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Detection of ground states in frustrated molecular rings by in-field local magnetization profiles
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It is demonstrated by means of exact numerical methods that the ground state of nine-membered frustrated
homometallic chromium-based molecular rings with a single bond defect can be unambiguously determined
by the in-field local magnetization profiles, which exhibit characteristic patterns. The strength of the coupling
corresponding to the defect can be determined by both total and local magnetization measurements on single
crystals with the field perpendicular to the ring. This approach is illustrated with a recently synthesized chromium
ring Cr9Cl2, which is experimentally characterized by low-temperature magnetic measurements and analyzed by
means of the microscopic quantum model. The strength of the coupling corresponding to the defect is estimated
by fitting the magnetic susceptibility of a powder sample and independently confirmed from the experimental
intersection point of total magnetization profiles preserving the typical values of the remaining parameters, which
are well established for known chromium rings.
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I. INTRODUCTION

Molecular magnets have been recently intensively investi-
gated in the hope to engineer a quantum computer1–3 or an
efficient information storage device,4 and their role in the new
field of spintronics5–7 is constantly increasing. These materials
are also very interesting from purely scientific point of view.
Because of a well defined structure, a small size, and lack
of intermolecular interactions between magnetic molecules,
various quantum phenomena, such as, e.g., a discrete energy
spectrum,8 quantum tunneling of magnetization,9,10 or Rabi
oscillations11 can be precisely detected and analyzed.

Both in pure and applied investigations, the determination
of a quantum state of a molecule and its changes caused by
external stimuli or by internal structure modification plays a
crucial role. Thus finding unambiguous experimental manifes-
tations of quantum states of a magnetic molecule may be very
helpful in the precise determination of parameters in a model
Hamiltonian or in selecting the right molecule for practical ap-
plications. However, such a process is usually long and expen-
sive, requires the use of complex techniques,12,13 and implies
the necessity of making approximations and fitting the experi-
mental data. Therefore it would be desired to develop a method
that enables direct identification of quantum states and crucial
microscopic parameters by means of simple measurements.

For the application in quantum computing, the minimum
requirement is that a molecule is able to carry a qubit, i.e., the
ground state of a molecule should be a doublet well separated
from the lowest excited state. The most promising magnetic
molecule having this property is the Cr7Ni ring14,15 in which
the unfrustrated doublet ground state is generated by doping
the homometallic Cr8 ring with a Ni ion. However, like in an
antiferromagnetic triangle,16 a doublet ground state can also
be obtained in odd-membered chromium-based antiferromag-
netic rings13,17 by the effect of geometric frustration.

In this paper, we address the problem of magnetic field
driven identification of the quantum ground states and di-
rect estimation of the single bond defect strength in the

frustrated nine-membered s = 3/2 rings, which can have
an S = 1/2 ground state and thus potentially can find ap-
plication in quantum information processing. The approach
is demonstrated for a recently synthesized molecular ring
[iPr2NH2][Cr9F9(O2CtBu)17Cl2] (in short Cr9Cl2).

By fitting the magnetic measurements, it is shown that
this molecule can be very well described by the model of
a quantum spin ring with a single bond defect17 and its
behavior is characteristic of a second type of frustration.13

We present numerical evidence that the measurements of total
and local magnetization profiles in magnetic field can provide
directly unambiguous information about ground states and the
strength of the bond defect. All the theoretical calculations
are performed by means of two accurate numerical methods:
quantum transfer matrix (QTM) and exact diagonalization
(ED).18–22

II. THE MOLECULE AND THE MODEL

The structure of Cr9Cl2 is presented in Fig. 1. The two
(orange) chlorine ions replace one of two pivalic bridges con-
necting a chromium pair in the molecule and in this way make
the bond defected, i.e., weaker than the remaining Cr-Cr bonds.
The chemical synthesis is similar to that of other members
of the Cr9 family, which is described elsewhere.13 Magnetic
measurements have been performed on a Quantum Design
MPMS-XL SQUID magnetometer. The magnetic susceptibil-
ity has been obtained in the dc magnetic field equal to 0.1 T.

It is assumed here that the spectroscopic and magnetic
properties of the Cr9Cl2 molecule can be modeled by the
Hamiltonian with a single bond defect:

H =
8∑

j=1

J sj · sj+1 + αJs1 · s9

+
9∑

j=1

D
(
sz
j

)2 − gμBB ·
9∑

i=1

si, (1)
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FIG. 1. (Color online) The structure of the Cr9Cl2 molecule. The
colors (online) stand for the following ions: green Cr, yellow F, orange
Cl, and red O. The rest of the structure is simplified.

where J and J ′ = αJ stand for the exchange interactions
between neighboring chromium ions, with the latter corre-
sponding to the unique bond affected by the attached chloride
ions; sj stand for s = 3/2 spin operators and D is the single ion
anisotropy. The coefficient α is referred to as the bond-defect
parameter. If the magnetic field B is present, the Zeeman term
enters the model (1) with the isotropic factor g = 1.98 and μB

standing for Bohr magneton.

III. RESULTS

The model (1) has a symmetry with respect to the reflection
in the plane perpendicular to the ring and intersecting its
center and site 5. The exact eigenvectors conserve the total
z component m of total spin and are invariant (symmetric) or
change the sign (i.e., are antisymmetric) under the reflection
operation. The eigenstates characterized by the value m are
distinguished with respect to their transformation properties by
the additional quantum number r equal to s or a, respectively.
If no magnetic field is applied, the eigenvalues do not depend
on the sign of m and are double degenerate, unless there is
an accidental degeneracy, so that we can denote them by a
quantum number M = |m|.

The exact ground-state phase diagram in α and D/J param-
eter space is sketched in Fig. 2. The states are characterized
by the quantum numbers Mr . The boundary between the
regions with the second (above) and the third (below) type
of frustration is drawn by the continuous curve in Fig. 2
and defines the critical line αc(D/J ). The intersection of two
energy levels corresponding to the ground states 1/2a and
1/2s at α = 1 leads to the fourfold degeneracy characteristic
of the first type of frustration. Here, we refer to the types of
frustration proposed in Ref. 13.

In Fig. 2, the geometrically unfrustrated region spans below
the horizontal dotted line α = 0 and the region corresponding
to the third type of frustration is located above this line and is
limited from above by the solid line. The ground states 3/2s

and 1/2s found in these regions come from the same S = 3/2
multiplet split by anisotropy.

In our accurate approach to the Cr9Cl2 molecule, the values

J/kB = 16.6 K and D/kB = −0.34 K

are fixed and taken from the INS and EPR experiments12,23,24

on similar compounds of the Cr8 family. Such a choice is
motivated by the almost identical structure of the Cr-Cr bonds
and by the similar geometry of the entire molecule. It has
also led to good results in other works.12,13 Possible small
deviations from the values chosen above have minor influence
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FIG. 2. B = 0 ground state as a function of anisotropy D/J and
α. The diamond marks the coordinates of our theoretical fit for Cr9Cl2.
The open circle represents a sixfold degenerated ground state, which
appears at αc = 0.154. In the inset, the gap between the ground-state
doublet 1/2a and the first excited state 3/2s or 1/2s is drawn as a func-
tion of α, for D/J = −0.02, which is the value obtained for Cr9Cl2.

on the results of our paper as exemplified by the influence
of anisotropy D on the phase diagrams (see Figs. 2 and 4).
By fitting the experimental susceptibility data presented in
Fig. 3 with a small temperature independent correction (0.001
added to calculated susceptibility to account for temperature
independent magnetism), the estimate of the bond-defect
parameter is found and its value

α = 0.52 ± 0.02

is marked in Fig. 2. Cr9Cl2 system with α = 0.52 is not
bipartite and its behavior is affected by the second type
of frustration.13,25 Since the sample is polycrystalline, we
had to take into account also transverse (with respect to
anisotropy) components of susceptibility and magnetization,
which could be calculated accurately only by means of the
QTM technique. The details of this computational method
can be found elsewhere18–22 and its accuracy is demonstrated
in Sec. IV.

The intersection point of the powder magnetization curves
(see Fig. 3) is a witness to the M = 1/2 frustrated ground
state since the powder magnetizations at this point attain a
value close to 1, which is equal to gm. In Fig. 3, we also draw
the theoretical single-crystal magnetization curves for various
temperatures in the field applied along the z axis, which is
perpendicular to the ring. These curves intersect each other at
Bi = 4.9, i.e., in the middle of the first sharp magnetization
step (T = 0), which ends at the critical field Bcr = 9.81 T.
The theoretical estimate Bi = 4.90 T is in fact calculated
as a limit (for T → 0) of bi(T ), defined as the intersection
field of the magnetization calculated in temperature T and the
magnetization in T = 0 (see the inset in Fig. 4). It agrees
well with the experimental intersection point Bex = 4.6 T
corresponding in fact to the value of bi(T ) for T between
2 and 4 K (inset in Fig. 4). We have checked that the relation

Bi = 1/2Bcr
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FIG. 3. (Color online) Powder susceptibility (top) and magneti-
zation (bottom) as functions of temperature and magnetic field. The
thick and thin lines represent the powder and single-crystal data,
respectively.

is fulfilled also in the 3/2s phase and that the size of the step
Bcr depends on α. The latter finding implies that given the
theoretical dependence Bcr(α), the bond defect parameter can
be directly estimated from the experimental value of Bi . For
the fixed value D/J = −0.02 corresponding to Cr9Cl2 (see
Fig. 2), this crucial line [Bcr(α)] separates the 1/2a and 3/2s
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FIG. 4. (Color online) Critical line Bcr for three different ratios
D/J . The inset presents convergence of bi(T ) (α = 0.52) in low
temperatures.

FIG. 5. Ground states Mr as a function of magnetic field B

and α. The histograms embedded in the diagram represent local
magnetization profiles.

phases in the diagram plotted in Fig. 5. Its precise position
depends on the ratio D/J . Yet, for the values of D and J

found in the literature on chromium rings,26 this ratio variates
roughly between −0.027 and −0.015. Thus leading to a very
small variation of Bcr (see Fig. 4). As a result, the value of α

can be estimated with a not worse precision than that attainable
within the fitting procedure even if we assume some reasonable
variation of the other parameters in Hamiltonian (1).

Though the critical lines separating the phases 1/2a and
3/2a as well as 1/2s and 3/2s are too steep to be used for
determination of the parameter α from the total magnetization
measurements they can be used at least to set the bounds for
its value. Other critical lines (marked by solid lines in Fig. 5)
separating various ground states induced by magnetic field
and classified by quantum numbers Mr can also be used to
determine the bond-defect parameter, given their dependence
on α is strong enough and that one has in disposition a
sufficiently strong magnetic field.

However, much more information can be provided by the
local single-crystal magnetizations defined as

mi = 〈
sz
i

〉
, i = 1, . . . ,9

with 〈· · ·〉 standing for thermal average.
The typical ground-state profiles of local magnetizations

are sketched in Fig. 5 as a set of histograms. The external
positions correspond to the sites 1 and 9 connected by the
defected bond. The upper part of the pattern demonstrates
the local spin components oriented along the field (applied in
the zth direction) and the lower part—the spin components
oriented in the opposite direction.

The data presented in Fig. 5 have been obtained by means
of ED for T = 0. For a given phase and fixed α, the patterns
do not change with increasing field [see Fig. 6(a)]. They
change abruptly at the critical point and remain constant again.
If the field is fixed and α is varied the local magnetizations
change continuously within a given phase and abruptly at the
phase boundaries (see Fig. 7). However, in the phases 1/2s and
1/2a, the signs and relations between local magnetizations
(i.e., their sign and order) remain the same independent of
particular values of α and B [see Fig. 7(a)]. Thus local
magnetization patterns in these phases can be considered
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universal and used to identify directly these two quantum
states.

Within the other phases, the relative values of local
magnetizations and/or their signs change, which can be seen
in panels (b) and (c) of Fig. 7. For example, in Fig. 7(c) in
the phase 5/2s, one can observe a change of sign of m2 and
m4 and in panel (b) in both 3/2s phases there are intersections
of local magnetization profiles. Thus, instead of one pattern,
one can assign to each of these phases a set of few patterns
characteristic for a given phase.

This method leads to unambiguous results given the
measurement is done in sufficiently low temperature. At higher
temperatures (above 0.5 K), the mixing of states due to thermal
fluctuations leads to appearance of different patterns within a
given phase even if α is fixed (see Fig. 6).
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FIG. 7. (Color online) Local magnetizations at T = 0 as a
function of α for three different fields B = 5, 13, 18 T. Vertical
doted lines separate different ground-state phases.

Thus by measuring experimentally local magnetizations,
one can directly determine the quantum state of a molecule.
It is important to notice that what matters is the sign
and the relative magnitude of local magnetization moments.
Therefore even not very precise measurements can be used to
determine unambiguously the quantum state of a frustrated
molecule. This information cannot be inferred from the
measurements of the total magnetization as there are different
quantum states having the same total magnetization, e.g., 3/2s
and 3/2a.

Besides, the local magnetization patterns provide also the
estimates of the bond-defect parameter α and the coupling
J ′ (if the value of J is known) since their change can be
used to detect positions of critical lines in Fig. 5. The critical
field Bcr along the transition line between the phases 1/2a

and 3/2s gives directly the value of α whereas along the
remaining transitions provides the bound for, e.g., if the
transitions between the phases 1/2a and 3/2a or 1/2s and
3/2s are observed, the value of α can be then estimated as
0.671 � α � 1 or α � 1, respectively.

IV. DISCUSSION

As it has been already mentioned, our theoretical results
are numerically exact. Therefore we can account for the
effect of anisotropy irrespective of its value. For magnetic
field parallel to the anisotropy axis, Hamiltonian (1) is
diagonalized without any approximation. For transverse field,
ED is impossible (hard) due to the limited computer memory.
Then, we use the QTM technique, which, though based on
the Suzuki-Trotter formula, can provide results with arbitrary
accuracy since we can reach the asymptotic quantum limit for
any temperature considered in this paper. Figure 8 presents
the convergence (with the Trotter index m → ∞) of the QTM
approximants calculated in transverse field to the exact values
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FIG. 8. (Color online) QTM approximants of the x and z

projections of the total magnetization for Cr7Cd (J = 15.3 K,
D = −0.31 K, T = 0.4 K, B = 20 T, θ = 5.5◦) and Cr9Cl2 (J =
16.6 K, α = 0.52, D = −0.34 K, T = 2 K, B = 6 T, θ = 0) as a
function of the Trotter index m. The magnetic field is applied in the
x-z plane and forms the angle θ with the z axis, which is perpendicular
to the ring. The inset represents the enlarged part of the main figure.
The lines are drawn to guide the eye.
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obtained by ED. These results of

Mx =
7∑

i=1

sx
i and Mz =

7∑

i=1

sz
i

were achieved for the model of a smaller system Cr7Cd
[corresponding to α = 0 and the total number of spins equal
to 7 in Hamiltonian (1)], for which ED is feasible also in
the transverse field. In practice, it is enough to extrapolate
the QTM results calculated for sufficiently large values of m

since it is known27 that then the QTM approximants depend
linearly on 1/m2 (inset in Fig. 8). The particular value of
m at which this asymptotic linearity appears depends on the
calculated physical quantity, temperature, and the size of
the system considered. For the Cr9Cl2 molecule, we found
that for the lowest temperature accessible in the experiment,
the asymptotic region begins already at the Trotter index
m = 10 (see Fig. 8). Therefore we could safely extract all the
thermodynamic quantities from the extrapolations obtained
for m > 10, as in higher temperatures, the linear convergence
is evident for even smaller values of m.

At this point, we would like to discuss the experimental
verification and consequences of our findings. As to the
experimental determination of the Bcr and the α values, it has
been achieved here in the powder magnetization measurement
because of the weak anisotropy (D/J ∼ 0.02). The estimate
Bex = 4.6 T of Bi is found directly from the coordinates
of the experimental intersection point in the lower panel of
Fig. 3. This implies Bcr = 9.2 T and by referring to Fig. 5
one gets α ∼ 0.49 consistent with α = 0.52 obtained from
the fitting procedure. Using a higher magnetic field than in
our experiment, the value of Bcr can be directly measured for
T = 1 K (see the vicinity of the magnetization step in Fig. 3).

We emphasize that standard susceptibility and magnetiza-
tion based fits may give ambiguous results. The proposed by
us analysis of the magnetization intersection point and local
magnetization histograms provides a new method to verify the
correctness of the model parameters.

The idea of determining the ground states and the coupling
of the defected bond by means of simple magnetic measure-
ments can also be applied to other systems, e.g., Cr8Ni, which
has been analyzed within the fitting-based approach,28 or to
odd-membered systems of different size.

The local magnetizations can be observed experimen-
tally. They were measured for the molecule Cr7Cd in the
NMR experiment29 and for magnetic atoms adsorbed onto
a nonmagnetic surface using spin-resolved scanning tunneling
spectroscopy carried out up to 12 T.30 All these mentioned
above experimental techniques give sufficiently accurate
results to be compared with the histograms calculated by
us. The entire field range depicted in Fig. 5 is experi-
mentally accessible.31

The compound Cr7Cd is the ideal experimental realization
of the geometrically unfrustrated ring with 7 spins and α = 0.
The profiles observed in Ref. 29 agree with those in Fig. 5
for α = 0 and are nothing but the first experimental pattern
revealing the 3/2s state.

Our patterns representing the quantum spin states are given
for T = 0. As can be seen in Fig. 6, they remain practically
unchanged in temperatures below T = 0.5 T except in the very
close vicinity of the phase boundaries and B = 0.

The energy gap � between the ground-state doublet 1/2a

and the first excited states (3/2s for α � 0.343 and 1/2s for
α � 0.343) depends on α and is plotted in the inset of Fig. 2
for D/J = −0.02. Its value for Cr9Cl2 (α = 0.52) amounts
to 5.01 K and is lower than that for the Cr7Ni molecule
(�/kB ∼ 13 K).14 The maximal magnitude of the energy
gap �max/kB = 7.46 K is obtained for α = 0.34. We note
that the almost maximal energy gap can be observed in a
similar Cr9F11 compound,13 which can be modeled by the same
Hamiltonian (1) and yields approximately α = 0.38, which is
close to the optimal α = 0.34.

V. CONCLUSIONS

In conclusion, we have demonstrated that the local single-
crystal magnetization profiles identify unambiguously the
quantum ground states in the frustrated odd membered
chromium ring with a single bond defect. Referring to the
appropriate line in the numerically exact phase diagram (see
Fig. 5), both these profiles and the infield total magnetization
measurements provide also direct estimates of the coupling
corresponding to the defected bond. Each of the phases 1/2s
and 1/2a are characterized by only one pattern, whereas the
remaining phases allow few different patterns.

We have characterized the Cr9Cl2 molecule as a ring with a
single defected bond and have found its strength independently
by fitting magnetic susceptibility and from the intersection
point of the experimental magnetization profiles. As to the
value J = 16.60 K of the coupling of the regular bonds, it was
also a subject to modifications, which have not led to a better fit,
however. The energy gap between the ground-state doublet and
the first excited state is relatively small (5.01 K), which limits
application of Cr9Cl2 in quantum computing. However, this
gap can be increased to 7.46 K by proper chemical engineering
of the molecule resulting in the weaker bond 1–9.
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