels (1)–(6) show snapshots
of |ψ |2 at the times indicated by circles in the main panel. Arrows
indicate the direction of motion of Josephson vortices (from right to
left) and antivortices (from left to right). Larger circles/rectangles in
panel (2) show the Josephson vortex-antivortex nucleation point and
rectangles indicate their annihilation in the middle of the sample.
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larger velocities of the fluxons. The V (t) characteristics of
the sample show periodic oscillations (two periods are shown
here) with several peaks in each period (see thicker black
curve in the main panel of Fig. 3), which originates from the
periodic nucleation and annihilation of fluxon-antifluxon pairs
in different layers. For the given set of sample parameters and
applied current these pairs oscillate with characteristic period
T ∗ = 88.5t0 common for all the junctions. Although, in-phase
motion of fluxons in neighboring junctions is energetically
unfavorable due to the repulsive interaction between the
fluxons, the geometry of the sample induces synchronization
in the motion of fluxons in selected pairs of junctions. In this
particular case, junctions 1 and 5 oscillate in phase as shown in
panel 1 of Fig. 3 (the same is observed between junction 2 and
4). As a consequence, we observe an identical voltage signal
across these junctions (see curves V1 and V5; notice the vertical
shift of the voltage curve V5). Two maxima in these curves
correspond to the nucleation (at the edge of the junctions;
see panel 1) and annihilation (in the middle of the sample;
panel 2) of fluxon-antifluxon pairs. The latter process creates
a favorable condition for the nucleation of fluxon-antifluxon
pairs in the middle of the sample in neighboring junctions (see
panel 2). Once nucleated, these pairs move towards the edges
of the sample (panels 3 and 4) where they leave the sample
(panel 5). Each nucleation and annihilation process results
in local maxima in the voltage across the junction, which
contributes to the total voltage signal. Such breather-type self-
oscillations have been recently proposed to be the mechanism
of emission from spatially uniform stacked JJs at zero magnetic
field.43

Figure 4 shows the V (t) characteristics of the sample for the
case of a finite slope of the sidewalls (α = 4.5◦). The applied
current density is just above the critical current. Snapshots
of |ψ |2 (bottom figures of Fig. 4) illustrate the motion of the
fluxons. As in the case of a uniform sample (Fig. 3) the voltage
signal arises from the periodic nucleation and annihilation of
the Josephson vortex-antivortex pairs (panels 1–3). However,
in contrast to the symmetric sample, the nucleation point of
the pairs in the same junction can alter in time from the

1

2
3

4
5

FIG. 4. (Color online) Same as in Fig. 3 but now for α = 4.5◦.

middle of the sample to the edges depending on the state
of the neighboring junction (see the second junction in panels
1 and 3).44 Notice that no crossing of fluxon-antifluxon pairs
are observed due to the stronger dissipation in our system as
compared to sine-Gordon systems. The motion of fluxons in
different junctions are strongly irregular, which is clearly seen
from the voltage curves V1-V5 measured across each junction.
For larger values of the angle α, some of the junctions switch
to the zero voltage state (not shown here) resulting in a more
chaotic voltage signal across the sample.

Thus the resistive state of an artificial stack of JJs at zero
magnetic field is characterized by the periodic nucleation and
annihilation of Josephson vortex-antivortex pairs, the positions
of which are determined by the flux state of the neighboring
junctions. In-phase oscillations of selected pairs of junctions
can be observed in dc currents due to the symmetry of the
system. Small deviation of the sidewalls of the sample from
the vertical position puts the stack into the incoherent state in
which junctions oscillate at different frequencies.

IV. SYNCHRONIZED DYNAMICS OF FLUXONS IN THE
PRESENCE OF AC CURRENT

In this section we investigate the dynamics of fluxons
in the stack of JJs when the system is subjected to both a
time-periodic (and spatially uniform) ac current and a constant
biasing dc current (also spatially uniform). Our main goal is
to realize in-phase oscillations of all the junctions in the stack
by synchronizing the fluxons by an external ac forcing. As
an example, we consider sinusoidal ac plus static dc current
biasing, so that the total current density is given by

j = jdc + |jac| sin(2πt/T ), (7)

where T is the period of the current oscillations. We restrict
ourselves to lower dc currents (just above the resistive state
transition current jc) to retain the single-fluxon-antifluxon
regime in each junction. We also consider a weak ac signal
such that no fluxons will be generated by the ac current. This
is to avoid complex dynamical effects observed when large
amplitude ac forcing induces a flow of fluxons in the system
(see, e.g., Ref. 31).

First we consider the symmetric sample with rectangular
cross section with the parameters as in Fig. 2. Figure 5 shows
the voltage vs time response of the sample in the presence
of ac current with different period T and with dc component
jdc = 0.095j0. As a reference, we plotted in Fig. 5(a) the V (t)
curve of the sample with only dc current, which was discussed
in Fig. 3. Although small in amplitude (|jac| = 0.1jdc), the ac
component of the current results in considerable modulation
of the voltage signal across the sample: strongly modulated
voltage peaks are observed in every half-period of the ac
signal [Fig. 5(b)] the amplitude of which is much larger than
the voltage signal at dc biasing. Due to difficult temporal
adjustment between the fluxon motion and the driving force,
small voltage peaks are observed at the beginning of the second
reverse cycle.45 The number of voltage peaks decreases in
the half-cycle and their amplitude increases with increasing
frequency of the ac current [Figs. 5(c)–5(e)]. Note that all the
results in Fig. 5 are plotted with the same y-axis scale. The
maximal output voltage is observed when half of the period of
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FIG. 5. (Color online) V (t) curves of the sample of Fig. 2 in the
presence of dc (a) (jdc = 0.095j0) and ac (b)–(g) [j = 0.095j0 +
0.0095j0 sin(2πt/T )] currents. The period of the ac drive is T =
2000t0 (b), T = 700t0 (c), T = 400t0 (d), T = 300t0 (e), T = 175t0
(f), and T = 100t0 (g). Dashed-red curves illustrate the profile of the
ac component of the current.

the ac signal approaches the characteristic period of the system
T ∗ = 88.5t0 determined by the dynamics of the fluxons for the
given value of the dc current. The voltage curve of the sample
in this case is shown in Fig. 5(f). The shift in the phase of the
ac signal and the voltage response of the system is due to the
finite relaxation time of the superconducting order parameter.
During the half-period of the current oscillation, fluxons on one
side of the sample and antifluxons on the other side are injected
simultaneously in all junctions and propagate through the
junction under the influence of the dc bias current retaining the
same y coordinate (i.e., rectangular lattice). Further increase
of the frequency of the external field results in less ordered
Josephson flux-flow motion and a reduction of the voltage
signal [Fig. 5(g)].

Figure 6 shows the Fourier power spectra of the voltage
curves of Fig. 5: Ṽ (ν) = 1√

2π

∫
V (t)ei 2πt

T dt . dc current regime
[Fig. 6(a)] is characterized by a pronounced peak in the
|Ṽ (ν)|2 curve with the characteristic frequency ν∗ = 1/T ∗
of the periodic oscillations of fluxon-antifluxon pairs. Extra
peaks in the Fourier spectrum appear with adding the ac
component to the applied current current [Fig. 6(b)]. The
amplitude of these peaks increases and the number of the
peaks decreases with increasing frequency of the applied drive
[Figs. 6(c)–6(e)] indicating a stronger modulation of
the Josephson oscillations. The latter is also evident from

~
ν

ν

FIG. 6. (Color online) Fourier power spectrum |Ṽ (ν)|2 of the
voltage curves in Fig. 5. Voltage oscillations with the frequency of
the external ac drive v∗ = 1/T ∗ are indicated by arrows.

the V (t) curves of the system [see Figs. 5(c)–5(e)]. Largest
peak in the spectrum with clearly visible harmonics is seen in
Fig. 6(f), where the motion of fluxons is synchronized with
the frequency of the ac drive. When the frequency of the
ac current is larger than the characteristic frequency of the
system, we find only peaks in the spectrum corresponding to
the frequency of the external drive (and some of its harmonics)
as shown in Fig. 6(g). Note that phase-locked dynamics of the
fluxons is observed for all the frequencies of the applied drive
with corresponding peaks in the Fourier spectra indicated by
arrows in Fig. 6.

Thus the present simulation results show that applying
a small time-periodic ac component to the dc current acts
as an effective restoring force between the fluxons in the
different junctions, thereby countering their mutual repulsion.
Synchronization of all the junctions into a macroscopic
coherent state is observed when the frequency of the ac
drive approaches the characteristic frequency of the system,
determined by the dynamics of the fluxons. Similar results
were found for a larger number of junctions in the stack (i.e.,
N = 10).

In what follows, we study the effect of a nonrectangular
cross section of the stack of junctions on the dynamics
of fluxons when the system is subjected to both a time-
periodic ac and a constant biasing dc current. Figure 7
shows the voltage vs time curves of the sample with base
length L = 256ξ and N = 5 junctions in the stack under
the constant dc (jdc = 0.095j0) and sinusoidal ac (|jac| =
0.1jdc) currents for different periods of the ac drive. In the
case of dc biasing, voltage oscillations are strongly irregular
[Fig. 7(a)], and the oscillation spectrum is very broad, resem-
bling a chaotic state [Fig. 8(a)]. This is because each junction
oscillates at slightly different frequencies affected by the
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FIG. 7. (Color online) Same as in Fig. 5 but for the tilting angle
α = 4.5◦. Dotted-blue curves in (f) and (g) show the V (t) curve of
the sample for α = 9◦.

length of the junction. The voltage oscillates with an average
characteristic frequency ν∗ ≈ 0.023/t0, which is modulated
by low frequency oscillations [see the peaks in Fig. 8(a)].
In-phase motion of the fluxons is unfavorable without the
ac drive. At lower frequencies of the ac current, a bunch of
fluxon-antifluxon pairs is injected at every half-period, the
motion of which becomes irregular in the junctions. This is
clearly seen in the V (t) curve of the sample [Fig. 7(b)]. In the
Fourier spectrum many additional, well separated peaks are
observed [Fig. 8(b)]. Their motion becomes more regular with
increasing frequency of the applied current, as evidenced by
sharp peaks in the spectrum [see Figs. 8(c)–8(e)]. The most
ordered state is shown in Fig. 7(f) for T = 175t0. However, the
amplitude of the output voltage is twice smaller than the one
for the uniform sample [compare Figs. 5(f) and 7(f)], which
indicates that not all the junctions in the system oscillate in
phase. Moreover, due to difficult temporal adjustment between
the fluxon motion and the driving force during the cycle, we
observed an extra peak in the other half-period of the current
oscillations [Fig. 7(f)]. Figure 7(g) shows the voltage curve
of the sample when the frequency of the oscillations is larger
than the characteristic frequency of the system. Phase-locked
dynamics of the fluxons with the applied drive is seen from this
figure. This is also clearly seen in the corresponding Fourier
spectrum presented in Fig. 8(g).

The dotted-blue curve in Fig. 7(f) shows the voltage vs
time characteristics of the sample for a larger slope of the
sidewalls (α = 9◦). It is seen from this figure that the peaks
in the voltage curve are not very much pronounced and its

~
ν

ν

FIG. 8. (Color online) Fourier power spectrum |Ṽ (ν)|2 of the
voltage curves in Fig. 7. Voltage oscillations with the frequency of
the external ac drive are indicated by arrows.

peak value is considerably reduced. This is a consequence
of the out-of-phase motion of fluxons in different junctions.
However, phase-locked oscillations become more pronounced
at larger frequencies of the ac current [see dotted blue curves
in Fig. 7(g)].

Thus the dynamics of Josephson vortices under dc current
becomes irregular when the slope of the sample’s sidewall
are changed. Their motion can be synchronized by applying a
small amplitude ac current only for smaller values of the tilting
angle.

To summarize our findings in this section, we plotted in
Fig. 9 the amplitude of the voltage oscillations as a function of
the period of ac current for three different values of the angle
α. The results are normalized to the amplitude of the voltage
signal of the dc current. For a uniform sample (α = 0, circles)
considerable increase of the voltage signal is observed already
for a larger period of the ac current. However, the spectrum
of the voltage oscillations consists of several well separated
peaks [see Fig. 6(b)]. The amplitude of the voltage signal
increases further with increasing frequency of the ac current
and reaches its maximum when the frequency of the drive is
in the range of the characteristic frequency of the system. All
the junctions oscillate in phase and the voltage signal becomes
proportional to the number of junctions in the stack. However,
this synchronized state coexists with a less ordered state
resulting in the formation of a “gap” between synchronized
and unsynchronized states. The system can transit between
these two states due to, e.g., thermal fluctuations as shown in
Fig. 9(b), where we plotted the voltage vs time charac-
teristics of the sample for T = 175t0. The inset highlights
the dynamical transition from the partially synchronized
state [characterized by many oscillating frequencies in the
spectrum; see Fig. 9(c)] to a completely synchronized state
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ν
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~

FIG. 9. (Color online) (a) Amplitude of the voltage oscillations as
a function of the period T of the sinusoidal applied current j = jdc +
|jac| sin(2πt/T ) with jdc = 0.095j0 and |jac| = 0.1jdc for the slope
angle α = 0 (circles), α = 4.5◦ (squares), and α = 9◦ (triangles).
The base length of the sample is L = 256ξ , the thickness of the
superconducting layers is d = 10.5ξ , the thickness of the normal
metal layer is s = 0.5ξ , and the number of junctions in the stack is
N = 5. (b) V (t) curves of the sample for α = 0 and T = 175t0. The
inset shows the transition point between nonregular to synchronized
Josephson oscillations. (c), (d) The Fourier power spectrum |Ṽ (ν)|2
of the voltage curves of the sample with α = 0 for the period of the
ac current T = 175t0 when the system is in the chaotic state (c) and
in the synchronized state (d), indicated by red vertical arrows.

[with well separated peaks in the spectrum; see Fig. 9(d)]. At
larger frequencies moving fluxons phase lock to the applied
drive leading to considerable increase of the voltage signal.
The amplitude of the voltage signal drops considerably with
changing slope of the sample sidewalls, as shown by the
square and triangular symbols in Fig. 9(a). However, partial

synchronization can be observed for smaller shallowness of
the sidewall profile at the frequencies close to the averaged
characteristic frequency of the system. Phase-locked oscilla-
tions of the junctions to the applied drive are observed at higher
frequencies even for larger tilting angles.

V. CONCLUSION

We study the dynamics of Josephson vortices in artificial
stacks of SNS Josephson junctions in the presence of time-
periodic ac and constant biasing dc currents. At zero applied
magnetic field and with a biasing dc current the fluxons
nucleate in pairs either at the edges of the junctions or in
the middle of the sample depending on the state of the
neighboring junctions. Namely, the annihilation process of
the fluxon-antifluxon pairs in a given junction stimulates the
nucleation of another pair in the neighboring junction. Adding
a small ac component to the dc current results in synchronized
motion of fluxons in all the junctions forming a rectangular
lattice in spite of their mutual repulsive interactions. The
maximal output signal, which is proportional to the number of
junctions in the stack, is observed when the frequency of the
ac drive equals the characteristic frequency of the system,
determined by the dynamics of the fluxons. However, in
this frequency range the dynamically stabilized state coexists
with the less ordered state but with a smaller amplitude of
the output voltage. Collective behavior of the junctions is
strongly affected by the sloped walls of the system: phase
synchronization is observed only for a smaller deviation of the
distribution of the junction cross sections, whereas irregular
motion of fluxons is observed in the case of a larger slope of
the sample edge.
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APPENDIX: GENERALIZED LAWRENCE-DONIACH
MODEL

Let us consider a stack of superconducting layers of finite
thickness d separated by Josephson-coupled insulating layers
of thickness s (see Fig. 10). The free energy of the system can
be expressed as46

Fs =
∑

n

∫
dx dy

[ ∫ nD+d

nD

dz

(
h̄2

2m∗

∣∣∣∣
(

∇ − ie∗

h̄c
A

)
ψn(x,y,z)

∣∣∣∣
2

+ α|ψn(x,y,z)|2 + β

2
|ψn(x,y,z)|4

+ h̄

2m∗
zs

2

∣∣∣∣ψn+1(x,y,(n + 1)D) exp

(
− ie∗

h̄c
Ān+1s

)
− ψn(x,y,nD + d)

∣∣∣∣
2 )]

+ 1

8π

∫
dx dy dz B2(x,y,z), (A1)

where Ān+1 ≡ (1/s)
∫ (n+1)D
nD+d

Az(x,y,z)dz and D = d + s.
Contrary to the original proposal of Lawrence and Doniach,47

where the order parameter is defined only on the nth

superconducting plane, i.e., ψn = ψn(x,y), here ψn(x,y,z)
is a continuous function of the coordinates inside the nth
superconducting layer.
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FIG. 10. (Color online) Schematic representation of an SIS
Josephson tunnel junction.

Variation of this free energy expression with respect to ψ∗
n

results in the following Ginzburg-Landau equation:

αψn(x,y,z) + β|ψn(x,y,z)|2ψn(x,y,z)

+ 1

2m∗

(
−ih̄∇ − e∗

c
A

)2

ψn(x,y,z) = 0 (A2)

inside the nth superconducting layer and the following
boundary conditions for the nth layer:

(
−i

∂

∂z
− e∗

ch̄
Az

)
ψn

∣∣∣∣
top boundary

= i

μs
(ψn+1(x,y,(n + 1)D)

× exp

(
− ie∗

h̄c
Ān+1s

)
− ψn(x,y,nD + d)

)
, (A3)

(
−i

∂

∂z
− e∗

ch̄
Az

)
ψn

∣∣∣∣
bottom boundary

= i

μs
(ψn−1(x,y,(n − 1)D + d)

× exp

(
+ ie∗

h̄c
Ān−1s

)
− ψn(x,y,nD)

)
, (A4)

which takes into account for the Josephson coupling between
the superconducting layers, and

�a
(

−i∇ − e∗

ch̄
A

)
ψn

∣∣∣∣
other boundaries

= 0, (A5)

where �a is the unit vector normal to the surface of the
superconductor and μ = m∗

z/m∗.
Variation of Eq. (A1) with respect to A results in the

following expression for the supercurrent density:

js = − ih̄e∗

2m∗ [ψ∗
n (x,y,z)∇ψn(x,y,z) − ψn(x,y,z)∇ψ∗

n (x,y,z)]

− e∗

m∗c
|ψn(x,y,z)|2A, (A6)

with the Josephson component,

js⊥ = − ih̄e∗

2m∗
zs

(
ψn+1(x,y,(n + 1)D)

× exp

(
− ie∗

h̄c
Ās

)
ψ∗

n (x,y,nD + d)

−ψ∗
n+1(x,y,(n + 1)D)

× exp

(
+ ie∗

h̄c
Ās

)
ψn(x,y,nD + d)

)
, (A7)

which tunnels between layers n and n + 1.
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