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Itinerant ferromagnetism with finite-ranged interactions
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Quantum fluctuations are of central importance in itinerant ferromagnets; when modeled by a homogeneous
electron gas with contact interactions, fluctuations deliver a rich phase diagram featuring a first order
ferromagnetic transition preempted by a spin spiral and a paired density wave. In this work we develop the
formalism to analyze the effects of fluctuations with a realistic screened Coulomb potential. The finite-ranged
interaction suppresses the tricritical point temperature of the first order ferromagnetic transition, bringing theory
into line with experiment, while retaining the exotic spin spiral and paired density wave. In an ultracold atomic gas
a finite-ranged interaction damps the competing molecular instability, permitting the observation of ferromagnetic
correlations.
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Metallic systems in the vicinity of second order phase
transitions display remarkable quantum critical phenomena.1

However, in several metals2 quantum criticality gives way
to a first order transition,3–7 or spatially modulated magnetic
order,8–10 or a p-wave superconducting instability.11–15 A
generic phase diagram for many metallic ferromagnets has
emerged containing a first order magnetic transition with
nearby instabilities into exotic phases.2 A variety of techniques
have emerged to model ferromagnets including analytical
treatments of the Hubbard model (for a review see Ref. 16);
numerical modeling with density functional theory (DFT)17–19

and dynamical mean field theory20–22; a Stoner model with
a modified band structure23; or a homogeneous electron gas
(HEG) with fluctuation corrections.24–34

With several contrasting tools being applied to the system
it is unclear whether the emergence of exotic phases are
driven solely by electron-electron interactions16,22,24–28,30–34

or whether it is essential to also consider electron-ion
interactions18,23 and orbital physics in the form of Hund’s
rule couplings.20 One tool to include band structure effects is
DFT. Standard implementations are based on a local density
approximation (LDA) that neglect gradient terms in the free en-
ergy functional. However, gradient terms are vital for electron-
electron interactions to drive the spatially modulated magnetic
order or p-wave superconductivity observed in experiment.3–15

It has been shown that the minimal model of a homogeneous
electron gas with contact interactions contains gradient terms
that deliver the generic phase diagram seen in many metals
around ferromagnetic criticality2,34 containing a first order
transition,24–28,30 a nearby spin spiral phase,24,26,27,31 a nematic
phase,32 and a p-wave superconducting instability.33,34 The
analysis develops an effective long wavelength description
for just the conduction band electrons. However, there is
a significant discrepancy: Experiments typically show a
tricritical temperature of Tc ≈ 0.02TF

9,10,35 (in Sr3Ru2O7),
whereas this minimal Hamiltonian predicts Tc ≈ 0.3TF.24 Here
we demonstrate both analytically and numerically that this
discrepancy can be resolved by using a realistic screened
Coulomb potential rather than the ubiquitous contact potential.

A cold atom gas presents an alternative forum to ex-
plore the minimal Hamiltonian of fermions interacting with
repulsive contact interactions. Attempts to observe itinerant

ferromagnetism in a cold atom gas36–41 have been frustrated
by a competing instability to a molecular bound state.42

Motivated by the suppression of pairing in a narrow Feshbach
resonance,42 here we demonstrate how a finite interaction
range removes pairing in a region of stable ferromagnetic
order.43

In this paper we study itinerant ferromagnetism in a ho-
mogeneous electron gas with a screened Coulomb interaction.
We extend an analytical fluctuation correction formalism that
has already delivered a phase diagram containing a first order
ferromagnetic phase transition,25 spiral phase,24 and p-wave
superconducting instability34 to now include a finite-ranged
interaction and calculate the phase diagram. For the analytical
formalism the finite-ranged interaction simply renormalizes
the interaction strength and so suppresses the tricritical point
temperature. Second, we perform complementary quantum
Monte Carlo calculations to verify the zero temperature
behavior. Finally, we focus on the cold atom gas with finite-
ranged interactions that displays ferromagnetic order while
circumventing the competing pairing process.

I. FORMALISM

To study itinerant ferromagnetism in the presence of a finite-
ranged interaction we focus on the idealized Hamiltonian

Ĥ =
∑

p,σ∈{↑,↓}
ξpσ c†p,σ cp,σ −

∑
p↑,p↓,q

g(p↑−p↓,q)

× c
†
p↑−q/2,↑c

†
p↓+q/2,↓cp↓−q/2,↓cp↑+q/2,↑, (1)

where ξp = p2/2 − μ is the dispersion, μ is the chemical
potential, and we adopt atomic units h̄ = m = kB = 1. A
general momentum dependent interaction g(p,q) acts between
the two species, where p is the incoming relative momentum
and q represents the momentum transfer. The Hamiltonian of
electrons interacting with a contact interaction would be recov-
ered with g(p,q) = g, whereas the homogeneous electron gas
with a Coulomb interaction has g(p,q) = 4πe2/q2. To study
the onset of ferromagnetic order, two ab initio, complementary,
and mutually consistent tools have emerged: the analytical
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order by disorder approach,25 and quantum Monte Carlo.24,44

We now extend both methods to probe and understand the
consequences of finite-range interactions.

A. Functional integration

The functional integral formalism calculates the quantum
partition function expressed as a coherent state field integral

Z =
∫

Dψexp

[
−

∑
p,σ={↑,↓}

ψp,σ (−iω + ξpσ )ψp,σ −
∑

p↑,p↓,q

g(p↑ − p↓,q)ψp↑−q/2,↑ψp↓+q/2,↓ψp↓−q/2,↓ψp↑+q/2,↑

]
, (2)

where the Grassmann field ψ describes a two component Fermi gas. We use the four-momentum notation p = {ω,p} with
Matsubara frequencies ω and inverse temperature β = 1/T .

We decouple the quartic interaction term with a Hubbard-Stratonovich transformation into the full vector magnetization
φ and density channel ρ.25 This decoupling scheme is sensitive to the spin spiral instability driven by transverse magnetic
fluctuations, and simultaneously the p-wave superconducting instability driven by longitudinal magnetic fluctuations. The action
is now quadratic in the Fermionic degrees of freedom, and after integrating them out we recover the quantum partition function
Z = ∫

DφDρ exp(−S) with an action

S = Tr[φĝφ − ρĝρ] − Tr ln[(∂̂τ + ξ̂α + ĝρ)I − ĝφ · σ ], (3)

where ĝ is the operator form of the potential. We expand the action to quadratic order in fluctuations of ρ and φ around their
putative saddle-point values ρ0 and MQ = M(cos Q · r, sin Q · r,0), where Q is the spiral wave vector. A gauge transformation
renders the magnetization uniform and modifies the dispersion as ξpσ = p2/2 + σ

√
(p · Q)2 + (gM)2 − μ. After integrating

over magnetization and density fluctuations the free energy is

F =
∑
p,σ

p2

2mσ

n(ξpσ ) +
∑
p↑,p↓

g(p↑ − p↓,0)n(ξp↑↑)n(ξp↓↓) +
∑

p1 + p2
= p3 + p4

g(p1 − p3,p1 − p4)2 n(ξp1↑)n(ξp2↓)[n(ξp3↑) + n(ξp4↓)]

ξp1↑ + ξp2↓ − ξp3↑ − ξp4↓
.

The first term is the kinetic energy, the second is the mean-field
contribution of the interactions, and the third is the fluctuation
correction. The momentum summation in the mean-field
term introduces a weighted average that can be performed
analytically for certain potentials at low temperature. The
momentum summation in the fluctuation term is dominated
by the contributions at p2 + q2 = 4k2

F (Ref. 24) and therefore
the interaction potential can be approximated by g(p,q) �→
g(

√
2kF,

√
2kF). These two observations allow us to simply

rescale the interaction strength that appears in the mean-field
and fluctuation correction terms and afterwards treat them as
pure contact interactions. The validity of the approximation
will be verified in the cold atom section.

We now enumerate the interaction potentials that we adopt
for describing the solid state and cold atom gas.

1. Solid State We use the Coulomb interaction
ge−r/b/4πb2r with screening length b, whose Fourier trans-
form g(p,q) = g/(1 + b2q2) depends only on the momentum
transfer q.

2. Cold atoms The T matrix that describes the Fesh-
bach resonance can be modeled by several potentials.24,45,46

Here we concentrate on two: the separable form used by
Pekker that facilitates the momentum summation42 g(p,q) =
(2kFa/πνF)[1 + 2are(p2 + q2)]; and to establish a direct con-
tact with the screened Coulomb interaction a reciprocal form
(a Taylor expansion of the former) g(p,q) = (2kFa/πνF)/[1 −
2are(p2 + q2)]−1. Both potentials depend on the energy in the
center-of-mass frame that appears in the scattering amplitude.
Here the interaction strength is analogous to the scattering

length kFa, the effective range is re, and νF is the density of
states at the Fermi surface.

In Table I we summarize how the interaction potentials
rescale the mean-field and fluctuation correction potentials
after performing the momentum summations.

B. Quantum Monte Carlo

The fluctuation corrections included in the analytical
formalism represent a subset of all possible contributions to
the free energy. To gauge the effectiveness of our analyti-
cal formalism we perform Diffusion Monte Carlo (DMC)
calculations with the CASINO program.47 The approach is
a refinement of that used in previous studies of itinerant
ferromagnetism.24,44,48 This method optimizes a trial wave
function at zero temperature to yield the exact ground state
energy, subject only to a fixed node approximation, and thus
neatly complements the analytics. We use a variational wave
function ψ = e−J D that is a product of a Slater determinant D
that takes full account of the Fermion statistics, and a Jastrow
factor J to include further correlations. We used a screened
Coulomb repulsion ge−r/b/4πb2r that exactly reflects the
potential used in the analytics.

The Slater determinant consists of plane-wave spinor
orbitals containing both spin-up and spin-down electrons
D = det({ψk∈kF,↑ ,ψ̄k∈kF,↓}). Fixing the spin Fermi surfaces
{kF,↑,kF,↓} sets the magnetization. For computational effi-
ciency we factorize the Slater determinant into an up- and
a down-spin determinant.47 Provided that the orbitals of the
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TABLE I. The rescaling of the interaction strength in the mean-field and fluctuation contributions to the free energy on introducing
finite-range interactions for the solid state and cold atoms cases. The bottom row shows the expected interaction strength of the magnetic
transition in the mean-field approximation.

Separable cold atoms Reciprocal cold atoms
Solid state g(p,q)/g = g(p,q)/g = g(p,q)/g =

Functional (1 + b2q2)−1 1 + 2are(p2 + q2) [1 − 2are(p2 + q2)]−1

Mean-field 1 1 + 12
5 kFakFre Numerical

Fluctuation (1 + 2k2
Fb

2)−1 1 + 8kFakFre (1 − 8kFakFre)−1

MF trans. gνF = 1 kFa = π

2 − 3π2kFre
5 Numerical

minority spin state are the lowest energy orbitals of those in
the majority spin state,49 this gives the state whose total spin
is Sz

tot.
The Jastrow factor J accounts for electron-electron cor-

relations. It consists of the polynomial and plane-wave
expansions in electron-electron separation proposed in Ref. 50.
To further optimize the wave function the orbitals in the Slater
determinant were evaluated at quasiparticle positions related
to the electrons through a polynomial backflow function51 that
partially relieves the fixed node approximation. The trial wave
functions were optimized using QMC methods using VMC,
backflow, and diffusion Monte Carlo. Twist averaging was
employed to remove finite size effects.

II. PHASE DIAGRAM

A. Solid state

The analytical and computational tools developed calculate
the free energy of the electron gas with screened Coulomb
interaction. We seek the magnetization that minimizes the
free energy to construct the phase diagram. To orient the
discussion we first start with the common contact interaction
at kFb = 0. In Fig. 1 fluctuation corrections24,25 drive the
transition first order at gν ≈ 0.7 (versus the mean-field second
order transition at gν = 1). The importance of fluctuations is
reduced as we increase the temperature and ultimately the
transition becomes second order at the tricritical temperature
Tc = 0.3TF. This tricritical point temperature is in agreement
with previous studies of the contact interaction24,25 but is an
order of magnitude higher than that seen in experiment.

At zero temperature, increasing the screening length dimin-
ishes the interaction strength for the fluctuation correction as
1/(1 + 4k2

Fb
2) (Table I). With the driving force of the first order

transition suppressed, the critical interaction strength rises
towards the mean-field critical interaction strength gν = 1.
Nevertheless, the transition remains resolutely first order due
to a nonanalytic contribution to the free energy of the form
M4 log(g2M2 + T 2).24 However, with increasing kFb a slight
temperature rise occludes the nonanalyticity and the transition
reverts to second order, exemplified in the inset of Fig. 1,
which shows how the tricritical temperature rapidly reduces
with rising screening length. Focusing on the CaRuO3 family
with kFb = 0.40 (Ref. 17) and ZrZn2 with kFb = 0.47,18 the
tricritical point temperature is reduced to 0.08TF and 0.02TF,
respectively, with reasonable agreement to experiment.9,10,35

We also study the magnetic transition at zero temperature
using DMC. This predicts a phase boundary with increasing

screening length that is quantitatively similar to the analytical
predictions. Here the Monte Carlo is in better agreement
with the analytical prediction compared with previous DMC
studies24,44,48 that employed a square potential with uncon-
trolled effective screening length. However, we cannot directly
compare to previous studies of the electron gas with a Coulomb
interactions48 since here we are focus on the strongly screened
limit with kFb < 1.

A Landau expansion with the zero range system demon-
strates that the first order ferromagnetic transition is always
accompanied by a spin spiral phase.24,34 To incorporate the
screening length we take the same Landau expansion34 and
rescale the interaction parameters according to Table I. This
reveals that the spiral phase persists in a thin strip of order

gν ≈ 4 × 10−4 between the first order phase boundary
and the Lifshitz line, terminating at the tricritical point.
The transition temperature of an instability to a p-wave
superconductor was calculated by Ref. 34 and the associated
interaction strengths can be rescaled following the prescription
in Table I. In the inset of Fig. 1 we find that the peak
superconducting transition drops with screening length even
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FIG. 1. (Color online) Phase boundaries at temperatures T ∈
{0,0.1,0.2,0.305}TF with a screened Coulomb interaction of strength
gν and range kFb. The ferromagnetic transition is first order (solid
blue curves) at low kFb, separated from the second order at larger
kFb (dotted blue curves) by the green dots. The dashed red line is
the locus of tricritical temperatures. The black points with error bars
show the DMC T = 0 estimates for the phase boundary. The inset
shows the tricritical (solid black line) and p-wave superconducting
(dotted black) critical temperatures against kFb, the red dots denote
the CaRuO3 family and ZrZn2.
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FIG. 2. (Color online) The phase diagram for a T = 0 cold
atom gas with pseudopotential interaction strength kFa and effective
range kFre. The two shaded regions denote zero loss, and a loss
rate less than 0.5εF. The thick black line represents the transition
to the ferromagnetic state for the separable pseudopotential (whose
fluctuation correction rescaling is zero at the black dot), and the dotted
line the reciprocal pseudopotential transition. The inset compares
the phase diagram for the full fluctuation corrections with separable
pseudopotential (solid black line) to one obtained using the g(p,q) �→
g(

√
2kF,

√
2kF) approximation (dashed black line).

more rapidly than the tricritical temperature, obscuring the
instability in typical materials.

B. Ultracold atomic gas

As in the solid state, finite-range interactions alter the
nature of the ferromagnetic transition. At zero effective range
and zero temperature, the separable and reciprocal forms for
the pseudopotential are identical so in Fig. 2 both magnetic
transitions concur with previous studies that employed contact
interactions.25,37 Sweeping the effective range through zero
raises the rescaled interaction strength, reducing the critical
interaction strength. At the negative effective range kFre =
−1/8kFa, the scaling of the fluctuation term for the separable
pseudopotential is zero, recovering the mean-field free energy
for which the transition occurs at kFa = 5π/7. At a more
negative effective range the fluctuation term is restored, thus
reducing the critical interaction strength. In the case of the
reciprocal pseudopotential, at a large effective range the
rescaled interaction strengths scale as 1/kFre, leading to a
suppression of interaction effects and a quenching of the
ferromagnetic transition at kFre � −0.68. Although here the
separable and reciprocal pseudopotentials lead to different
phase behavior, this regime is not only beyond the effective
range approximation where higher order terms would be
important, but furthermore in a regime where we will now
determine that losses dominate.

In a cold atom gas, to generate the repulsive interaction
experimentalists exploit a Feshbach resonance between the
free atoms in the Fermi sea and the bound state of two
atoms to generate a positive scattering length. However, as
the bound state is necessarily lower in energy there is an
instability to pair formation. The loss rate has been studied
from both the paramagnetic42 and polaron standpoints. To

determine whether the ferromagnetic or pairing instability
dominates, we follow Ref. 42 from Eq. (2) and we decouple
this interaction using a Hubbard-Stratonovich transformation
into the Feshbach molecule channel 
q = ∑

k ck↓cq−k↑. At
leading order the resulting Lagrangian is

|
ω,q|2
(

1

g(0,q)
+

∫
d3p

(2π )3

nF(ξp+ q
2 ↑) + nF(ξp− q

2 ↓) − 1

iω − ξp+ q
2 ↑ − ξp− q

2 ↓

)
︸ ︷︷ ︸

C−1(ω,q)

.

(4)

After regularizing the above integral,42 and specializing to
an attractive potential with finite-range re, we obtain an
expression for the pairing susceptibility C(ω,q),[

1

g(0,q)
+ im

4π

√
m

(
iω + 2εF − q2

4m

)

− m2re

8π

(
iω + 2εF − q2

4m

)

+
∫

d3p
(2π )3

nF(ξp+q/2↑) + nF(ξp−q/2↓)

iω − ξp+q/2,↑ − ξp−q/2,↓

]−1

. (5)

The imaginary component of the pairing susceptibility pole
represents the bound state pairing rate. We find generally that
the maximal pairing rate occurs for q = 0.

In Fig. 2 we overlay the magnetic transition with lines
of equal pairing rate 
. Pairing rate reduces with increasing
positive effective range as the molecules become more tightly
bound. This leads to a window in the phase diagram where
the system is both magnetized and there are no losses.
However, at negative effective range the losses occur on a
time scale ∼0.1 ms which is significantly shorter than the
trap crossing time ∼1 ms, so large magnetic domains cannot
be formed. Similar conclusions were recently reached in
Ref. 43 who studied the strongly polarized limit. To date all
Fermionic mixtures used in cold atom gas experiments have
negative effective ranges so are not suitable for observing
magnetic correlations,52 however a polar molecule gas with
strong dipolar interactions does display large positive effective
range53 and a positive s-wave scattering length and so presents
an opportunity to observe ferromagnetic phenomena.

The inset of Fig. 2 confirms that the phase boundary
obtained by rescaling the interaction strength of the fluctuation
contribution with the approximation 1 + 2are(p2 + q2) �→
1 + 8kFakFre conforms with the phase boundary resulting
from the exact momentum summation. This verifies the
rescaling approximations given in Table I.

III. DISCUSSION

The study of the HEG through an analytical fluctuation
correction formalism with a contact repulsion has successfully
demonstrated how quantum fluctuations drive not only a first
order ferromagnetic transition, but also a spin spiral and a
p-wave superconducting instability. We have demonstrated
that a screened Coulomb interaction reduces the amplitude
of the fluctuation corrections so dramatically it suppresses the
tricritical point temperature from 0.3TF to 0.02TF. This is quan-
titatively similar to the Tc ≈ 0.02TF seen in ZrZn2.9,10,35 With
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the tricritical temperature now reduced this system presents an
opportunity to observe quantum critical phenomena such as
those envisaged by Hertz.

Our study of the critical behavior of the homogeneous elec-
tron gas with a screened Coulomb interaction highlights the
exotic strongly correlated order that has not been considered in
previous QMC studies of the homogeneous electron gas. This
resolution could allow the solution to be embedded within
a DFT generalized gradient functional so that the full effect
of the underlying band structure can be accounted for while
including the quantum criticality driven by electron-electron
interactions, a strategy adopted for analyzing ZrZn2

18 and a
cold atom gas in a lattice.54

The idealized Hamiltonian of repulsively interacting
fermions could also be studied in a cold atom gas. The positive
effective finite-range interaction, found in a polar molecular
gas,53 eliminates the pairing permitting the observation of
ferromagnetic order.
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