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Vortex loops are generated by the inhomogeneous stray field of a magnetic dipole on top of a current-carrying
mesoscopic superconductor. Cutting and recombination processes unfold under the applied drive, resulting in
periodic voltage oscillations across the sample. We show that a direct and detectable consequence of the cutting
and recombination of these vortex loops in the present setup is the onset of vortices at surfaces where they were
absent prior to the application of the external current. The nonlinear dynamics of vortex loops is studied within
the time-dependent Ginzburg-Landau theory to describe the profound three-dimensional features of their time

evolution.
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Introduction. One of the most interesting phenomena in
liquid and gaseous matter is the development of vortices.
Much effort has been put forward to understand their effect
on the underlying physics ranging from the atmospheric to
the nanoscale. A consequence of the filamentous nature of
vortices is the existence of cutting and recombination.! This
may be induced by several reasons, such as vortex-vortex
collision, the interaction of vortices with boundaries, or their
crossing across a weak link.>* Cutting and recombination
processes in classical fluids are described by the Navier-Stokes
equations,” but in superfluids such processes become more
interesting,®~!? because of the quantization of the flux carried
by the vortices. The conservation of circulation limits the phase
space of quantized vortices, rendering their collision simpler
than in a classical fluid. In type II superconductors vortex lines
display a variety of features not found in neutral superfluids
because of their charged nature.'3

In this work we propose a method to detect cutting and
recombination processes of vortex lines in type II super-
conductors. Our system consists of a thick superconducting
film with an in-plane oriented ferromagnetic dot on top,
separated by an insulating oxide layer from the film (see
Fig. 1). The magnetic dot is the only source of magnetic
field, and so, curved vortex lines arise and end at the top
surface due to the large size of the sample. Initially there are
no vortex lines reaching the bottom and the lateral sides of
the superconductor,'* but the presence of a current applied
perpendicularly to the magnetic moment plane changes this.
Vortex loops evolve due to the Lorentz force, undergo cutting
and recombination, and reach the surfaces. The evolving
vortex lines can be stopped by additional pinning centers put
strategically at the surfaces of the thick film to allow their
direct static observation, as they were not found there before
the application of the current drive.

The understanding of cutting and recombination processes
is also important for different reasons ranging from basic
physics to technological applications.!> It is well known
that the motion of vortices is the main source of energy
dissipation in current carrying superconductors. Therefore
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vortex motion must be avoided by all means to obtain an
increase of the critical current of the material.'® Cutting and
recombination processes play an unsuspected and important
role in dissipation processes'’ due to the entanglement of
vortices inside bulk superconductors. For example, consider
vortices in the presence of a homogeneous three-dimensional
(3D) matrix of strong pointlike pinning centers. In this case
a segment of a vortex line, although pinned in its extremities,
undergoes distortion because of the external current and may
eventually interact with a nearby similarly pinned segment of a
distinct vortex line. Near to the external surfaces and edges of
a superconductor cutting and recombination processes play an
even more important role, as the entrance and exit of vortices
can occur in the form of naturally curved lines that render the
effects of an external applied current more dramatic.'8

The present proposal for the detection of cutting and re-
combination processes of vortex lines is analyzed through the
time-dependent Ginzburg-Landau (GL) theory where curved
vortices naturally arise and evolve as extended 3D objects.
Nevertheless our results can be qualitatively understood from
the Lorentz force, which acts over all segments of a naturally
curved vortex, [ J x d®o with & = hc/2e the flux quantum,
and is opposed by the line tension caused by the elastic
properties of the line. Locally the external applied current J
acts on the segment d @ of the vortex line, which feels the local
Lorentz force J x d® that competes with the line tension,
causing global distortion of the line.'® By its turn the motion
of the segment with velocity v produces a local electrical
field E as given by the Josephson relation v x E. All these
features are naturally incorporated into the GL approach, able
to describe the time evolution of vortex lines in the presence of
an external applied current. The expansion or the contraction of
the vortex loop naturally follows from this scenario since it is
adirect consequence of the sign and the strength of the applied
current. The final outcome is the onset of vortices at the bottom
and (or) the side surfaces of the sample, not previously found
in the static limit. The resulting vortices produce measurable
signals that allow the identification of the underlying cutting
and recombination process. Thus in our setup the action of the
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FIG. 1. (Color online) Model system: a superconducting sample
(of size L, x Ly x L;) with an in-plain magnetic dipole (of length
a and magnetic moment m) on top. The external current (injected
through the normal contacts in the x-z plane at y =0 and y = L)
flows in the y direction (j*) and —y direction (j 7).

Lorentz force on curved 3D vortex lines is a key ingredient
to obtain vortex cutting and recombination processes not
found in previous studies done in superconducting-magnet
hybrid structures,'® which were limited to two-dimensional
dynamics of vortices in thin films. The present study considers
a reversible regime where vortex lines freely evolve in time
under the Lorentz force. Pinning near to the bottom is also
included in our numerical analysis.

The here proposed method for cutting and recombination
processes is unique and different from all previous ones
since it is not based on the crossing of the vortex line
on a weak link, and solely relies on the effects of the
Lorentz force on curved lines. The first studies of cutting and
recombination processes were carried on a superconducting
cylinder with current flowing along the central axis, in the
same direction of the applied magnetic field.">?° In this
case a local misalignment between the current and a vortex
line segment triggers further deformation of the vortex line
leading to a longitudinal resistivity. This local deformation is
a consequence of a weak link spot, according to many,?!~2* and
works as the kernel for the instability that leads to the growth
of a vortex loop that eventually crosses the original vortex
line. Cutting and recombination processes have also been
studied through the Giaver experiment,”* which requires that
the vortex line moves perpendicular to a three-layer system,
where the intermediate layer is made of a distinct material
which plays the role of a weak link. Recently Palau et al.”
extended this idea to allow the Lorentz force to exceed the
line tension in the weak layer, such that deformations of the
vortex lines can occur without limit, cross-joining itself to
free an expanding loop. Vortex cutting and recombination
processes though not directly observed there, provided the
best qualitative explanation for their results.?’?>

Theoretical approach. Our setup consists of an extreme
type-II superconducting mesoscopic rectangular block (size
L, x Ly, x L, < X) having an extended magnetic dipole (of
length a, momentum m on top), oriented along the surface (x
direction), separated from the superconductor by an insulating
layer of thickness (§ = 1£), and with transport current applied
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through the normal contacts (see Fig. 1). The dynamical prop-
erties of vortices follow by considering the time-dependent GL
equation”® below:

. .
u (5 + ch) V= —iA Y+ A=y Py, ()
which is coupled with the equation for the electrostatic
potential Ag = div{Im[y*(V — iA)y]}. The vector potential
of the dipole is given by

_@rxﬁ x—a/2 _ x+a/2
Ca P ol —a/2? PP Gta2r ]
@)

with p? = y? + z%. Here, we express the length and time in
units of the coherence length § and the GL relaxation time
tor = por?/pa (p, is the normal-state resistivity), respec-
tively. The electrostatic potential ¢ and the vector potential A
are scaled to g9 = ®¢/2rwtc, and Dy/27&, respectively. The
order parameter is in units of ¥y which is the value of the order
parameter at zero applied field and current. The coefficient
u, which governs the relaxation of the order parameter (i.e.,
the ratio between relaxation times for the phase and the
amplitude of ), is taken u = 12 which is found for dirty
gapless superconductors within the microscopic BCS theory.?’
Using the normal state resistivity p, = 18.7 u2 cm, zero
temperature coherence length £(0) = 10 nm, and penetration
depth A(0) = 200 nm, which are typical for Nb thin films,?®
one can obtain t; & 6.72 ps and g9 &~ 50 uV. The magnetic
moment of the dipole is given in units of my = ®& /2. For
the investigated Nb superconductor my ~ 3.3 x 1072*A - m?,
and so, the field generated at the surface, By ~ mg/ P33T
for r &~ £(0). We solved the above equations self-consistently
in a 3D cartesian grid (up to 129 grid points in each of the three
directions) using semi-implicit Crank-Nicholson? (for y) and
multigrid (for ¢) iterative methods. We use superconducting-
vacuum boundary condition (V — iA)¥|, = 0 and Vg|, =0
at all sample boundaries [including boundaries of the cavity
(see Fig. 4)], except at the current contacts where we use Y = 0
and Vg|,=—j, with j being the applied current density in units
of jo = ®o/2m uo£A%. The simulations are carried out in two
steps, first we stabilize the vortex configuration for a given m
and next a current is applied, which is then increased from
zero to its maximal value over the time interval At = 250¢5,..

A single dipole—vortex cutting and recombination. As a
representative example, we consider a superconducting sample
with dimensions 20§ x 20§ x 40 and a magnetic dot of size
a = 4&. We first discuss the results for the positive direction of
the applied current j . Figure 2 shows the voltage vs time V (¢)
characteristics of the sample for j© = 0.2 j, together with the
evolution of the vortex state, through isosurface plots of the
Cooper-pair density. The inhomogeneity of the magnetic field
makes vortices enter the system in the form of closed loops
(panel 1). The Lorentz force from the current acts in such a
way that it expands the vortex loop (see the arrows in panel
1 for its direction) to the point of reaching the lateral surface
(panel 2). Then it breaks into two vortex lines, connected to the
dipole edges (see top vortices in panel 3), and a loosed vortex,
completely detached from the dipole (bottom vortex in panel
3). This vortex cutting (due to the sample boundary) results in
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FIG. 2. (Color online) Voltage vs time characteristics of the
sample (of size L, = 20, L, = 20, and L, = 40&) with a magnetic
dipole (of length a = 4£) on top for the positive current density
Jj = 0.2jp and magnetic moment of the dipole m = 40m,. Panels
(1-6) show the isosurface plots of |v|*> [light/dark blue (gray)
corresponds to larger/smaller |v/|] at the time intervals indicated in
the main panel. Arrows in panel 1 show the direction of the Lorentz
force acting on the vortex loops.

z
e

apronounced peak in the V (¢) curve (point 3). The former con-
nected two vortices move upwards in a contraction motion and
the loosed vortex moves towards the bottom surface (panel 4).
During the exit (panel 6) this vortex achieves its largest speed
when there is no line tension to balance the Lorentz force, and
this causes another peak in the voltage (point 6). After this volt-
age peak the system relaxes to its initial state, thus performing a
periodic motion. One can also observe extra features in the V' (¢)
curve between the two peaks corresponding to vortex cutting
and expulsion. These small oscillations are due to the forma-
tion of extra vortex loops while the loosed vortex moves along
the sample (see panels 4 and 5). Initially, two vortex loops are
formed near the dipole (panel 4), but one of them shrinks in
favor of the growth of the other®® by the action of the positive
current j*. The amplitude of the voltage signal, as well as the
period of the voltage oscillations, depends on the value of the
relaxation parameter u (see Eq. 1): The voltage signal increases
and the period of the oscillations decreases with decreasing u.

For the negative direction of the applied current j =, V(f)
exhibits periodic oscillations (one period is shown in Fig. 3).
Now the Lorentz force works opposite and shrinks the existing
loops inside the superconductor (see the arrows in panel 5), but
at the same time, it is also able to cause the expansion of some
entering vortex pairs (panel 1). By means of the Lorentz force
this pair of vortices moves deeper inside the sample (panels
2 and 3), leading to an increased voltage signal [points 1-3
on the V(¢) curve], and eventually touch each other at some
distance away from the dipole (panel 4). At this moment a
vortex cutting and recombination process unfolds as the two
upper parts of the two vortices recombine in a new loop that
begins and ends in the dipole (panel 5). The two lower pieces
of the vortex lines join into a loosed vortex loop, which moves
towards the bottom of the sample due to the Lorentz force
(see the arrows in panel 5), resulting in a peak in the output
voltage. As in the case of positive current, the largest voltage
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FIG. 3. (Color online) The same as in Fig. 2 but for negative
direction of the applied current.

signal corresponds to the vortex cutting process (point 5). For
the given parameters of the sample and the applied current
the minimum of the voltage corresponds to the Meissner state.
Note that the finite voltage in the latter state is due to the
normal contacts (i.e., we performed two probe measurements)
and that for both directions of the applied current the stripped
vortex loop is not able to reach the bottom surface. Instead it
leaves the sample through the side surface (panel 6 in Figs. 2
and 3), because near to the bottom the magnetic field of the
dipole becomes weak and unable to sustain the vortex line. The
time required for this vortex line to exit the sample is larger
than the time for the inner loop to achieve full contraction.
The fast vortex dynamics can be slowed down by adding
a pinning center in the lower part of the sample, taken in
our simulations as a cavity of size 8& x 8& x 8. Figure 4
shows the voltage characteristics of the sample together with
the evolution of the vortex state for the positive direction of
the current. The effect of the cavity is quite obvious from this
figure: (i) Extra peaks appear in the voltage curve (points 4
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FIG. 4. (Color online) V(¢) curve of the sample (of size 20& x
20¢ x 40&) with a cavity (of size 8¢ x 8& x 8&) in the lower part
of the sample for m = 40m, and j = 0.22j,. Panels (1-6) show the
isosurface plots of || at the time intervals indicated in the main
panel.
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and 6) corresponding to the pinning (panel 4) and depinning
(panel 6) processes. Since the depinning process follows by the
expulsion of the vortex from the sample (panel 6), the voltage
signal is larger than the one corresponding to the vortex cutting
(due to the sample edge) process (point 2). (ii) The period of
the voltage oscillations Atz increases due to the temporary
pinning of the vortex by the cavity (panel 5) (in this particular
case At increased by 60%). Permanent trapping of the loosed
vortex is not possible here due to the larger applied current.
The important point is that the detection of the loosed vortex
through any of the available techniques, such as scanning
tunneling microscopy,®! magnetic force microscope,*? or high
spatial resolution scanning Hall probe microscopy,** provides
aclear signal of the 3D features of vortex lines. Interestingly, a
setup, similar to the present one, consisting of a dirty niobium
bridge with a magnetized cobalt strip on the top, has been
proposed and shown to enhance critical current values as
compared to the bulk.?*

Multiple dipoles—extended vortex loops. Vortex-antivortex
patterns can be created near periodic superconduc-
tor/ferromagnet hybrid structures,>>*® and here we find that
the vortex-antivortex pair signals the presence of confined
vortex loops, and their subsequent cutting and recombination
process, here studied for a positive current j* leading to a
detectable voltage signal. As a representative example, we
take a superconducting block (of size 64 x 16§ x 16&) with
three co-linear magnetic dipoles (of length a = 4£) (see panel
1 in Fig. 5). In Fig. 5 the time evolution of the output
voltage for the dipoles, m = 40m,, under the current density
jT =0.22jy, and snapshots of the Cooper-pair density at
time intervals indicated in the V(¢) curve. As in the previous
examples, vortices enter the system in the form of confined
loops (panel 1), and expand because of the Lorentz force.
When they touch each other (panel 2), the loops are cut and
recombine into a single big vortex loop (panel 3) that expands
(panel 4) and finally reaches the bottom surface (panel 5).
At this moment two top to bottom lines are detached, and
they correspond to a vortex-antivortex pair (panel 6). Their
motion towards the edge and disappearance there (panels 7
and 8) corresponds to a nearly flat voltage plateau, as seen in
the main panel. Instead a peak in the V(¢) curve is present
from the moment the three loops touch each other to the
release of the vortex-antivortex pair. The observed presence
of a vortex line at the bottom surface, where before there was
none, provides simple and straightforward proof of this cutting
and recombination process.
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FIG. 5. (Color online) Evolution of vortex loops (panels 1-8) in
the sample with dimensions 64¢ x 16§ x 16§ with three magnetic
dipoles of length a = 4§ and magnetization m = 40m, for j =
0.22 jy. Arrows on top of panel 1 illustrate the location of the dipoles.
Main panel shows the V() curve of the sample.

Conclusion. We have studied cutting and recombination of
vortex loops in a superconductor-ferromagnet heterostructure.
The presence of an external current applied perpendicular to
the magnetic dipole put on top of a mesoscopic superconductor
unfolds the 3D time evolution of vortex loops that can be
detected through the analysis of voltage vs time characteristics
curves. Vortices appear at surfaces where they were not present
before the application of the current and can be pinned there.
Then well established methods of vortex visualization can
be used to detect the pinned vortices that result from cutting
and recombination processes. We expect that the present
scenario of vortex cutting and recombination will be helpful
to understand the spontaneous vortex phase®’ of supercon-
ductors containing magnetic elements**° or artificially made
magnetic inclusions.*’
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