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Charge expulsion, charge inhomogeneity, and phase separation in dynamic Hubbard models
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Dynamic Hubbard models are extensions of the conventional Hubbard model that take into account the
fact that atomic orbitals expand upon double occupancy. It is shown here that systems described by dynamic
Hubbard models have a tendency to expel negative charge from their interior to the surface and to develop
charge inhomogeneity and even phase separation in the bulk. These effects are associated with a lowering of the
electronic kinetic energy. We propose that these models may explain the charge inhomogeneity and negatively
charged grain boundaries observed in cuprate oxides and other materials.
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I. INTRODUCTION

The conventional single-band Hubbard model with
Hamiltonian

H = −
∑
i,j,σ

[tij c
†
iσ cjσ + H.c.] + U

∑
i

ni↑ni↓ (1)

has been used to describe the physics of many real materials.1,2

The model ignores the fact that nondegenerate atomic orbitals
are necessarily modified by double electronic occupancy.3–6 To
remedy this deficiency a variety of new Hamiltonians has been
proposed and studied, which we generically call “dynamic
Hubbard models”; they take into account the fact that orbital
expansion takes place when a nondegenerate atomic orbital is
doubly occupied.7–17

The essential physics of real atoms that is described by
dynamic Hubbard models but not by the conventional Hubbard
model is shown in Fig. 1: when a second electron (of opposite
spin) is added to a nondegenerate orbital, it expands, due to
electron-electron repulsion. This has two key consequences
at the atomic level. One is that the negative charge moves
outward. The second is that the kinetic energy of the electrons
is lowered: in an orbital of radial extent r the electron kinetic
energy is of order h̄2/(2mer

2), with me the electron mass. The
kinetic energy is lowered since the expanded orbital has a
larger radius than the original one. Remarkably, we find that
these properties at the atomic level, negative charge expulsion
and kinetic energy lowering, are also reflected in the properties
of dynamic Hubbard models at the macroscopic level. At the
local level, effects described by the dynamic Hubbard model
that are not described by the conventional Hubbard model can
be experimentally probed by ultrafast quantum modulation
spectroscopy as recently demonstrated.18

One of several19 ways to incorporate this physics into the
Hubbard Hamiltonian is by the substitution9,20,21

Uni↑ni↓ → (U + αqi)ni↑ni↓, (2)

where α is a coupling constant (assumed positive) and qi a local
boson degree of freedom describing the orbital relaxation, with
equilibrium position at qi = 0 if zero or one electron is present:
upon double occupancy of the orbital at site i, qi will change
from 0 to a negative value to reduce the electronic on-site
repulsion, to an extent determined by the boson dynamics. If
we describe the dynamics of this boson by a simple harmonic

FIG. 1. In the conventional Hubbard model the atomic orbital
is not modified by electronic occupancy. In the dynamic Hubbard
model and in real atoms, addition of the second electron causes orbital
expansion due to the electron-electron interaction. Negative charge is
expelled outward and the kinetic energy of the electrons is lowered
relative to that with a nonexpanded orbital.

oscillator,20

Hi = p2
i

2m
+ 1

2
Kq2

i + (U + αqi)ni↑ni↓, (3)

the on-site repulsion is reduced from U to Ueff = U − α2/

(2K) when qi takes the value qi = −α/K , corresponding to
the minimum energy when the site is doubly occupied, versus
qi = 0 when the site is unoccupied or singly occupied. The
conventional Hubbard model does not allow the orbital to
relax; in other words, it corresponds to the limit K → ∞ of
an infinitely stiff orbital.

Superficially the site Hamiltonian, Eq. (3), may look like
the conventional Holstein model giving rise to small polarons
but it is in fact very different: the boson degree of freedom
qi couples to the double occupancy of the site (ni↑ni↓) rather
than to the single occupancy (ni↑ + ni↓). Such a coupling, in a
context where qi represents a phonon degree of freedom, was
first introduced by Pincus20 but not often considered thereafter.

The Hamiltonian, Eq. (3), is intrinsically electron-hole
asymmetric:9 the importance of this physics increases as the
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filling of the electronic energy band increases, as is simply
seen by taking the mean-field expectation value of Eq. (3). In
addition, the importance of this physics increases when the
ionic charge is small,9 since in that case the orbital expansion
is larger (for example, the orbital expansion is larger for H−
than for He), corresponding to a smaller stiffness parameter
K in Eq. (3). These two facts imply that the importance of
this physics increases the more negative charge the system
has. Notably, we find in this paper that systems described
by this Hamiltonian have a strong tendency to expel negative
charge, reflecting the radial expulsion of negative charge that
already exists at the atomic level. Similarly, we find, for the
system as a whole described by a dynamic Hubbard model,
that negative charge expulsion is associated with a lowering of
the kinetic energy, just like in the atom. Note, however, that our
site Hamiltonian, Eq. (3), describing orbital expansion when
the value of qi is negative, does not have a term explicitly
describing the kinetic energy lowering of the atomic electron
when qi adopts a negative value.

The potential (Coulomb) energy of a system of charges
is minimized when the charge distribution is uniform. A
nonuniform charge distribution gives rise to electrostatic fields
and an associated potential energy cost. It will be favored if
this cost is compensated by a kinetic energy gain, i.e., lowering
of the kinetic energy. In dynamic Hubbard models kinetic
energy plays a key role, and we find in this paper that dynamic
Hubbard models are prone to develop charge inhomogeneity,
and in extreme cases charge separation, where kinetic energy
lowering overcompensates for the potential energy cost. Many
materials of recent interest, including high-Tc cuprates and
manganites, exhibit charge inhomogeneity,22–26 suggesting
that dynamic Hubbard models may be useful to describe
them. In addition, the tendency to charge inhomogeneity will
influence the charge distribution around grain boundaries, as
we discuss in this paper.

One may ask whether dynamic Hubbard models are really
fundamentally different from many other models proposed and
extensively studied in the literature such as the conventional
Hubbard model, the periodic Anderson model, the Falicov-
Kimball model, the Holstein model, the Holstein-Hubbard
model, the Fröhlich Hamiltonian, standard polaron models,
standard electron-boson models, the t-J model, etc., so as to
merit a new name and new studies. We believe most definitely
yes. These conventional models are usually assumed to be
electron-hole symmetric, or at least electron-hole asymmetry
does not play a key role, and the interesting physics in
these models is usually driven by electronic correlation and
potential energy rather than by kinetic energy. Instead, the
essential physics of dynamic Hubbard models is electron-hole
asymmetry, and the physics is kinetic energy driven. On
the other hand, some of the conventional models mentioned
above, when suitably modified, have properties in common
with dynamic Hubbard models. In particular, electron-hole
asymmetric polaron models27 arising from coupling to either
electronic or spin or phononic degrees of freedom in ways that
break electron-hole symmetry have much in common with the
model discussed here.

Finally, it is certainly possible that some of the physics
of dynamic Hubbard models is also contained in some
models studied in the past under a different name. For

example, Robaszkiewicz et al.28 studied a generalized periodic
Anderson model with a wide and a narrow band, with 10
different pieces to their initial Hamiltonian [their Eq. (2.1)].
After a Lang-Firsov transformation leading to a small po-
laron representation they end up with a Hamiltonian [their
Eq. (2.10)] that has 18 different terms [their Eq. (2.11)], one of
which bears some resemblance to a term in our Hamiltonian
(which has 3 terms rather than 18). As a consequence, the
focus of that paper is very different from the physics discussed
here.

II. DYNAMIC HUBBARD MODELS

We can describe the physics depicted in Fig. 1 by a
two-orbital tight-binding model (for the unexpanded and
expanded orbital)8,29 or with a background spin4,21 or harmonic
oscillator30,31 degree of freedom that is coupled to the
electronic double occupancy, as in Eq. (2). We expect the
physics to be similar for all these cases. Assuming the latter,
the site Hamiltonian is given by Eq. (3), and the Hamiltonian
can be written as

H = −
∑
i,j,σ

[tij c
†
iσ cjσ + H.c.] +

∑
i

h̄ω0a
†
i ai

+
∑

i

[U + gh̄ω0(a†
i + ai)]ni↑ni↓ (4)

with frequency ω0 = √
K/m and g = α/(2Kh̄ω0)1/2 the

dimensionless coupling constant. Estimates for the values
of these parameters were discussed in Ref. 9. In particular,
for 1s orbitals g2h̄ω0 ∼ 4.1 eV. Quite generally we expect
g to increase proportionally to 1/Z and ω0 to increase
proportionally to Z2, where Z is the charge of the ion when
the orbital under consideration is empty.9 However, in an even
more realistic model ω0 should also change with different
electronic occupations. That issue is beyond the scope of this
paper.

Using a generalized Lang-Firsov transformation31,32 the
electron creation operator c

†
iσ is written in terms of new

quasiparticle operators c̃
†
iσ as

c
†
iσ = eg(a†

i −ai )ñi,−σ c̃
†
iσ = [

1 + (
e−g2/2 − 1

)
ñi,−σ

]
c̃
†
iσ

+ ñi,−σ × (incoherent part), (5)

where the incoherent part describes the processes where the
boson goes into an excited state when the electron is created
at the site. For large ω0 those terms become small and can
be neglected, and even for not so large ω0 we have found
from numerical studies that their effect does not change the
low-energy physics qualitatively.33,34 Hence we ignore those
terms in what follows, which amounts to keeping only ground
state–to–ground state transitions of the boson field.

The electron creation operator is then given by

c
†
iσ = [1 + (S − 1)ñi,−σ ]c̃†iσ , (6a)

S = e−g2/2, (6b)

184506-2



CHARGE EXPULSION, CHARGE INHOMOGENEITY, AND . . . PHYSICAL REVIEW B 87, 184506 (2013)

and the quasiparticle weight for electronic band filling n

(n electrons per site) is

z(n) =
(

1 + (S − 1)
n

2

)2

, (6c)

so that it decreases monotonically from 1 when the band
is almost empty to S2 < 1 when the band is almost full.
The single-particle Green’s function and associated spectral
function are renormalized by the multiplicative factors on the
quasiparticle operators given in Eq. (6a),31 which on average
amounts to multiplication of the spectral function by the
quasiparticle weight, Eq. (6c). This will cause a reduction
in the photoemission spectral weight at low energies from
what would naively follow from the low-energy effective
Hamiltonian, an effect extensively discussed in Ref. 31 and
recently rediscovered in Ref. 35. A corresponding reduction
occurs in the two-particle Green’s function and associated
low-frequency optical properties.31,33

According to Eq. (6), 〈c†iσ ciσ 〉 = z(n)〈c̃†iσ c̃iσ 〉, which ap-
pears to indicate that quasiparticles carry a different charge
than real particles. This is, however, not the case, as can be
seen by using Eq. (5) instead of Eq. (6) to evaluate 〈c̃†iσ c̃iσ 〉.
The incoherent part accounts for the difference and in fact
the quasiparticle carries an unrenormalized unit charge equal
to that of the real particle, just as in usual Landau theory.36

Therefore, we can obtain the real charge distribution in the
system by computing the site occupations of the quasiparticles.

The low-energy effective Hamiltonian is then

H = −
∑
ijσ

tσij [c̃†iσ c̃jσ + H.c.] + Ueff

∑
i

ñi↑ñi↓, (7a)

tσij = [1 + (S − 1)ñi,−σ ][1 + (S − 1)ñj,−σ ]tij , (7b)

and Ueff = U − h̄ω0g
2. Thus, the hopping amplitude for an

electron between site i and site j is given by tij , Stij , and
S2tij , depending on whether there are zero, one, or two other
electrons of opposite spin at the two sites involved in the
hopping process.

The physics of these models is determined by the magnitude
of the parameter S, which can be understood as the overlap
matrix element between the expanded and the unexpanded
orbital in Fig. 1. It depends crucially on the net ionic charge
Z, defined as the ionic charge when the orbital in question is
unoccupied.9 In Fig. 1, Z = 1 if the states depicted correspond
to the hydrogen ions H+, H, and H− and Z = 2 if they
correspond to He2+, He+ and He. In a lattice of O2− anions,
as in the Cu-O planes of high Tc cuprates, the states under
consideration are O, O−, and O2− and Z = 0, and in the B−
planes of MgB2, Z = 1. The effects under consideration here
become larger when S is small and, hence, when Z is small.
An approximate calculation of S as a function of Z is given in
Ref. 9.

We now perform a particle-hole transformation since we
are interested in the regime of low hole concentration. We
assume for simplicity that the Hamiltonian is defined on a
hypercubic lattice with only nearest-neighbor hopping, so that
the particle-hole transformation leaves the first term in the
Hamiltonian, Eq. (7a), unchanged by a suitable transformation
of the phases. The hole creation operator is given by, instead

of Eq. (6a),

c
†
iσ = [S + (1 − S)ñi,−σ ]c̃†iσ , (8a)

where ñi,σ is now the hole site occupation, and the hole
quasiparticle weight increases with hole occupation n as

zh(n) = S2

(
1 +

(
1

S
− 1

)
n

2

)2

. (8b)

For simplicity of notation we denote the hole creation
operators again by c

†
iσ , the hole site occupation by niσ , and

the effective on-site repulsion between holes of opposite spin
Ueff (the same as between electrons) by U . The Hamiltonian
for holes is then

H = −
∑
ijσ

tσij [c†iσ cjσ + H.c.] + U
∑

i

ni↑ni↓, (9a)

tσij = thij

[
1 +

(
1

S
− 1

)
ni,−σ

] [
1 +

(
1

S
− 1

)
nj,−σ

]
tij ,

(9b)

with thij = S2tij the hopping amplitude for a single hole when
there are no other holes at the two sites involved in the
hopping process. The hole hopping amplitude and the effective
bandwidth increase as the hole occupation increases, and so
does the quasiparticle (quasihole) weight, Eq. (8b).

Assuming there is only nearest-neighbor hopping tij = t ,
the nearest-neighbor hopping amplitude resulting from
Eq. (9b) is

tσij = th + �t(ni,−σ + nj,−σ ) + �t2ni,−σ nj,−σ , (10a)

with

th = tS2, (10b)

�t = tS(1 − S), (10c)

�t2 = t(1 − S)2 = (�t)2/th. (10d)

The nonlinear term with coefficient �t2 is expected to have
a small effect when the band is close to full (with electrons)
and is often neglected. Without that term, the model is also
called the generalized Hubbard model or Hubbard model with
correlated hopping.37,38 The effective hopping amplitude for
average site occupation n is, from Eq. (10a),

t(n) = th + n�t + n2

4
�t2, (11)

so that a key consequence of integrating out the higher energy
degrees of freedom is to renormalize the hopping amplitude
and hence the bandwidth and the effective mass (inverse of
the hopping amplitude), as recently rediscovered in a different
context.35

III. GENERALIZED DYNAMIC HUBBARD MODELS

More generally, one can assume that the boson degree of
freedom will couple not only to the double-occupancy orbital
but also to the singly occupied orbital.31 The site Hamiltonian
is then

Hi = h̄ω0a
†
i ai + h̄ω0(a†

i + ai)[gni↑ni↓ + g0(ni↑ + ni↓)].

(12)
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At the atomic level, the coupling g0 will appear when one
considers an orbital for atoms other than hydrogenic ones,
and it represents the modification of the states of electrons in
other orbitals in the atom when the first electron is created
in the orbital under consideration. We expect this effect to be
much smaller than the modification of the state of the electron
residing in the same orbital, the physics described by g, hence
g0 
 g, particularly when the ionic charge Z is small. The
formal development for the site Hamiltonian given by Eq. (12)
is very similar to the one discussed in the previous section and
is given in Ref. 31. In particular, Eq. (6) becomes

c
†
iσ = [T + (S − T )ñi,−σ ]c̃†iσ , (13a)

T = e−g2
0/2, (13b)

S = e−(g+g0)2/2, (13c)

z(n) =
(

T + (S − T )
n

2

)2

, (13d)

and of course S < T always21 since g > 0. The hopping
amplitudes given in the previous section are similarly modified
by replacing 1 with T in various places, as discussed in
Ref. 31. g0 gives a renormalization of the quasiparticle mass,
bandwidth, and quasiparticle weight that is independent of
band filling, and g gives a band-filling-dependent contribution.

Recently, a single-band model with site Hamiltonian of the
form of Eq. (12) with g = 0 and g0 �= 0 was considered35

to describe the effect of higher energy electronic excitations
on the low-energy electronic physics within dynamical mean-
field theory.39 In our view this is an unphysical limit since we
expect g � g0 quite generally. Some of the effects discussed
in Refs. 9, 31, 33, and 34 were rediscovered in that work.35

IV. ELECTRONIC VERSUS BOSONIC DYNAMIC
HUBBARD MODELS

Here we discuss briefly the relationship between the
dynamic Hubbard model with the site Hamiltonian given by
Eq. (3) and the electronic model with two orbitals per site
introduced in Ref. 8 and discussed further in Ref. 29, with site
Hamiltonian

H = Un↑n↓ + U ′n′
↑n′

↓ + V nn′ + εn′ − t ′(c†σ c′
σ + H.c.).

The unprimed and primed operators describe electrons in the
lower and upper atomic orbitals, with single-particle energy
difference ε. These orbitals represent the unexpanded and
expanded orbitals depicted in Fig. 1.

Figure 2 shows the correspondence between the site states
of the electronic and the bosonic models. Parameters in the
electronic model are chosen so that when the second electron
is introduced at the site, the energy of the state with both
electrons occupying the upper electronic state (U ′ + 2ε) is
lower than both the energy of the state with both electrons
in the lower state (U ) and the energy of the state with one
electron in each of the site states (V + ε). Similarly, in the
bosonic model the two-electron state when the oscillator is
fully relaxed (q = −α/K) has a lower energy than the state
where the oscillator is unrelaxed (q = 0) or partially relaxed
(q = −α/3K).

Electronic 
states 

Energy                         0                0         U'+2ε             U          V+ε            ε       

Quasiparticle  
states 

Boson states 

q value                    q = 0       q = 0     q = −
α
K

           q = 0   q = −
α
3K

q = −
α
3K

Energy                        0              0      (U −
α 2

2K
)            U      (U −

5α 2

18K
)      α 2

18K

Low energy states High energy states

ε  

FIG. 2. Correspondence between states in the electronic dynamic
Hubbard model introduced in Ref. 8 (upper part) and the bosonic
dynamic Hubbard model discussed here (lower part). Only a few
representative high-energy states are shown.

The details of the high-energy states in both models are
different; in particular, the bosonic model has an infinite
number of high-energy states, and the electronic model only a
finite number. However, the low-energy effective Hamiltonian,
Eq. (7), is the same for both models, and as a consequence the
charge expulsion physics discussed here is the same for both
models. Furthermore, the physics of spectral weight transfer
from high to low energies (undressing)31 is the same for both
models. Therefore, we argue that the electronic two-orbital
model with the constraints on the interaction parameters
assumed8 and the bosonic model are essentially equivalent
realizations of the physics of dynamic Hubbard models.

V. NEGATIVE CHARGE EXPULSION

We consider the Hamiltonian for holes, Eq. (9), with the
hopping amplitudes given by Eq. (10), which we reproduce
here for convenience:

H = −
∑
ijσ

tσij [c†iσ cjσ + H.c.] + U
∑

i

ni↑ni↓, (14a)

tσij = th + �t(ni,−σ + nj,−σ ) + �t2ni,−σ nj,−σ . (14b)

It is clear from the form of this Hamiltonian that the kinetic
energy decreases when the number of holes in the band
increases, since the hopping amplitudes, Eq. (14b), increase
with hole occupation. This suggests that the system will have
a tendency to expel electrons from its interior to the surface,
because the coordination of sites in the interior is greater than
that of sites at the surface. In what follows we study this physics
numerically.

We assume a cylindrical geometry of radius R and infinite
length in the z direction. We decouple the interaction terms
within a simple mean-field approximation assuming 〈niσ 〉 =
ni/2, with ni the hole occupation at site i, and obtain the
mean-field Hamiltonian,

Hmf = Hmf,kin + Hmf,pot + Hμ, (15a)

Hmf,kin = −
∑
〈ij〉,σ

[
th + �tni + �t2

n2
i

4

]
[c†iσ cjσ + H.c.],

(15b)
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Hmf,pot = U

4

∑
i

n2
i , (15c)

Hμ = −
∑
〈ij〉

ni

[
�t + nj

2
�t2

]∑
σ

〈c†iσ cjσ 〉. (15d)

Note that the local average bond occupation modifies the local
chemical potential. Assuming a band filling of n holes per site,
we diagonalize the Hamiltonian, Eq. (15), with initial values
ni = n and fill the lowest energy levels until the occupation n

is achieved. From the Slater determinant of that state we obtain
new values of ni for each site and for the local bond occupation
and iterate this procedure until self-consistency is achieved.
We can extend this procedure to finite temperatures, iterating
to self-consistency for a given chemical potential μ. We then
consider the resulting occupation of the sites as a function of
the distance r to the center of the cylinder. Sometimes there
are nonequivalent sites at the same distance from the axis [e.g.,
(5,0) and (3,4)] that yield somewhat different occupations; for
these cases we show the average and standard deviation as
error bars in the graphs.

Figure 3 shows a typical example of the behavior found.
Here we assumed �t2 = 0, corresponding to the simpler
Hubbard model with correlated hopping and no six-fermion
operator term. Even for �t = 0 the hole occupation is
somewhat larger in the interior than near the surface. When the
interaction �t is turned on, the hole occupation increases in
the interior and decreases near the surface. This indicates that
the system expels electrons from the interior to the surface.
The effect becomes more pronounced when �t is increased.

Figure 4 shows hole site occupations as circles of diameters
proportional to the occupations, for the cases �t = 0 and �t =
0.25 in Fig. 3. Note that the interior hole occupation is larger
for �t = 0.25 than it is for �t = 0, while near the surface
the hole occupation is larger for �t = 0. Again, this shows
that the system with �t = 0.25 is expelling electrons from the
interior to the surface, thus depleting the hole occupation near
the surface.

FIG. 3. Hole site occupation per spin for a cylinder of radius
R = 11 as a function of r/R, with r the distance to the center,
for a cubic lattice of side length 1. There are 377 sites in a cross-
sectional area (πR2 = 380.1). The average occupation (both spins) is
n = 0.126 hole per site and the temperature is kBT = 0.02.

FIG. 4. Diameters of the circles are proportional to the hole
occupation at the site. Note that for finite �t the hole occupation
increases in the interior and is depleted near the surface. Parameters
correspond to the cases shown in Fig. 3.

These results are obtained by iteration. Figure 5 shows the
behavior of the energies as a function of iteration number
for the cases �t = 0 and �t = 0.25 in Fig. 3. The initial
values correspond to a uniform hole distribution with each site
having the average occupation. The evolution is nonmonotonic
because in the intermediate steps the overall hole concentration
increases; nevertheless, it can be seen that for the case �t =
0.25 the final kinetic energy when self-consistency is achieved
is lower, and the final potential energy is higher, associated
with the higher hole concentration in the interior and the lower
hole concentration near the surface shown in Fig. 4. This is
of course what is expected. For the case �t = 0, instead there
is essentially no difference in the energies between the initial
uniform state and the final self-consistent state.

The charge expulsion caused by �t is counteracted by the
effect of Coulomb repulsion. Figure 6 shows the effect of
increasing the on-site repulsion for a fixed value of �t .

The effect of the nonlinear occupation-dependent hopping
term �t2 [Eq. (10d)] is shown in Fig. 7. It increases the charge
expulsion tendency relative to the model where this term is
omitted (Hubbard model with correlated hopping).

As the correlated hopping amplitude �t increases, and even
more so in the presence of �t2, the system appears to develop a

FIG. 5. Kinetic, potential, and total energy per site for �t = 0.25
as a function of the number of iterations starting with a uniform hole
distribution.
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FIG. 6. Effect of Coulomb repulsion: th = 0.1, �t = 0.25. As the
on-site repulsion increases, the charge expulsion decreases and the
occupation becomes more uniform.

tendency toward phase separation, where holes condense in the
interior and the outer region of the cylinder becomes essentially
absent of holes. This happens very rapidly as a function of the
parameters for the finite system under consideration. Examples
are shown in Fig. 8. We return to this point in the next section.

The charge expulsion tendency and associated effects
described in this and other sections become rapidly weaker
when the hole concentration increases. To illustrate this we
show in Fig. 9 the charge distribution for the same Hamiltonian
parameters as in Fig. 8 but with the average hole occupation
per site n = 0.35 instead of n = 0.126. It can be seen that the
charge expulsion is much smaller.

In summary, we have seen in this section that the dynamic
Hubbard model promotes expulsion of negative charge from
the interior to the surface of the system when the band is
almost full and that the charge expulsion physics is associated
with a lowering of the kinetic energy, just as in the single
atom (Fig. 1). The charge expulsion tendency is largest when
the parameter �t is largest, which in turn corresponds to a
smaller S, the overlap of the atomic orbitals when one and two
electrons are at the orbital. As discussed earlier, S is smaller

FIG. 7. Effect of the nonlinear occupation-dependent hopping
term �t2, Eq. (7c), for the case �t = 0.25 in Fig. 3.

FIG. 8. As the correlated hopping terms increase, the system
develops a tendency toward phase separation, where essentially all
the holes condense to the interior. Parameters are the same as in Fig. 3
except as indicated. The maximum hole occupation per spin is 0.128
(left) and 0.214 (right); the average hole occupation per spin is 0.063.

when the ionic charge Z is smaller, corresponding to a more
negatively charged ion. The fact that the effective Hamiltonian
derived from this physics expels more negative charge the
more negatively charged the ion is makes, of course, a lot of
sense and can be regarded as an internal consistency check of
the validity of the model.

VI. PHASE SEPARATION

The tendency to charge expulsion in the dynamic Hubbard
model can also lead to a thermodynamic instability and ensuing
phase separation. The question of phase separation in these
models in certain parameter ranges was recently considered
by Montorsi and coworkers.40,41

Let us consider the correlated hopping model first, for
simplicity (�t2 = 0). The effective hopping amplitude for a
hole is t(n) = th + n�t , with n the hole density per site. In
the dilute limit, the kinetic energy of a hole is ε = −zt(n),
with z the number of nearest neighbors to a site, and it is clear
that when �t is much larger than th, putting, for example, all
holes into half the system and thus emptying the other half
will double n and hence decrease the kinetic energy per hole
as well as the total energy if it is dominated by kinetic energy.
This tendency to phase separation will be countered both by
Pauli exclusion and by Coulomb repulsion.

FIG. 9. Hole site occupations for the same parameters as in Fig. 8
but an average hole occupation per spin of 0.175. The maximum hole
occupation per spin is 0.214 (left) and 0.232 (right).
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Consider a flat density of states for simplicity. The effective
bandwidth increases linearly with n,

D(n) = Dh + Kn, (16)

with D = 2zt , Dh = 2zth, K = 2z�t . The density of states
per site per spin is given by g(ε) = 1/D, and the ground-state
kinetic energy by

Ekin =
∫ μ

−D/2
εg(ε)dε = D

4
(n2 − 2n), (17)

with μ = (n − 1)D(n)/2 the chemical potential for n holes
per site. Adding the on-site repulsion in a mean-field approxi-
mation yields

Eo(n) = Dh + nK

4
(n2 − 2n) + U

4
n2, (18)

and the system will be unstable towards phase separation into
hole-rich and hole-poor regions when the condition

∂2E0

∂n2
= U + Dh

2
+ K

(
3

2
n − 1

)
< 0 (19)

is satisfied, hence

K >
U + Dh

2
(
1 − 3

2n
) (20)

or, equivalently,

�t >
th + U/(2z)

2
(
1 − 3

2n
) . (21)

For the parameters used in the previous section, e.g., th = 0.1,
n = 0.126, U = 2, and z = 4, appropriate to two dimensions
Eq. (21) yields �t > 0.216. The tendency to phase separation
becomes even stronger when the nonlinear term �t2 is
included. After some simple algebra Eq. (21) is modified to
the condition

�t >
th + U/(2z)

2
(
1 − 3

2n
) − 3�t2n(1 − n)/(4th)

2
(
1 − 3

2n
) , (22)

which, for the parameters given above, yields �t > 0.182.
These estimates are consistent with the numerical results
reported in the previous section. Note that as n increases, a
larger �t is needed for phase separation.

Note that the instability criterion, Eq. (19), appears to be
different from the usual criterion,

∂μ

∂n
< 0, (23)

if μ is given by the expression given right after Eq. (17).
The reason is that the μ in Eq. (17) is not the true chemical
potential but an effective one. The true chemical potential is
modified by contributions from both the Hubbard repulsion
and the density-dependent hopping terms. For the case with
�t2 = 0 it is given by

μ = μeff + Un

2
− K

2
〈c†iσ cjσ + H.c.〉, (24a)

μeff = Dh + nK

2
(n − 1), (24b)

〈c†iσ cjσ + H.c.〉 = n

(
1 − n

2

)
, (24c)

where the expectation value for the bond charge, Eq. (24c),
follows from Eq. (17). Hence we obtain from Eq. (24)

∂μ

∂n
= U + Dh

2
− K

(
1 − 3

2
n

)
, (25)

in agreement with Eq. (19). The instability criterion, Eq. (23)
or Eq. (19), with the free energy replacing E0, is also valid at
a finite temperature of course.

In a real material in the normal state phase separation
will not occur because of the effect of longer range Coulomb
interactions not included in our model Hamiltonian. However,
this physics will clearly favor charge inhomogeneity, i.e., hole-
rich regions that benefit from the lowering of kinetic energy
acquired by increasing the hole concentration and thereby
broadening the (local) bandwidth, and hole-poor regions where
the kinetic energy cost is mitigated by narrowing of the local
bandwidth. The shape of these regions will depend on the
particular details of the system and merits further investigation.
A possible geometry for the hole-rich and hole-poor regions
could be one-dimensional, i.e., stripes.23 Other geometries like
patches are also possible.25,26 Such charge inhomogeneities
are commonly seen in high-Tc superconductors22 where the
physics discussed here should be dominant.

VII. CHARGE INHOMOGENEITY

High-Tc cuprates show a high tendency to charge
inhomogeneity.22,24–26 We suggest that a dynamic Hubbard
model may be relevant to describe this physics: because kinetic
energy dominates the physics of the dynamic Hubbard model,
the system will develop charge inhomogeneity at a cost in
potential energy if it can thereby lower its kinetic energy
more, unlike models where the dominant physics is potential
(correlation) energy, like the conventional Hubbard model.

We assume that there are impurities in the system that
change the local potential at some sites and compare the
effect of such perturbations for the dynamic and conventional
Hubbard models. As an example we take the parameters
th = 0.1, U = 2 and consider site impurity potentials of
magnitude ±0.2 at several sites as indicated in the caption
to Fig. 8. For the dynamic Hubbard model we take �t = 0.2,
�t2 = 0.4, corresponding to S = 0.333.

Figure 10 shows the effect of these impurities on the charge
occupation for the conventional and dynamic models. In the
conventional Hubbard model the occupation changes at the site
of the impurity potential and only very slightly at neighboring
sites. In the dynamic Hubbard model the local occupation
change at the impurity site itself is much larger than in the
conventional model, and in addition, the occupations change
at many other sites in the vicinity of the impurities, as shown
in the lower panel in Fig. 10. Figure 11 shows the real-space
distribution of these changes.

Similarly we can consider impurities where the atomic
value of the deformation parameter S is different from that
in the bulk. This would occur, for example, upon substituting
an ion for another ion with a different ionic charge and, hence,
a different orbital rigidity. For example, replacinging O2− with
F− would make the orbital more rigid and increase S at this
site, while replacing O2− with N3− would make the orbital
more floppy and decrease S. Figure 12 shows 5 impurities
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FIG. 10. Hole site occupation per spin in a system of radius
R = 11 with five impurities, at positions (−1,0), (2,2), (3,−4),
(−5, −5), and (−6, 7), and potential strength −0.2, +0.2, −0.2, +0.2,
and −0.2, respectively. Note the much larger variation in densities
generated in the dynamic Hubbard model (lower panel; �t2 �= 0)
than in the conventional Hubbard model (upper panel). Average hole
occupation per site is n = 0.126.

at the same locations as in Fig. 11, with values S = 0.5 and
0.2 at the impurity sites instead of the bulk value S = 1/3.
The larger (smaller) S will increase (decrease) the occupation.
Compared to the case in Fig. 10, it can be seen that the change
in occupation at the impurity site itself is somewhat smaller
for these parameters but the changes are larger at neighboring
sites and extend to sites farther away. Similarly to Fig. 11,
we show the real-space changes in Fig. 13 compared to the
conventional Hubbard model, where no change at all would
occur since it is not sensitive to the rigidity of the orbital.

The changes in site energies in the example in Figs. 10 and
11 could occur both if there are substitutional impurities in the
conducting plane with different on-site energies and if there
are impurities off the plane that change the local potential in
the plane. In contrast, the example in Figs. 12 and 13 would
be appropriate to describe only impurities in the plane itself
where the electrons conduct.

The reason for this great sensitivity to local perturbations
can be understood from the form of the hopping amplitude,
Eq. (14b). A change in the local occupation will also change
the hopping amplitude of a hole between that site and
neighboring sites, which in turn will change the occupation
of neighboring sites, and so on. Similarly a change in the
deformation parameter S at a site will affect the hopping

FIG. 11. Site occupations for the case in Fig. 10, with the
diameters of the circles proportional to the hole occupation of the
sites. Note the five impurity sites at positions listed in the caption
to Fig. 10 (three with a negative potential and, hence, a higher hole
concentration and two with a positive potential and, hence, a lower
hole concentration). Note that for �t = 0, only the occupation at
the impurity site changes appreciably, while for �t �= 0 an impurity
potential of the same strength causes a much larger change in the
occupation at the impurity site and an occupation change also at the
nearest- and next-nearest-neighbor sites.

amplitudes between that site and its nearest neighbors, hence
the occupation of the site and its neighbors, etc. In that
way a local perturbation in the dynamic Hubbard model
gets amplified and expanded to its neighboring region, and
it is easy to understand how a nonperfect crystal will easily
develop patches of charge inhomogeneity in the presence
of small perturbations. These inhomogeneities cost potential
(electrostatic) energy but are advantageous in kinetic energy.
The conventional Hubbard model does not exhibit this physics.

VIII. GRAIN BOUNDARIES IN HIGH-Tc CUPRATES

In this section we argue that dynamic Hubbard models
may be relevant to the understanding of properties of grain

FIG. 12. Hole site occupation per spin in a system of radius R =
11 with five impurities, at positions (−1,0), (2,2), (3,−4), (−5, −5),
and (−6, 7), with S factor 0.5, 0.2, 0.5, 0.2, and 0.5, respectively.
All other sites have S = 0.333. n = 0.126. Note that the variations
in density occur for even more sites than when the local potential is
changed (Fig. 10 lower panel) even though the change in occupation
at the impurity site itself is smaller.
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FIG. 13. Site occupations for the case in Fig. 12, with the
diameters of the circles proportional to the hole occupation of the
sites. The same five impurity sites at the positions listed in the caption
to Fig. 10 (three with a larger S and, hence, a higher hole concentration
and two with a smaller S and, hence, a lower hole concentration). Note
that the range of sites where the occupation changes is even larger than
in Fig. 11, extending to third nearest neighbors. Left: For comparison,
a uniform system, corresponding to a conventional Hubbard model
that does not take into account the deformation of the orbital, hence
S = 1 for all sites.

boundaries in high-Tc cuprates42–44 and other materials.
Babcock et al.45 report results of EELS experiments indicating
severe hole depletion in YBCO near grain boundaries for
large-angle grain boundaries, with the hole-deficient region
extending up to 100 Å or more into the crystal. In contrast,
small-angle grain boundaries show significantly less hole
depletion. It is reasonable to assume that for larger-angle grain
boundaries there is weaker coupling betwen the grains, and this
is confirmed experimentally by measurement of the Josephson
critical current across the grain boundary.45 Furthermore,
Babcock et al.found that the structural changes associated
with the grain boundaries (structural perturbations and cation
nonstochiometry) extended only about 5 Å from the grain
boundary into the crystal and that the hole depletion is not
associated with particular specimen preparation procedures
such as time duration of oxygen annealing and storage
conditions. The fact that the hole depletion region extends
over a region much wider than that associated with structural
changes suggests an intrinsic purely electronic origin for the
effect. Other workers have found similar results, including
Browning et al.46 and Schneider et al.47

Furthermore, and consistent with this picture, it has been
found that substituting Ca for Y near grain boundaries is an
efficient way to prevent the hole depletion phenomenon,48–50

since Ca2+ ions will donate fewer electrons to the CuO planes
than the Y3+ ions they replace, thus increasing the hole
concentration and thereby improving the transport properties
across the grain boundary.

Previous theoretical explanations of these effects have
implicitly or explicitly assumed that grain boundaries in
high-Tc cuprates have an intrinsic positive charge that leads
to band bending and, consequently, a flow of conduction
electrons to the vicinity of the grain boundaries that causes
hole depletion.51–53 However, these explanations are directly
contradicted by experiments that measure the electric poten-
tial at the grain boundary by electron-beam holography.54

These experiments show unequivocally that the electrostatic

FIG. 14. Effect of a grain boundary, indicated by the dashed line
for the conventional and dynamic Hubbard models with th = 0.1,
U = 2. We assume that the hopping amplitude is reduced by a factor
of 0.3 for sites on opposite sides of the grain boundary. The hole
occupation is depleted in the vicinity of the grain boundary in both
cases, however, the effect is much larger and extends over a wider
range for the dynamic Hubbard model than for the conventional one.
Temperature is T = 0.02.

potential at the grain boundary is negative with respect to the
interior.55–57

To make sense of the electron holography results, Mannhart
suggested44 that the negative potential at the grain boundary
core may cause overdoping of the lower Hubbard band with
holes, resulting in an empty band and insulating behavior.
However, this explanation would appear to be inconsistent with
the experiments by Babcock et al.45 discussed above, as well as
with the evidence that hole doping near the grain boundaries
upon substituting Ca for Y improves the conduction across
grain boundaries. Klie et al. argue that their calculations58

support the hole depletion scenario (hence positive potential
at the grain boundary) and that this raises question about what
potential is measured in electron holography experiments.
However, Koch59 argues that “it seems to be possible to rule
out that this observation is a measurement artifact inherent to
the method of electron holography.”

These seemingly contradictory observations, however, are
consistent with the physics predicted by the model under
consideration here. We model the grain boundary by assuming
a lower hopping amplitude between sites at opposite sides
of the grain boundary. A large-angle grain boundary would
presumably have a more reduced hopping amplitude com-
pared to a small-angle grain boundary. Figure 14 shows the
charge distribution resulting from our model assuming a 70%
reduction in the hopping amplitude across the grain boundary
(denoted by the dashed line), presumably corresponding to a
fairly large-angle grain boundary with a significant increase
in the resistance. The hole density in the vicinity of the grain
boundary is significantly reduced, driven by the lowering of the
kinetic energy of the system. As a consequence, the negative
charge density becomes higher near the grain boundary,
and this would give rise to a negative electric potential at
the grain boundary, consistent with the electron holography
experiments, and a depleted hole concentration around the
grain boundary, consistent with the EELS experiments.45

Schneider et al.47 and Mennema et al.60 find that increasing
the temperature leads to a rapid decrease in the grain boundary
resistance. We suggest that this results from an increase in the
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FIG. 15. Same as Fig. 14, with temperature T = 0.1.

hole concentration near the grain boundary as the temperature
is increased. Figure 15 shows that as the temperature is
increased the hole density near the grain boundary increases
substantially in the dynamic Hubbard model, and as a
consequence, the conductivity in the region increases. It would
be interesting to measure directly the dependence of hole
depletion on temperature in EELS experiments. This has not
yet been done, to our knowledge.

Recent measurement of properties of grain boundaries in
Fe-As superconductors61 indicate that the behavior is similar
to that of high-Tc cuprates. This would not be surprising if the
physics of both classes of materials is described by dynamic
Hubbard models.

IX. DISCUSSION

Both the conventional Hubbard model and the dynamic
Hubbard model are simplified descriptions of real materials,
as are other models used to describe electronic materials
such as the periodic Anderson model, the Holstein-Hubbard
model, and the t-J model. Whether any model contains
the physics of interest for particular real materials is, in
principle, an open question. In this paper we have argued
that the dynamic Hubbard model, which entails a rather
straightforward and natural generalization of the conventional
Hubbard model motivated by consideration of the physics of
atomic orbitals in real atoms, has interesting properties in some
parameter regimes that were not known before and that may
have implications for the understanding of properties of real
materials.

The new physics of the dynamic Hubbard model is that
it allows the electronic orbital to expand when it is doubly
occupied. This expansion has associated with it outward mo-
tion of the negative charge as well as lowering of the electron’s
kinetic energy at the atomic level, and it is intrinsically not

“electron-hole symmetric.” This physics is not included in
the conventional Hubbard model, which assumes that the
electronic orbital is infinitely rigid. The key question is not
whether this physics exists in real atoms: of course it does.3

Instead, the key questions are how large the effect is, what its
consequences are, and under what conditions and for which
materials it is or is not relevant for various properties of the
materials it aims to describe.

The mathematical treatment of dynamic Hubbard models
is not simple, and from the outset we have restricted ourselves
in this paper to the antiadiabatic limit, i.e., assuming that

the energy scale associated with the orbit expansion [ω0 in
Eq. (4)] is sufficiently large that it can be assumed infinite. This
brings about the simplification that the high-energy degrees
of freedom can be eliminated and the Hamiltonian becomes
equivalent to the low-energy effective Hamiltonian, Eq. (7), a
Hubbard model with correlated hoppings, linear and nonlinear
terms �t and �t2. This low-energy effective Hamiltonian, to-
gether with the quasiparticle weight renormalization described
by Eq. (6), describes properties that we believe are relevant
to real materials and are not described by the conventional
Hubbard model.

In this paper we have shown with specific quantitative
examples that the dynamic Hubbard model has a strong
tendency to expel negative charge from the interior of the
system to the surface, driven by lowering of the kinetic energy
of the charge carriers. We believe it is truly notable that this
property of the model mimics the physics of the single atom
that motivated the formulation of the model, even though the
kinetic energy lowering and negative charge cloud expansion
of the atomic electron are not explicitly included in the site
Hamiltonian, Eq. (1). It is, furthermore, notable that the orbital
expansion in an ion is larger when the ion is negatively
charged, which, in the model, translates to a larger value
of the coupling constant g [smaller S, Eq. (6b), and larger
�t/th, Eq. (10)] and, consequently, a greater tendency for the
model to expel negative charge. We argue that the fact that the
lattice Hamiltonian, Eq. (9), describes, at a macroscopic length
scale, the same physics at the atomic scale that motivated
the Hamiltonian is a strong indication that the Hamiltonian is
relevant for the description of reality.

The effects predicted by this Hamiltonian are largest when
the coupling constant g is large, or, equivalently, when the
overlap matrix element S is small, which corresponds to a “soft
orbital” that would exist for negatively charged anions—and

the effects are also largest when the band is almost full
with negative electrons (strong coupling regime). Thus, not
surprisingly, more negative charge at the ion and/or in the
band yield a greater tendency to negative charge expulsion for
the entire system. We believe that the Hamiltonian is relevant
to describe the physics of materials including high-Tc cuprates,
Fe pnictides, Fe chalcogenides, MgB2 and BiS2-based62

materials. These materials have negatively charged ions
(O2−, As−3, S2−, Se2−, B−) with soft orbitals, and for most
of them, including “electron-doped” cuprates,63 there is ex-
perimental evidence for dominant hole transport in the normal
state. We suggest that the orbital expansion and contraction of
these negative ions depending on their electronic occupation
are responsible for many interesting properties of these
materials and are described by the dynamic Hubbard model.

We have seen in this paper that the model leads to charge
inhomogeneity driven by the lowering of the kinetic energy,
and, in extreme cases, to phase separation, and that it leads
to negatively charged grain boundaries and depletion of
hole carriers in the vicinity of grain boundaries, properties
experimentally observed in many of these materials but not
understood using conventional models such as “band bending.”

Much of the physics of dynamic Hubbard models for
finite ω0 remains to be understood. In fact, the model itself
may require substantial modification to account for different
values of ω0 for different electronic occupations: the excitation
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spectrum of the neutral hydrogen atom, H, is certainly very
different from that of H−. In connection with this and going
beyond the antiadiabatic limit where only diagonal transitions
of the auxiliary boson field are taken into account as in this
paper, it is possible that vertical transitions may play a key
role in understanding certain properties of systems described
by dynamic Hubbard models.

In other work we discuss the related facts that the
Hamiltonian, Eq. (9), gives rise to pairing of holes and
superconductivity when the electronic energy band is close
to full, driven by the lowering of the kinetic energy.64 We

have also proposed elsewhere an alternative electrodynamic
description of the superconducting state arising from this
model that describes expulsion of negative charge from the
interior to the surface.65 Finally, we have pointed out that in
the presence of an external magnetic field, negative charge
expulsion from the interior to the surface would give rise to
magnetic-field expulsion from the interior to the surface.66,67
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