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Mean-field simulation of metal oxide antiferromagnetic films and multilayers
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In this work the magnetization in antiferromagnetic thin films and multilayers with interlayer exchange coupling
is simulated using mean-field approximation. Transition-metal oxide antiferromagnets are modeled as multiplane
magnetic systems with 1 to 11 planes and the magnetization M is calculated as a function of temperature T .
The antiferromagnetic films exhibit ferromagnetism when the number of monolayers is odd, i.e., when there is
an uncompensated plane, but the net magnetization is lower than that of any single uncompensated plane due to
cancellations and finite-size effects. With increasing film thickness the Néel temperature increases monotonically
and the magnetic moment near the surface is reduced compared to that of the core, changing the form of the M(T )
curve. When antiferromagnetic films are exchange coupled to each other, as in a multilayer with a nonmagnetic
intervening layer, the surface magnetization of each film increases and the ferromagnetism of odd-numbered
systems is enhanced. These results are shown to be experimentally testable by comparing magnetometry and
neutron diffraction.
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I. INTRODUCTION

The magnetization and ordering temperature of thin mag-
netic films have been studied extensively because of their
technological importance and due to fundamental interest
in new phenomena which emerge at the nanoscale. While
finite-size effects most often reduce the magnetic properties
of thin films, in metallic ferromagnetic (FM) films, with the
exception of Ni on Cu, the magnetic moments at the surface or
interface are larger than in the bulk1–5 due to band narrowing
at the surface and a large density of states (DOS) at the Fermi
level.3 In contrast, antiferromagnetic (AFM) metal oxide films
(MO) have localized magnetic moments and their DOS at
the Fermi level is zero; therefore, the formation of surface
states, and thus the enhancement of surface magnetism, is not
expected.6 This was shown for Heisenberg antiferromagnets,
where the ordering temperature increases monotonically with
increasing film thickness,7 and the surface magnetization is
reduced compared to the film core in the absence of quantum
fluctuations.8

The magnetic properties of oxide antiferromagnetic films
have been increasingly investigated,9–12 especially after the
discovery of exchange bias13 and giant magnetoresistance.14

Oxides of the transition metals Mn, Fe, Co, and Ni are
antiferromagnetic with Néel temperatures of15–18 TN ≈ 120 K
for MnO, 200 K for FeO, 300 K for CoO, and 520 K for
NiO. Below TN, spins are ferromagnetically coupled within
(111) planes of the NaCl structure and antiferromagnetically
coupled to neighboring planes17 and, with the exception of
FeO, the magnetization lies predominantly inside the (111)
plane.17 This magnetic configuration in MO AFM thin films,
in which alternating planes cancel each other out, leads to a
dominance of uncompensated spins, which may be coupled
to the Néel vector or not, in the measured magnetization
of such systems. Recently, this aspect was exploited and it
was experimentally shown that AFM multilayers can be used
as a source of ferromagnetism, arising from uncompensated
magnetization coupled via a lightly doped semiconductor, in
a new type of magnetic semiconductor.19 The findings of that
work motivated this theoretical investigation. Identifying the

mechanisms which govern the magnetization in such systems
is crucial to fully understand and predict the behavior of
exchange biased films and exchange-coupled multilayers of
magnetic semiconductors with uncompensated AFM films.
The magnetization properties in such systems are dominated
by finite-size effects which reduce the magnetic moment
near the surface, thus generating a magnetization profile as
a function of film thickness. While the magnetization profiles
in thin ferromagnetic films have been studied extensively,20–23

the effect of finite size on the magnetization of AFM films is
not known.

In this work we therefore present a theoretical study of
AFM films and multilayers using a simple mean-field model
for a metal oxide in the NaCl structure, where the system
consists of ferromagnetically ordered (111) planes which are
antiferromagnetically coupled to each other. We chose to use
the mean-field method because it is the most suitable approach
for the description phase transitions in systems with many
sublattices, as in the case of the AFM films, where each atomic
plane is treated as a sublattice to obtain the magnetization
profile. Our focus lies on the magnetization profile as a
function of thickness and its impact on the net magnetization
in thin AFM films. While it is intuitive that uncompensated
AFM films, i.e., with odd number of atomic planes, exhibit
nonzero magnetization, in Sec. III it will be seen that the net
magnetization of an uncompensated AFM film is, surprisingly,
not equal to the magnetization of any single uncompensated
plane.

II. THEORETICAL MODEL

Let us consider the Hamiltonian of the system, in which
spins interact with their nearest neighbors, and with an external
field:

H = −1

2

N∑
i

z∑
j

Jij SiSj − h

N∑
i

Si . (1)

The spin S represents the localized total angular momentum,
Jij is the exchange coupling constant between Si and Sj , and
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h is the external field. The sum over i runs to the total number
of spins N and the sum over j runs to the number of nearest
neighbors z of each spin Si .

Considering the sheetwise ordering of MO inside the (111)
planes, we divide the system into alternating planes. In a
system with D planes, each containing Nd ions, the first
term of the Hamiltonian can be broken down to account for
interactions within the same plane d with coordination number
z via exchange constant J and interactions with the spins in
the neighboring planes with coordination number z∗ via an
interplane exchange constant J ∗, which we scale with J , i.e.,
J ∗ = αJ . The Hamiltonian for each plane d then reads

Hd = −1

2

Nd∑
i

⎡
⎣ z∑

j

JSd,iSd,j+
z∗∑
j

J ∗Sd,i(Sd+1,j+Sd−1,j )

⎤
⎦

−h

Nd∑
i

Sd,i . (2)

The Hamiltonian of the entire system is then the sum of
all planes: H = H1 + · · · + Hd + · · · + HD . We simplify the
Hamiltonian in Eq. (2) using the Weiss mean-field approxima-
tion (MFA), i.e., by introducing the magnetization md = 〈Sd〉
which corresponds to the mean field in the dth plane. The
strength of the mean field depends on the number of neighbors,
i.e., z and z∗, which in the ABC stacking of (111) planes in the
NaCl structure is 6 and 3, respectively. The MFA treatment
decouples all the spins and reduces the Hamiltonian to that of
a single spin for each plane:

HMFA
d = Nd

2

[
zJm2

d + z∗J ∗md (md+1 + md−1)
]

︸ ︷︷ ︸
Xd

− [zJmd + h + z∗J ∗(md+1 + md−1)]︸ ︷︷ ︸
Yd

Nd∑
i

Sd,i . (3)

The partition function Z(T ) and the equation of state for
the above Hamiltonian can be obtained after choosing the
type of spins. Heisenberg-type spins have S(S + 1) possible
values and the equation of state for the z projection is
the Brillouin function,5 but low-dimensional systems with
isotropic exchange exhibit no long-range order.24,25 In contrast,
Ising systems have infinite anisotropy, where Ising-type spins
can only take ±S values and the equation of state is of the
form26,27

md = |S| tanh(|S|βYd ) = f (md−1,md,md+1), (4)

with β the inverse temperature 1/T and |S| the absolute
spin value which is set to 2, i.e., the value for Co+2 spins
(μCo+2 ≈ 3.8μB).17 We choose to use Ising spins in our
calculations because CoO behaves more like an Ising system
due to its high anisotropy.11,28,29 Moreover, we scale all the
energy contributions, i.e., the temperature T and the external
field h with the intraplane exchange constant J . For the
interplane exchange we use values of α = −0.5, −1.0, and
−1.5. While the most common choice for α for CoO would
be30 −2 or −3, our choice of parameters is directed towards a
general description and understanding of this type of AFM

system, where the ratio α is the dominant mechanism for
finite-size effects, as will be seen below.

For the order parameters we define the net magnetization
M(T ) of the system and the average absolute value of plane
magnetization |m(T )|:

M(T ) =
D∑

d=1

md (T ), (5a)

|m(T )| = 1

D

D∑
d=1

|md (T )|. (5b)

In the discussion each plane magnetization is normalized to
1 at T = 0, i.e., divided by |S| = 2 which is the magnetic
moment per atom in the plane.

Finally, we derive the ordering temperature of a system
with D = 1 (2 dimensions) and D = ∞ (3 dimensions) by
expanding Eq. (4) for h = 0 and small plane magnetization
(|m| → 0). The two-dimensional system orders at TN = zJS2,
and the three-dimensional system at TN = S2J (z + 2αz∗). The
thickness dependence of the ordering temperature within MFA
is31

TN(D) = S2J (z + 2αz∗)

2

(
1 + cos

π

D + 1

)
. (6)

Considering the ordering temperature of bulk CoO (TN ≈
300 K), and the coordination numbers z = 6 and z∗ = 3, the
exchange constant amounts to J = 12.5/(1 + α) K. This value
corresponds to J = 0.55 meV (for α = 1), which is very close
to results from quantum chemical ab initio calculations for
CoO30 (normalizing their value of 6.5 meV by a factor of 16
due to the use of |S| = 1/2 against our |S| = 2).

We next expand our model to simulate multilayers of
MO films each with D planes, separated by a spacer layer
(S) which allows interlayer exchange interactions. In this
context, the interlayer coupling could be of any nature,
including Ruderman-Kittel-Kasuya-Yosida (RKKY), dipolar,
etc.; for an RKKY-type interaction, as suggested in Ref. 19,
the spacer needs to have sufficient charge carrier density
to facilitate such an interaction, as shown experimentally
for CoO/Al-ZnO multilayers, where the RKKY-type IEC is
mediated by the electrons of the Al dopants.19 In that case,
the interlayer coupling JIEC between two surfaces, or sheets
of spins, oscillates with the spacer layer thickness, and decays
with32 JIEC ∝ e−LS/λ/L2

S, with LS the thickness of the spacer
layer, and λ the material-specific exchange decay length. We
incorporate JIEC in our model by coupling the top and bottom
plane of the film with JIEC, as shown in Fig. 1, effectively
a type of periodic boundary condition. This corresponds to a
stacking of multiple MO films, where the top plane of a film
interacts with the bottom plane of the next one and so on. In
this context of IEC-induced boundary conditions, when the
energy contribution of IEC conflicts with that of J ∗, the unit
cell of the model needs to be doubled, i.e., to account for the
modulation of the exchange constants (see discussion).

In the equation of state this energy contribution has the
same form as that of the interplane exchange J ∗, where the
coordination number is set to 1, which means that Yd [see
Eq. (3)] in the equation of state for the bottom and the top
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FIG. 1. (Color online) Illustration of the layered structure of an
antiferromagnetic film with five planes. Alternating (111) planes of
the NaCl structure are completely filled with metal ions (M) and
oxygen (O) consecutively. The arrows inside the M planes indicate
the alternating direction of the plane magnetization and the red springs
correspond to the interplane exchange coupling J ∗. The simulation
of multilayers is performed by coupling the top and the bottom planes
as indicated by the JIEC bond.

planes in a film will have the form

Y1 = zJm1 + h + z∗J ∗m2 + JIECmD, (7a)

YD = zJmD + h + z∗J ∗mD−1 + JIECm1. (7b)

As with the other energy terms, we scale JIEC with J and try
different values which would correspond to a spacer with a
few monolayers thickness, assuming a constant decay length
λ of 10 monolayers (JIEC = 0.2J and 0.4J ).

The equations of state for all planes [Eq. (4)] must be solved
simultaneously in order to find the magnetization of each plane
at a temperature T and field h, from which we will obtain the
magnetization of the entire film or multilayer. We therefore
need to minimize

E =
D∑

d=1

[md − f (md−1,md,md+1)]2 = 0. (8)

This is done numerically by iterating all plane magnetiza-
tions by one of three possible changes, +δ, 0, or −δ, at the same
time and checking which set of changes leads to the minimum
of Eq. (8). This means that for D planes, D equations of state
need to be solved at the same time, and each step towards the
solution contains 3D possibilities, which are all considered at
each temperature step.

The accuracy of the solution of Eq. (4) depends on the
step size δ and the value of E. In our simulations we vary the
magnetization of each plane by δ = 10−5|S| and require that
E � 10−6 is satisfied. This provides a very high resolution for
the magnetization values and a high accuracy for the solution
of the equations of state.

Using this procedure we simulate M(T ) curves for films
with various thicknesses (D), interplane (J ∗), and interlayer
(JIEC) exchange constants.

III. RESULTS AND DISCUSSION

We calculated the plane magnetization of systems with D =
1 to 11, considering free films, i.e., with JIEC = 0. For systems
with even number of planes, all magnetization contributions

are canceled out because the system is fully symmetric. For
odd number of planes, however, there is one uncompensated
plane, which results in a nonzero magnetization of the system,
as expected according to Néel.33 As will be seen later, however,
the net magnetization is not equal to the magnetization of any
single uncompensated plane.

Figure 2(a) shows the net film magnetization M(T ) (solid
lines) and the average absolute value of plane magnetization
|m(T )| (dashed lines) of systems with odd number of planes
as a function of temperature. For the simplest system with
one plane (D = 1), there is no interplane exchange and the
system represents a typical MFA Ising ferromagnet with
ordering temperature TN = 150 K. With increasing D, the
ordering temperature increases monotonically and approaches
saturation after a few planes [see Fig. 2(b)], following Eq. (6).
For the system with D = 11 the ordering occurs at TN(11) =
0.983TN(∞).

This behavior of the ordering temperature is very simi-
lar to that of Heisenberg-type ferromagnetic EuO films,5,22

and comparable to experimental observations in CoO/SiO2

multilayers11,12 and CoO/MgO and NiO/MgO superlattices.10

The experimental values for the ordering temperature of CoO
with a thickness of 6 and 10 atomic planes in Ref. 10 were
255(5) K and 275(5) K, respectively, which is in very good
agreement with the MFA predicted values of 0.95TN(∞) ≈
270 K and 0.98TN(∞) ≈ 280 K, for the corresponding
thicknesses (considering that the bulk value of that sample
was 285 K). The monotonic increase of TN differs, however,
from that of metallic FM films, where the Curie temperature
sometimes exceeds the bulk value due to the effect of surface
electronic states,34–37 which marks a clear distinction between
metallic and oxide magnets.

Figure 2 further shows that with increasing thickness
the shape of the M(T ) curve departs strongly from the
Brillouin-like shape of D = 1 and the difference between
net film magnetization M(T ) and average absolute plane
magnetization grows surprisingly large (up to 40% for D = 11
at T = 3TN/4), due to the different magnetization of different
planes. As an example, for D = 11 the magnetization starts at
a plateau for low temperature and then decreases in a nearly
linear fashion with increasing temperature, until it reaches TN.

The changes in M(T ) become increasingly smaller with
increasing D and show no significant changes for D � 7. This
becomes clear if we compare the normalized M(T ) curves of
D = 7, 9, and 11, which have the same shape [see Fig. 2(c)].
The evolution of M(T ) with D is comparable to the evolution
of the ordering temperature, which approaches saturation for
D � 7. This means that if we keep increasing D the M(T )
curve will not change further, and the ordering temperature
will eventually reach the bulk value.

While it may seem counterintuitive that the thinnest
film behaves most like a mean-field magnet [with a
Brillouin-function-like M(T )], this is due to a combination
of finite-size effects plus the fact that this is an AFM where the
magnetization of almost all planes is compensated. The effect
of finite size is further investigated by observing the individual
plane magnetizations. Figure 3 shows the plane magnetization
for systems with D = 4, 5, 10, and 11 as a function of
temperature. As seen in the figure, the plane magnetization
at low temperature (T � 0.4TN) is saturated for all planes,
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FIG. 2. (Color online) (a) Magnetiza-
tion of systems with odd number of mono-
layers as a function of temperature. Solid
lines correspond to the net film magnetiza-
tion M(T ) and dashed lines correspond to
the average absolute plane magnetization
|m(T )|. (b) Evolution of the ordering tem-
perature TN as a function of D; the solid
line corresponds to Eq. (6). (c) Normalized
M(T ) curves as a function of T/TN. With
increasing D the M(T ) curve departs from
the Brillouin-like shape and becomes nearly
linear in the range 0.5 � T/TN � 1.0.

but for intermediate temperatures (0.4TN � T � 1.0TN) it
differs strongly between surface and core planes. The surface
planes have the weakest magnetization because they have
a smaller number of interactions compared to the core of
the film. The planes directly below the surface also have
reduced magnetization because they are affected by the weaker
magnetization of the outer planes. Planes which are two
or more monolayers below the surface also exhibit some
differences, which are however increasingly small. Similar
magnetization profiles have been seen for antiferromagnetic
Heisenberg EuTe(111) films, which exhibit strong finite-size
effects, notably near T ≈ 0.5TN.38

For even-numbered systems [see Figs. 3(a) and 3(c)] all
the plane magnetizations are canceled out because the system
is fully symmetric: equal number and equal absolute value
of magnetization points in positive and negative direction, re-
spectively. For odd-numbered systems, however [see Figs. 3(b)
and 3(d)], the surface planes add to each other, the next
two add to each other and subtract from the top two, etc.,
generating the net film magnetization seen in Fig. 2. The net
magnetization, notably, is not equal to the magnetization of any
single uncompensated plane, but is lower at all intermediate
T . This is because the magnetization in the positive direction,
i.e., in the outer planes, changes differently with temperature
compared to the magnetization in the negative direction, i.e.,

in the core planes, thus resulting in a strongly reduced and
modified M(T ) curve.

We now test the effects of the interplane exchange
coupling J ∗ by simulating the system with D = 11 for
weaker (α = −0.5) and stronger (α = −1.5) coupling, and
also consider ferromagnetic cases with α = +0.5, +1.0,
and +1.5.

Figure 4 shows the comparison of M(T ) curves for the
six different J ∗ values, (a) showing the AFM and (b) the
FM case. Considering first the AFM (J ∗ < 0) results, with
decreasing α ratio the shape of the M(T ) curve changes and
the curve becomes closer to the Brillouin-like shape of the
MFA ferromagnet seen in the D = 1 film. The reason for this
behavior is that, with decreasing strength of J ∗, the difference
in energy between near-surface and core planes is reduced. In
the limit of J ∗ → 0, the system with D = 11 will behave as
11 decoupled ferromagnets with an ordering temperature of
the two-dimensional (2D) system and a Brillouin-like M(T )
curve. In contrast, if we increase J ∗ the energy difference
becomes larger: near surface planes are increasingly weaker
compared to the core planes and the M(T ) curve is modified
further.

These observations are also valid in the ferromagnetic
case [Fig. 4(b)]. The individual plane magnetizations m(T )
[see inset to Fig. 4(b)] of a ferromagnetic film with D = 11
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FIG. 3. (Color online) Plane magnetization of the systems with (a) D = 4, (b) 5, (c) 10, and (d) 11 as a function of temperature. The
surface planes [e.g., 1 and 4 or 5 in (a) and (c), and 1 and 10 or 11 in (b) and (d)] have weaker magnetization compared to the core planes.
For even number of monolayers the magnetization is fully symmetric (modd = −meven) and the net sum M(T ) is zero (not shown), whereas for
odd-numbered systems the surface magnetization is uncompensated and results in a net nonzero magnetization (modd 	= −meven), shown as a
solid line marked M(T ) in the right panels. Note that M(T ) is lower than the magnetization of any single uncompensated plane at intermediate
temperatures.

(with α = 1) are exactly the same as the individual plane
magnetizations |m(T )| of the AFM system shown in Fig. 3(d).
The ordering temperature of the FM is also the same as in the
AFM case, but since all plane magnetizations are positive, the
shape of the net magnetization M(T ) for D = 11 is only very
slightly modified from the Brillouin form of the D = 1 limit,
in contrast to the case of AFM systems, and it is not strongly
affected by the α ratio.

In the next step, we simulate multilayers of antiferromag-
netic films each with D = 11 separated by nonmagnetic layers
by using a single D = 11 film and turning on an interlayer
exchange coupling JIEC, as shown in Fig. 1, and investigate its
effect on the behavior of the system. We assume that the IEC
only acts on the surface planes, consistent with the assumption
throughout this paper of nearest neighbor exchange only, and
with the nature of the superexchange coupling of MO AFM’s
given the insulating nature of the MO layers. We test its effects
for JIEC = 0.2J and 0.4J , keeping α = −1 for this set of
simulations.

Figure 5 shows the net magnetization M(T ) as a function of
the reduced temperature. The black solid line shows M(T ) of
the uncoupled film (JIEC = 0). The ordering temperature does
not change with increasing interaction energy, but the shape of
the M(T ) curve changes markedly. Positive coupling between
films increases the magnetization of the surface planes and
reverses the effects of finite size discussed above. In fact,
if we consider the, unrealistic, limit of JIEC = |z∗J ∗|, the
periodic boundary condition is complete and finite-size effects

disappear: all planes have exactly the same magnetization and
there is no distinction between surface and film core because
all planes have the same number of bonds with the same bond
strength, which corresponds to the case of D → ∞.

For negative JIEC the exact same effect occurs; the near-
surface magnetic moments are enhanced. For this calculation
we used two films instead of one, and coupled the bottom
plane of the first to the top plane of the second, because the
negative IEC doubles the unit cell of the system. In this case
the net magnetization of each film is antiparallel to that of
its two neighboring films in the multilayer (data not shown),
resulting in a zero magnetization of the multilayer, as seen
experimentally for CoO/Al-ZnO multilayers.19

For systems with an even number of atomic planes, the
effect of IEC (whether positive or negative) is the same,
i.e., the magnetic moment near the surface at intermediate
temperatures is enhanced. In this case, positive or negative
IEC affects the direction of individual planes at the top and
bottom of each layer, but the net magnetization of each film
and in turn of the multilayer, however, is always zero because
all individual plane magnetizations cancel each other out.

In addition to IEC, an external field can influence the
ordering of an AFM film or multilayer. When we apply an
external field h on the AFM films, the shape of the M(T ) curve
is drastically changed and the ordering is strongly affected:
the onset of magnetization at TN, which remains unchanged,
becomes increasingly smeared with stronger h (see inset to
Fig. 5) due to paramagnetic effects above TN. The presence
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FIG. 4. (Color online) Net magnetization of the system with
D = 11 as a function of temperature. The three different calculations
correspond to cases where α = J ∗/J = −0.5 (dash-dotted blue line),
−1.0 (solid black line), and −1.5 (dashed red line) for the AFM case
and J ∗/J = +0.5, +1.0, and +1.5 for the FM case. The inset to
(b) shows the magnetization of several important planes in the FM
film. The near-surface magnetic moments in FM systems are reduced,
in exactly the same manner as in the AFM case.

of the external field, which acts upon all planes equally,
increases the magnetization of odd-numbered planes (which
have positive m), and decreases that of the even-numbered
planes (which have negative m). Considering that the outer
planes have weaker coupling to the core of the film, they are
more susceptible to the external field. The magnetic moment
of the surface planes thus increases more, compared to that of
the core planes. This change in the system corresponds to a
reversing of the finite-size effects discussed above.

We continue by suggesting how our findings may be
observed experimentally by comparing the net magnetization
M(T ) of AFM films to the average absolute plane mag-
netization. The M(T ) curves shown in this paper represent
theoretical experiments, where the vectorial sum of the plane
magnetizations is projected onto a measurement axis, like in a
magnetometer with small external fields. In other experiments,
however, such as neutron diffraction, the magnetic intensity is
the average of the absolute plane magnetization Mneutron(T ) =
|m(T )|. Figure 2 showed that M(T ) 	= |m(T )|; therefore, a

FIG. 5. (Color online) Net magnetization per film for systems
with D = 11 and J ∗ = −J as a function of temperature with different
strengths of IEC. With increasing IEC strength M(T ) is enhanced;
this is because the IEC acts on the surface planes, which in turn affect
the near-surface planes. The inset shows the effect of the external
field h on the M(T ) curve.

comparison of neutron diffraction intensity and low applied
field magnetometry M(T ) should show a difference for thin
film AFM’s (note that it is important that the magnetometry not
be dominated by ferromagnetic impurities or second phases,
or by the usual paramagnetic AFM contribution). In fact, this
was seen in CoO multilayers,19 which exhibited a somewhat
different temperature dependence in M(T ) measured in a
magnetometer and the normalized neutron diffraction data,
most visible near T = 0.5TN. Such a comparison can therefore
be used to estimate the finite-size effects including surfaces and
grain boundaries in metal oxide AFM films and multilayers
and probe the extent to which surface magnetization is
reduced in such low-dimensional oxide antiferromagnets.
Most importantly, the inequality M(T ) � |m(T )| is valid for
any AFM film regardless of the interaction parameters in the
system. For any set of interaction strengths J > 0 and J ∗ < 0
the net magnetization of an AFM film will always be lower
than the average plane magnetization, or the magnetization of
any single uncompensated plane.

We note finally that the simulations in this work were
done assuming perfect crystalline planes with full atomic
occupancy. In the case of defects or grain boundaries in
real systems the number of uncompensated spins increases
drastically and may produce similar effects as the ones found
here. In addition, however, uncoupled spins, e.g., on rough
surfaces or corners, can exhibit paramagnetic behavior which
can strongly influence the M(T ) curve of the films in the
presence of an external field.

IV. CONCLUSIONS

We have simulated antiferromagnetic thin films with
thicknesses of up to 11 crystalline planes using mean-field
approximation. Our study showed that films with an even
number of planes have zero magnetization at all temperatures,
whereas odd-numbered systems exhibit ferromagnetism due
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to unequal magnetization of near surface layers, where the
net magnetization of the film is lower than that of any
single uncompensated plane at intermediate temperatures.
With increasing film thickness the Néel temperature increases
monotonically and reaches the bulk value after a few planes,
while the form of the M(T ) curve is dramatically changed
due to finite-size effects at near-surface planes which dom-
inate AFM films despite having little effect on FM films
due to compensation. The difference between near-surface
magnetization and the core of the film changes strongly
with interplane coupling: with smaller J ∗ it becomes smaller
because the energy difference between near-surface and core
planes becomes lower, and vice versa. We also found that
turning on a positive interlayer exchange coupling inhibits
these finite-size effects and promotes ferromagnetism in odd

numbered systems by increasing the surface magnetization,
whereas negative IEC results in zero net magnetization due to
full cancellation of magnetic moments in a multilayer. Finally,
we showed how these effects can be observed experimentally
by comparing temperature-dependent magnetization measure-
ments and neutron diffraction experiments.
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