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Robustness of the Berezinskii-Kosterlitz-Thouless transition in ultrathin NbN films
near the superconductor-insulator transition
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Occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition is investigated by superfluid density
measurements for two-dimensional (2D) disordered NbN films with disorder level very close to a superconductor-
insulator transition (SIT). Our data show a robust BKT transition even near this 2D disorder-tuned quantum critical
point. This observation is in direct contrast with previous data on deeply underdoped quasi-2D cuprates near the
SIT. As our NbN films approach the quantum critical point, the vortex core energy, an important energy scale in
the BKT transition, scales with the superconducting gap, not with the superfluid density, as expected within the
standard 2D-XY model description of BKT physics.
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I. INTRODUCTION

Berezinskii-Kosterlitz-Thouless (BKT) transition, the only
phase transition which can occur in the two-dimensional XY

(2D-XY ) model without breaking the continuous symmetry
of the model,1 has generated great interest in the condensed
matter community for many years. It has been used to describe
the superconductor-to-normal-metal thermal phase transition
in 2D superconducting films in the context of free vortices
emerging from a bath of thermally excited vortex-antivortex
(V-aV) pairs, instead of breaking of Cooper pairs themselves.

There are several predicted experimental signatures of this
transition.2 For example, above the transition temperature,
the coherence length would diverge exponentially in the
distance from the transition instead of the usual power
law, leading to a peculiar temperature dependence of the
resistivity above the transition.3 But this temperature range is
usually exceedingly small.3–5 The most direct and convincing
evidence is that, a universal and discontinuous drop in
superfluid density is expected at the transition temperature.6

This has been shown beautifully in the superfluid helium-4
system.7 In ultrathin conventional [Mo77Ge23,8 InOx ,9,10 NbN
(Refs. 5 and 11)] and quasi-2D cuprate [YBa2Cu3O7−x ,12–14

Bi2Sr2CaCu2O8+x(Ref. 15)] superconducting films, however,
results are rather complex: (1) While significant drops in
superfluid densities are indeed observed, they do not occur
where the 2D-XY model predicts—in ultrathin conventional
films, they occur earlier than expected.5,8,9,11 (2) In strongly
underdoped cuprates, thick films of YBa2Cu3O7−x(Ref. 14)
and Bi2Sr2CaCu2O8+x ,15 and crystals of YBa2Cu3O7−x ,13

thermal critical fluctuations are not observed near Tc, even
though samples near optimal doping do exhibit critical
fluctuations.12,15 It is worth noting that within the context
of layered cuprates the possibility to identify BKT features
associated to each bilayer unit relies on the general expectation
that layers are weakly coupled. Thus, it is particularly

surprising that when cuprate films are underdoped to near a
superconductor-insulator transition (SIT), any thermal critical
behavior, evidenced by the sharp downturn of superfluid
density, disappears and the T dependence of superfluid density
goes quasilinearly with the temperature all the way to T c.13–15

This contradicts the fact that underdoping usually increases
anisotropy in cuprates, so that thermal critical behavior should
be more robust than its counterpart near optimal doping.

All the observations above indicate that there are several
physical mechanisms at play in 2D superconducting films that
are not captured by the 2D-XY model description of the BKT
physics. First, as pointed out by one of the authors here, the
relative energy scales involved in the BKT transition might
not be universal after all.16 For instance, the experimental
data can be described well by allowing the ratio between the
vortex core energy μ and the superfluid density to deviate from
the 2D-XY model value. A smaller (compared to the 2D-XY

model prediction) or a larger μ can be used to fit the data of
ultrathin conventional superconducting films5,11 and layered
cuprates,17,18 respectively, to account for the early or late drop
in superfluid density.

Second, as evidenced mainly by scanning tunneling mi-
croscopy (STM), intrinsic inhomogeneities emerge in these
films of both conventional19–22 and cuprate23 superconductors
especially when they are underdoped or driven to a very
high disorder level. These inhomogeneities tend to broaden
the transition and smear out the discontinuous drop. Any
quantitative analysis then must take the local distribution of the
superfluid densities into account.18,24 This will also complicate
the analysis.

Third, when the system is pushed near the verge of a SIT,
no matter by disorder or underdoping, there will be quantum
fluctuations near such a quantum critical point (QCP). For
example, there can be quantum V-aV pairs existing even at
zero temperature.25 How quantum fluctuations affect BKT
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transition is still an open question. Goldman et al. suggested
recently that macroscopic quantum tunneling in nonuniform
thin films prevent resistivity dropping to zero below BKT
transition.26 Previous studies on deeply underdoped cuprates
also show that thermal critical behavior (BKT physics) persists
in ultrathin films27 but it disappears in thick films near the
QCP.14,15 This phenomenon has been shown to be universal
in cuprates because it is robust against huge differences in
anisotropy (YBa2Cu3O7−xvs Bi2Sr2CaCu2O8+x) and disorder
(thick films vs crystals). It seems BKT physics surrenders to
quantum effects near a quantum critical point.

The main purpose of this paper is to study the evolution of
BKT physics near a QCP in 2D conventional superconducting
films. While there are some previous superfluid density studies
on 2D superconducting films, none of these films have been
pushed to extremely high disorder so that a SIT can be seen.
In our case, by reducing the thickness thus adding disorder in
NbN films, we are able to drive NbN films with Tc ∼ 15 K
smoothly all the way to insulating. We are able to push
the disorder smoothly to a SIT and still have reasonably
sharp transitions. Temperature dependencies of superfluid
densities in these films are measured by a two-coil apparatus.
Qualitatively, BKT transitions are observed for all the films
even on the verge of SIT. By analyzing the data within the
same theoretical scheme proposed in a previous article,5 we
also observed an increase of both vortex-core energy and
inhomogeneities as a function of disorder, that consistently
extend the previous studies on intermediately disordered films
to highly disordered films near a 2D-QCP. This indicates
that BKT physics remains robust against high disorder level
or other quantum effects near a QCP in conventional 2D
superconducting films. This robustness is in direct contrast
with similar studies on layered underdoped cuprates, where
BKT physics vanishes. We conclude this difference is because
in deeply underdoped layered cuprates the increase of both
the vortex-core energy and of the coherence length can
conspire to mask the occurrence of 2D behavior near the SIT.

II. EXPERIMENT

The superconducting NbN films were deposited by reactive
magnetron sputtering of a pure Nb target in an Ar + N2 gas
mixture, at a total pressure of about 10−3 mbar. The epipolished
R-plane sapphire substrates were kept at 550 ◦C during the film
growth. Deposition rate (0.17 nm/s) is calibrated so thickness
of the film is inferred from the sputtering time. The deposition
process was optimized with respect to the partial pressure
of N2 and the deposition rate to provide the highest transition
temperature for films with the smallest studied thickness. More
details of growth can be found in this paper.28 Many physical
parameters have been measured for these NbN films.29 They
are patterned to nanowires and used to make single-photon
detectors.28 We emphasize that the films are homogeneously
disordered because (1) sheet resistance is almost a constant
above the transition temperature and does not show any
discontinuity at higher temperature, (2) conducting films with
reasonably sharp and single transition can be grown with the
thickness of only three or four unit cell, and (3) it is generally
easier to be homogeneously disordered for a binary compound,
such as the well-studied InOx and TiN films.

FIG. 1. (Color online) Sheet resistance Rsheet , normalized by
quantum resistance h/4e2, vs temperature for many NbN films
with different thickness d and disorder. Superconductor-insulator
transition is observed for films with R(20 K) < h/4e2 (black curves).
Some films (red curves) are very close to SIT but the measurement
temperatures go down only to 4.2 K.

Figure 1 shows that a nice superconductor-insulator tran-
sition is observed when the film thickness is reduced to a
few unit cell30 (one unit cell = 0.44 nm). Superconducting
and insulating films are separated by quantum resistance
for Cooper pairs, which is h/4e2 = 6.45 k�. Thick NbN
films have Tc ≈ 15 K, close to the bulk value. As films get
thinner or more disordered, sheet resistance increases and
Tc drops. Near SIT, we are able to consistently reproduce
films with Tc about 4 K with sheet resistance ∼5.5 k� above
T c. Unfortunately, these ultrathin films degrade in the air and
the effective sheet resistance will change. Both the superfluid
density and Tc will change too. This degradation prevents us
from directly comparing resistance and superfluid data on the
same film. But it gives us another way to tune the SIT without
sample-to-sample variation. As we will show later, in terms of
SIT tuning, there is no difference among thickness, disorder,
or degradation.

Superfluid densities are measured by a two-coil mutual
inductance apparatus.31 The film is sandwiched between two
coils, and the mutual inductance between these two coils is
measured at a frequency ω/2π = 50 kHz. The measurement
actually determines the sheet conductivity, Y ≡ (σ1 + iσ2)d,
with d being the superconducting film thickness and σ being
the conductivity. Given a measured film thickness, σ is
calculated as σ = Y/d. The imaginary part, σ2, yields the su-
perfluid density through ωσ2 ≡ nse

2/m, which is proportional
to the inverse penetration depth squared: λ−2(T ) ≡ μ0ωσ2(T ),
where μ0 is the permeability of vacuum. As is customary, we
refer to λ−2 as the superfluid density. The dissipative part
of the conductivity, σ1(T ), has a peak near T c, whose width
provides an upper limit on the spatial inhomogeneity of T c over
the 10 mm2 area probed by the measurement. Data are taken
continuously as the sample slowly warms up so as to yield the
hard-to-measure absolute value of λ−2 and its T dependence.
This two-coil technique is powerful16 to study thermal critical
behavior such as BKT transition near T c. It is also unique for
2D films because it can give sheet superfluid density d/λ2(T )
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FIG. 2. (Color online) Temperature dependence of mutual in-
ductance MI(T )/MI(15 K), including both real (upper curves) and
imaginary parts (lower dips), of many NbN films with different
thicknesses and disorder levels. For clarity purposes, not all data
are shown.

without the knowledge of the film thickness, which is the case
here.

Mutual inductance data MI(T )/MI(15 K) of some films
are shown in Fig. 2. Nice sharp transitions are observed for
most films. As films get thinner, or get more disordered,
or simply degraded, Tc drops and the normalized mutual
inductance at T � Tc grows. This shows that the ability of
the film to screen the magnetic field gets reduced as the
film gets thinner. This ability is directly related to the areal
superfluid density of the film. The imaginary part of the mutual
inductance, which shows a dip at the transition, relates to the
dissipation of moving vortices. The width of the dip shows that
inhomogeneity gets larger as the film disorder is increased to
near SIT, consistent with other local gap measurements.20

III. THEORETICAL ANALYSIS OF THE DATA

We start by briefly reviewing the basic elements of
the BKT transition that will be needed for the fitting of
the experimental data.16 As we mentioned at the beginning, the
BKT transition was originally formulated within the context
of the two-dimensional (2D) XY model, which describes the
exchange interaction between classical two-component spins
with fixed length S = 1:

HXY = −J
∑
〈ij〉

cos(θi − θj ), (1)

where J is the spin-spin coupling constant and θi is the angle
that the ith spin forms with a given direction, and i are the sites
of a square lattice. Within the context of 2D superconductors
θi plays the role of the superconducting (SC) phase, and J

(now written as Js , and referred to as the superfluid stiffness)
is connected to the areal density of superfluid electrons ρ2d

s ≡
nsd, which in turn is measured via the inverse penetration
depth λ of the magnetic field:

Js = h̄2ρ2d
s

4m
= h̄2d

4e2μ0λ2
. (2)

Usually both quasiparticle excitations and phase fluctuations
contribute to the depletion of Js towards zero. In the case
of our NbN films the quasiparticle contribution can be well
accounted by the dirty-limit BCS expression

JBCS(T )

JBCS(0)
= 	(T )

	(0)
tanh

[
	(T )

2kBT

]
, (3)

by using eventually 	(0)/TBCS as a free parameter, to account
for the relatively large 	(0)/Tc ratio reported in NbN as
disorder increases.20

For what concerns transverse (i.e., vortical) phase fluctua-
tions their effect will be accounted for by numerical solution
of the BKT renormalization-group (RG) equations, whose
relevant variables are the dimensionless quantities1,2,16

K(0) = πJBCS(T )

T
, (4)

g(0) = 2πe−μ/kBT , (5)

where μ is the free energy of a vortex core, with radius about
equal to the superconducting coherence length ξ (T ) and g

is called the vortex fugacity. Notice that JBCS enters here to
determine the initial value of K , i.e., its short-distance value. Its
long-distance value follows by the solution of the well-known
RG equations1,2,16

dK

d�
= −K2g2, (6)

dg

d�
= (2 − K)g, (7)

where � ≡ ln(r/ξ ) is the rescaled length scale. The observed
superfluid density is identified by the limiting value of K as
one goes to large distances:6

Js ≡ T K(� → ∞)

π
. (8)

The basic idea of the RG equations is to look at the large-
scale behavior of the superfluid stiffness and of the vortex
fugacity. When g → 0 it means that single-vortex excitations
are ruled out from the system, which is then SC: Indeed, as
one can see from Eqs. (6) and (7) when g → 0, K goes to a
constant and then Js from Eq. (8) is finite. If instead g → ∞
at large distances it means that vortices proliferate and drive
the transition to the non-SC state, since K → 0. The large-
scale behavior depends on the initial values of the coupling
constants K,g, which in turn depend on the temperature. The
BKT transition temperature is defined as the highest value of
T such that K flows to a finite value, so that Js is finite. This
occurs at the fixed point K = 2, g = 0, so that at the transition
one always has

K(� → ∞,TBKT ) = 2, ⇒ πJs(TBKT )

TBKT

= 2, (9)

while above it, Js = 0. As a consequence, at TBKT , Js jumps
discontinuously from the universal value 2TBKT /π to zero.
However, it should be emphasized that already before TBKT

the effect of short length-scale vortex-antivortex pairs is in
general to deplete Js with respect to its initial value, given by
the BCS estimate (3). This effect is usually negligible when
μ is large, as is the case for superfluid films7 or within the
standard XY model,16 where μXY ∼ (π2/2)Js . In this case
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FIG. 3. (Color online) Role of the vortex-core energy on the BKT
transition. The solid black line represents the temperature dependence
of 1/λ2 within BCS theory, as described by Eq. (3), for typical
parameter values appropriate for NbN films. The BKT transition
temperature depends on the value of the vortex-core energy. For μ as
large as in the XY model the transition occurs (dotted green line) at
the intersection between the BCS curve and the universal line 2T/π .
However, for smaller μ values, Js is renormalized with respect to its
BCS counterpart already before the transition, so that the transition
occurs at a lower TBKT (see dashed blue line and red dot-dashed line).
Notice that in all these cases the universal relation (9) is satisfied, and
1/λ2 jumps discontinuously to zero after intersection with the 2T/π

line.

one can safely estimate TBKT as the temperature where the
line 2T/π intersects the JBCS(T ) from Eq. (3) (see Fig. 3).
However, as μ decreases the renormalization of Js due to
bound vortex pairs increases, and consequently the deviation
of Js from its BCS counterpart starts considerably before the
transition temperature itself16,17 (see Fig. 3).

At intermediate and strong disorder STS experiments have
shown that NbN films20–22 exhibit a spatial inhomogeneity
of the SC spectra, that becomes particularly pronounced
near the SIT. Even though scanning tunneling spectroscopy
(STS) spectra probe only the local DOS of the sample, one
would expect that the same inhomogeneity reflects also in
the local superfluid stiffness. As a consequence, one can
imagine that the sample admits a given distribution of local Ji

values with probability density P (Ji) and local BCS and BKT
transition temperatures T i

c and T i
BKT , respectively. A possible

phenomenological way to estimate the overall superfluid
stiffness24 is to compute the average Jav as

Jav(T ) =
∑

i

P (Ji)J
i
s (T ), (10)

where P (Ji) can be taken, for example, as a Gaussian
distribution centered around the experimental value of J0 at
T = 0,

P (Ji) = 1√
2πσ

exp[−(Ji − J0)2/2σ 2]. (11)

When Ji = J0 the corresponding J i
s (T ) ≡ J0(T ) coincides

with the BKT curve obtained from the BCS fit (3) of the
experimental data, shown with a dot-dashed line in Fig. 4. For
the remaining Ji values we rescale the corresponding BCS
temperatures as Ji/T i

BCS = JBCS(0)/TBCS and we compute

FIG. 4. (Color online) Role of inhomogeneity on the BKT
transition. The experimental data (black curve) correspond to the
sample labeled as S193v1 in Table I. While the median J0(T ) (blue
dot-dashed line) of the Gaussian distribution (11) of possible Ji

realizations has a sharp transition, the average stiffness Jav(T ) from
Eq. (10) vanishes with a smoother tail. The deviation from the BCS
curve (red dashed line) before the transition is due instead to the low
value of the vortex-core energy (see Fig. 3).

J i
s (T ) and the corresponding BKT temperature T i

BKT by the
numerical solution of the RG equations (4) and (5) above.
Once this set of J i

s (T ) curves was obtained we compute at each
temperature the average value Jav(T ) according to Eq. (10).
When all the stiffness J i

s (T ) are different from zero, as is
the case at low temperatures, the average stiffness will be
centered around the center of the Gaussian distribution (11),
so that it will coincide with J0(T ). However, by approaching
TBKT defined by the average J0(T ) not all the patches make
the transition at the same temperature, so that the BKT jump
is rounded and Jav remains finite above the average TBKT ,
in agreement with the experiments (see Fig. 4). We note that
Eq. (10) implies an average of the imaginary part of the
complex optical conductivity, since Js ∝ λ−2 ∝ σ2. The same
mechanism applied to its real part leads to a broadening of the
σ1 peak at the transition, as discussed in Refs. 18 and 16. Thus,
one expects that a smearing of the abrupt superfluid-density
jump due to increased inhomogeneity is also accompanied by
a broadening of the σ1 peak, as we will discuss indeed in the
next section in connection to the experimental data.

IV. DATA AND DISCUSSION

The sheet superfluid densities d/λ2(T ) of many films
with different thicknesses and disorder are shown in Fig. 5.
Figure 5(a) shows moderately disordered films with Tc > 8 K.
Figure 5(b) shows films with Tc less than 8 K. The modified
BKT theory developed in Sec. III, with vortex-core energy a
free parameter and consideration of inhomogeneities, fit the
experimental data pretty well. Table I shows major fitting
parameters for every sample studied here. Two energy scales,
the vortex core energy μ and the SC gap 	(0), normalized
to the superfluid stiffness, are found to be correlated at high
disorder. This is shown in Fig. 6. The sheet superfluid density
dλ−2(T ) is converted to the superfluid stiffness Js by means
of Eq. (2). By using h̄2/4e2μ0kB = 6.2 × 10−3 Km we can
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FIG. 5. (Color online) Experimental data (solid black curves) of
various samples [(a) for moderately disordered films and (b) for highly
disordered films] are fitted by BCS dirty-limit theory well (blue dash-
dotted curves) until deviations occur. The black dashed line gives the
prediction on where BKT transition should occur given by the 2D
XY model. The deviations are fitted by the procedure mentioned in
Sec. III (red dashed curves). The fitting parameters values are reported
in Table I.

express Js in K as

Js[K] = 0.62
d[Å]

λ2[μm2]
. (12)

Qualitatively, all films show a deviation from BCS theory
fit earlier than what the 2D XY model predicts, which is the
intersection with the dashed line in Fig. 5. This means that
the early appearance of the BKT downturn, first shown in
moderately disordered Nb (Ref. 32) and NbN (Ref. 5) films, is
a common characteristic of conventional 2D SC films. As we
discussed in Sec. III, a small value of the vortex-core energy
is responsible for the fact that 1/λ2(TBKT ) < 1/λ2

BCS(TBKT ),
so that also the TBKT in the perfectly homogeneous case
would occur before the 2D-XY model prediction. However,
the presence of inhomogeneity smears out the sharp BKT
drop and gives a finite width to the transition, as evidenced by
small peaks in σ1 near Tc. These peaks get wider as disorder
increases, consistent with the increase in inhomogeneity
observed in tunneling,20–22 and also with the increase of the

superfluid-stiffness distribution width δ/J0 obtained by the
BKT fit (see Table I).

Quantitative results are shown in Table I. We are able to tune
the disorder so that the superfluid stiffness changes by a factor
of 50 and Tc changes by a factor of 3. Our most disordered film
has a Tc ∼ 4 K and Js(0) ∼ 7.4 K compared to Tc ∼ 8 K and
Js(0) ∼ 60 K for the most disordered film in a previous study.5

TBKT is very close to Tc at low disorder (3 difference) and
becomes more separated as disorder is increased. For the most
disordered film S89, this difference is as large as 20, showing
the separation of two energy scales TBKT and Tc. Interestingly,
the energy scale for sheet superfluid density Js(0) is getting
close to the scale of Tc and may become the limiting factor
for Tc. Three fitting parameters μ, 	(0), and δ, normalized by
Js(0), are listed in Table I.

One of our major findings is shown in Fig. 6. With Js(0)
characterizing the disorder level of the films, we found that the
two energy ratios 	(0)/Js(0) and μ/Js(0) are highly correlated
at high disorder. This means that near the quantum critical
point, the vortex-core energy μ, an important energy scale in
BKT transition, does not scale with the superfluid stiffness, as
given by the 2D XY model. Instead, it scales with the supercon-
ducting gap, which is the pairing strength of the Cooper pairs.

There are two different contexts our results can be put into.
First, the observation of robust BKT transition is consistent
with previous results on moderately disordered films5 and
extends it to highly disordered films on the verge of the 2D SIT.
The vortex-core energy is also shown to scale with the energy
gap near the QCP. Our data on more than ten films firmly
confirmed the observation of a previous study on three films,
that has been discussed theoretically5 in terms of the increasing
separation between the energy scales associated to pairing and
phase coherence induced by disorder. Indeed, at intermediate
disorder level the vortex-core energy can be estimated as
the loss in condensation energy εcond within the core of the
vortex, μ � πξ 2

0 εcond . Since εcond ∼ 	2, the increasing of
μ/Js can be attributed to the increasing separation between
the pairing scale 	 and the stiffness Js as disorder increases,
an effect that has been both observed experimentally20,34 and
found numerically35,36 within the attractive Hubbard model
with on-site disorder. On the other hand, when the system
approaches the QCP for the SIT the spatial inhomogeneity
of the system increases considerably, as observed both in
STM19,20,22 and in our measurements, in agreement also with
theoretical findings.35,36 This effect can affect in a nontrivial
way the vortex structure, making also the evaluation of the
vortex-core energy more involved. Thus, the present result
offers interesting insights on the way the vortex physics
evolves at strong disorder, which will certainly deserve further
theoretical investigation.

Second, the robustness of BKT transition observed here is
in direct contrast with similar superfluid density studies on
deeply underdoped layered cuprates13–15 near the QCP, where
no downturns are observed at all. In these deeply underdoped
quasi-2D cuprates, superfluid density goes linearly with the
temperature in almost all the compounds studied, including
both YBa2Cu3O7−x and Bi2Sr2CaCu2O8+x , both crystals and
films.

What is the big difference between the two systems? First
of all, we should recall that the possibility to observe a
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TABLE I. Experimental values of nominal thickness d and sheet superfluid density d/λ2(0), which are transferred to energy scale Js(0) via
Eq. (2), along with the best-fit parameters. Here the BCS transition temperature TBCS and the superconducting gap 	(0) are obtained from the
BCS fit. The vortex-core energy μ and the degree of inhomogeneity δ, both normalized by Js(0), are from best BKT fit. The temperature TBKT

corresponds to the transition temperature of the median J0(T ) of the Gaussian distribution (see also Fig. 4). Films S196 and S193 are measured
two and five times, respectively, to show aging effects of these films.

d d/λ2(0) Js(0) TBCS TBKT

Film ID (nm) (mm−1) (K) (K) (K) μ/Js 	/Js δ/Js

S56 5.5 59.4 368.28 13.7 13.23 0.6 0.08 0.007
S87 3.2 24.96 154.75 12.23 11.28 0.54 0.17 0.013
S84 2.72 15.2 94.27 11.1 10.1 0.7 0.253 0.02
S88 2.24 8.31 51.52 9.7 8.59 0.83 0.461 0.02
S194 2.28 5.68 35.2 9.3 8.23 0.75 0.739 0.04
S196v2 2.16 4.02 24.9 7.7 7.19 1.65 0.897 0.05
S197 2.1 3.93 24.34 7.95 6.9 1.25 0.947 0.045
S196v1 2.16 3.82 23.69 8.68 7.45 1.55 1.063 0.045
S193v1 2.04 3.41 21.12 7.48 6.94 1.7 1.027 0.042
S193v4 2.04 2.69 16.7 7.1 6.53 1.9 1.233 0.055
S193v5 2.04 2.58 16 6.78 6.24 1.93 1.229 0.062
S193v2 2.04 2.04 12.65 5.87 5.42 2.2 1.346 0.07
S193v3 2.04 1.41 8.72 5.15 4.64 2.25 1.713 0.085
S89 1.58 1.20 7.41 4.2 3.38 1.8 1.474 0.08

BKT transition in thick cuprate films relies on the interplay
between different length and energy scales. In cuprates, there
are three length scales in the c axis: the thickness df ilm,
the neighboring superconducting CuO2 bilayer distance dCuO2

and the c-axis coherence length ξc. df ilm is typically several
hundred nanometers for “thick” films and much larger for
crystals. The distance between neighboring CuO2 bilayers
is about 12 Å in YBCO and 15 Å in Bi-2212. Only the
coherence length ξc has a temperature or doping dependence.
Near well-studied optimal doping, ξc ∼ 2 Å, which is much
less than dCuO2 . We have

ξc < dCuO2 < df ilm(quasi-2D). (13)

That is why cuprates are generally considered to be quasi-2D,
and one would generally expect a BKT transition for each
isolated layer. This means that the temperature where the
universal jump Eq. (9) should occur is compared to the

FIG. 6. (Color online) Evolution of the vortex-core energy (blue
circles) and SC gap (red squares), normalized by the superfluid
stiffness Js(0), with Js(0) in our NbN films. Open symbols are data
from Mondal et al. (Ref. 5). Dashed lines are guides to the eye.

superfluid stiffness of a single bilayer, i.e., d is replaced
by dCuO2 in Eq. (2). Nonetheless, layers are not completely
independent, since the phase in neighboring layers is coupled
by a (weak) Josephson-like coupling J⊥. Once more, when
J⊥ is much smaller than in-plane stiffness one would expect
BKT-like behavior. However, this is only true when the vortex-
core energy is of the value expected in the XY model: Indeed,
it has been shown17 that for larger values of the vortex-core
energy μ, the BKT transition can occur at temperatures larger
than expected within the XY model, since interlayer coupling
predominates over vortex unbinding on a wider range of
temperatures. The observation of sharp BKT downturns in
optimally doped Bi2Sr2CaCu2O8+x(Ref. 15) suggests that in
this material not only is anisotropy very large (i.e., J⊥ is very
small), but also the vortex-core energy must be of the order of
the XY -model value, allowing for a BKT transition controlled
by the stiffness of each isolated bilayer.

When doping is lowered both ξc and μ might grow. From
one side, if ξc remains small, an increase of the ratio μ/Js

analogous to the one reported above for conventional films
could by itself move the TBKT to higher temperatures, making
also the jump barely visible. Such an increase of μ/Js has
been indeed inferred by a theoretical analysis similar to the one
discussed above in ultrathin YBa2Cu3O7−x films.24 In the case
of conventional superconducting films the increase of μ/Js(0)
can be understood as an effect of the increasing separation
between the pairing energy scale and the phase coherence due
to disorder, which can also be responsible for the pseudogap
observed by STM in this material.19,20 A similar analysis in the
context of cuprates would be very interesting, since it could
shed new light on the effect of disorder on the underdoped
regime of these materials as well.

On the other hand, if ξc exceeds the dCuO2 and stays less
than df ilm,

dCuO2 < ξc < df ilm(3D), (14)
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then cuprates become more three dimensional. A BKT
paradigm then does not apply and the characteristic BKT
jump disappears.33 Eventually, when ξc exceeds even the film
thickness 2D behavior could be recovered again, but now TBKT

should correspond to the sheet superfluid density of the whole
film, which is very large for thick films. Thus, the BKT jump
would become practically indistinguishable from the transition
temperature due to other thermal excitations (as quasiparticle
or longitudinal phase fluctuations). The in-plane coherence
length ξ is related to upper critical field Hc2 by

Hc2 = �0/2πξ 2, (15)

where �0 is flux quantum. Therefore a large coherence length
corresponds to a relatively small Hc2 for deeply underdoped
cuprates. In this view, the lack of BKT signatures in superfluid-
density data can then support the idea that Hc2 drops and goes
to zero near the underdoped side of superconductor-insulator
transition. Of course, both the coherence length and the upper
critical field are different along in-plane and out-of-plane
directions, but we assume that this anisotropy is temperature
and doping independent. This might provide some evidence on
the recent debate37,38 about how Hc2 behaves on underdoped
cuprates. At the QCP the coherence length diverges for
deeply underdoped cuprates and prevents BKT transition from
occurring.

The case of ultrathin conventional NbN superconducting
films is simpler. ξ is isotropic and several tens of angstroms, to
2D behavior is always controlled by the thickness for ultrathin
films:

ξ � df ilm(2D). (16)

Therefore they are always in the 2D limit and BKT transition
is always expected. Moreover, Hc2 measurements support the
notion that ξ increases when the QCP is approached,39 so
that even at strong disorder films remain always in the 2D
limit. Another way to think about the difference is, if we can

reduce the thickness of cuprate films to a few unit cell so it
is 2D by construction, then these films are similar to ultrathin
conventional superconducting films and we should be able
to recover the BKT downturn. That is what we indeed see in
ultrathin Y1−xCaxBa2Cu3O7−δ films.27 In this case, a BKT-like
downturn is observed and it is robust down to the lowest level
of doping.

V. CONCLUSIONS

Robust Berezinskii-Kosterlitz-Thouless transitions, evident
by sharp downturns of superfluid densities near Tc, are
observed for ultrathin NbN films close to superconductor-
insulator transition. They occur earlier than what the 2D XY

model predicts and this is attributed to a relative small vortex-
core energy. We observe that the vortex-core energy scales with
the superconducting gap instead of the superfluid stiffness near
the quantum critical point. Once included this effect, the BKT
transition survives up to strong disorder, even though the sharp
superfluid-density downturn observed in cleaner samples gets
partly smeared out by the disorder-induced inhomogeneity
of the system. The robustness of BKT transition is in direct
contrast to similar studies on severely underdoped layered
cuprates, which show no critical thermal fluctuations. This
difference is attributed to the effect of a larger vortex-core
energy or coherence length in deeply underdoped cuprates.
Further investigation of both these mechanisms could shed new
light on the nature of the superconductor-insulator transition
in these unconventional superconductors.
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