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Thermodynamic properties of Yb2Ti2O7 pyrochlore as a function of temperature and
magnetic field: Validation of a quantum spin ice exchange Hamiltonian
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The thermodynamic properties of the pyrochlore Yb2Ti2O7 material are calculated using the numerical linked-
cluster calculation method for an effective anisotropic-exchange spin- 1

2 Hamiltonian with parameters recently
determined by fitting the neutron scattering spin-wave data obtained at high magnetic field. Magnetization M(T ,h)
as a function of temperature T and for different magnetic fields h applied along the three high-symmetry directions
[100], [110], and [111] are compared with experimental measurements on the material for temperature T > 1.8 K.
The excellent agreement between experimentally measured and calculated M(T ,h) over the entire temperature
and magnetic field ranges considered provides strong quantitative validation of the effective Hamiltonian. It also
confirms that fitting the high-field neutron spin-wave spectra in the polarized paramagnetic state is an excellent
method for determining the microscopic exchange constants of rare-earth insulating magnets that are described
by an effective spin- 1

2 Hamiltonian. Finally, we present results which demonstrate that a recent analysis of the
polarized neutron scattering intensity of Yb2Ti2O7 using a random phase approximation method [Chang et al.,
Nat. Commun. 3, 992 (2012)] does not provide a good description of M(T ,h) for T � 10 K, that is, in the entire
temperature regime where magnetic correlations become non-negligible. With the compelling evidence that we
now have at hand an accurate microscopic Hamiltonian for Yb2Ti2O7, our work exposes a paradox: why does
this material fail to develop long-range ferromagnetic order?
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I. INTRODUCTION

A. Magnetic rare-earth pyrochlore oxides and effective
spin- 1

2 quantum dynamics

Quantum spin liquids are magnetic systems in which
large quantum mechanical zero-point spin fluctuations prevent
the development of long-range order down to absolute zero
temperature. The search for real materials that display this
phenomenology in two and three dimensions is a very active
research topic in the field of condensed matter physics.1

The interest in spin liquids stems from the expectation that
they may host nontrivial quantum entanglement, topological
order, as well as emergent fractionalized and deconfined low-
energy excitations. Spin liquids have also been conjectured
as progenitors of unconventional superconductivity at “high
temperature.” Highly frustrated magnets are particularly apt at
exhibiting large quantum spin fluctuations. These magnets are
realized in systems which consist of localized magnetic mo-
ments (spins) that reside on two- and three-dimensional lattices
of corner-sharing triangles or tetrahedra and which interact
with effective antiferromagnetic nearest-neighbor coupling.2

Such highly frustrated magnets display an exponentially large
number of classical ground states.4 This allows for quantum
mechanical effects to be tremendously magnified compared
to magnetic systems with conventional long-range magnetic
order.1

The pyrochlore oxides, with chemical formula RE2M2O7,5

count a multitude of magnetic members. In RE2M2O7,

RE is a magnetic trivalent (lanthanide, 4f ) rare-earth ion
(Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Yb3+) or a nonmagnetic ion
(Y3+, Lu3+), while M is tetravalent, typically a transition-
metal ion, which can be either magnetic (Mo4+, Mn4+) or
not (Ti4+, Sn4+, Zr4+, Ge4+). Of relevance to the above
discussion is the fact that the RE and M ions reside on
two distinct and interpenetrating three-dimensional lattices of
corner-sharing tetrahedra. As a result, high geometric magnetic
frustration ensues whenever the RE-RE or M-M interaction is
effectively antiferromagnetic.2 Among the RE2M2O7 family,
the magnetic rare-earth oxides, in which the RE is magnetic
and M is not, have been rather extensively studied.5 These
have revealed a number of fascinating phenomena such as
long-range order induced by order-by-disorder,6,7 multiple-k
long-range-ordered phase,8 spin liquid behavior,9 and spin ice
physics,10–12 the latter having attracted much interest.1,3,5,13,14

The spin ice state displays a residual low-temperature magnetic
entropy close to that found for common water ice,12,15,16

hence the name spin ice. Most recently, a renewed flurry
of theoretical and experimental efforts have been directed at
the study of spin ices for they have been argued to display
an emergent Coulomb phase17 accompanied at low energies
by deconfined fractionalized magnetic charge excitations, or
“monopoles.”14,17,18

Notwithstanding the rich physics that RE2M2O7 materials
display,5 they had, until very recently,19–22 not attracted that
much interest from the community of theorists and exper-
imentalists searching for quantum spin liquids.1 Quantum
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fluctuations are expected to be, relatively speaking, more
significant the smaller the spin quantum number S. On the
other hand, because of the intrinsic large spin-orbit coupling
at play in the lanthanide 4f series, the total angular momentum
J = L + S, and not S, is a good quantum number with J being
typically large across the whole lanthanide series (e.g., J = 8
and J = S = 7

2 for free Ho3+ and Gd3+ ions, respectively).
This situation would thus seem unpromising to those seeking
magnetic materials with potentially large quantum mechanical
spin fluctuations and exotic quantum states of matter. However,
such a perspective is perhaps too pessimistic as we now
discuss.

In insulating magnetic compounds with 4f elements, the
various interion interactions Hint (exchange, superexchange,
virtual phonon exchange, and magnetostatic dipole-dipole
coupling) are typically weak compared to the single-ion
crystal-field interactions defined by the crystal-field Hamilto-
nian Hcf . As a first approximation, one thus often proceeds
by determining the energy level spectrum of Hcf for a
fixed J manifold.3 The point group symmetry of the crystal
dictates the allowed symmetry properties of Hcf . These
symmetries determine, in return, the spectral decomposition
of the crystal-field states that derive from the original 2J + 1
degenerate 2S+1LJ electronic ground state of the otherwise
free RE3+ ion. In the simplest case, the resulting crystal-field
ground state is a magnetic doublet with wave functions |ψ+〉
and |ψ−〉 that have |ψ±〉 = ∑

mJ
C±

mJ
|J,mJ 〉 for spectral

decomposition. The |ψ±〉 states contain all the |J,mJ 〉 spectral
components that transform similarly according to the point
group symmetry operations. Consequently, there may or not
be nonzero 〈ψ±|Hint|ψ∓〉 matrix elements. This depends on
the specific nature of the interion couplings Hint(J u

i ), a function
of the components J u

i (u = x,y,z) of the angular momentum
J i of ion i,23 as well as the specific ion-dependent spectral
decomposition of |ψ±〉. It is the nonzero 〈ψ±|Hint|ψ∓〉 matrix
elements24 which determine whether significant quantum
dynamics exist within the low-energy sector. Most importantly,
quantum dynamics need not be ruled out despite the large J
of the isolated RE3+ since the crystal-field Hamiltonian Hcf

entangles a superposition of the |mJ 〉 eigenstates of J z.23 As a
result, Hint, by virtue of its lack of commutation with Hcf , can,
in principle, have nonzero matrix elements between |ψ+〉 and
|ψ−〉 and induce quantum dynamics within the low-energy
Hilbert space spanned by

∏N
i |ψ+

i 〉|ψ−
i 〉.

In 4f ions with an even number of electrons (i.e.,
non-Kramers ion) such as Pr, Tb, and Ho, time-reversal
symmetry imposes that 〈ψ±|J±|ψ∓〉 = 0.24 Consequently,
in presence of solely bilinear interactions of the form
Kuv

ij (rij )J u
i J v

j with anisotropic Kuv
ij couplings, non-Kramers

ions would display no quantum dynamics at low-energy
and behave as effective S = 1

2 classical Ising spins, as
in the well-studied LiHoF4 dipolar Ising system.25 In the
(Pr,Tb,Ho)2(Ti,Sn,Zr)2O7 materials,26 interactions beyond bi-
linear ones or consideration of the excited crystal-field states
are necessary to cause quantum dynamics within the low-
energy sector.27–29 In that context, multipolar interactions in
Pr2(Sn,Zr,Ir)2O7 compounds29 and virtual crystal-field excita-
tions in the Tb2(Ti,Sn)2O7 materials have been discussed.27,28

Conversely, odd-electron (Kramers) ion systems (e.g., Gd, Dy,
Er, Yb) are, in principle, symmetry allowed to have nonzero

〈ψ±|J±|ψ∓〉 matrix elements. The famous Dy2Ti2O7 spin ice
compound, in which the Dy3+ ions are Kramers ions and for
which the excited crystal-field states lie at ∼300 K above
the ground doublet,30,31 has been shown to be well described
by a dipolar spin ice model32,33 with classical Ising spins.3

This success very likely signals rather negligible interactions
among the J u

i components beyond bilinear ones, concomi-
tantly with the specific spectral decomposition of |ψ±〉 for
Dy3+ in Dy2Ti2O7.30,31,34 On the other hand, Er2Ti2O7 and
Yb2Ti2O7 have been known for some time6,31,34 to have
predominant “transverse” 〈ψ±|J±|ψ∓〉 matrix elements,24

along with a non-negligible 〈ψ±|J z|ψ±〉 “longitudinal” (gzz

tensor) component. Yet, the two compounds display quite
different behaviors. Er2Ti2O7 has overall antiferromagnetic
interactions and develops long-range order at 1.2 K with
zero propagation vector qord and zero magnetic moment per
tetrahedron6 that is very likely induced by an order-by-disorder
mechanism.7 In contrast, Yb2Ti2O7 has overall ferromagnetic
interactions and exhibits a phase transition at Tc ∼ 0.24 K.35,36

However, the nature of the long-range order below Tc remains
disputed37–41 and the high sensitivity of the properties in the
low-temperature regime (T � 300 mK) on sample quality is
just beginning to be understood.42–44 It is here, within the
Yb2M2O7 family35,45 with overall ferromagnetic interactions
and significant 〈ψ±|J±|ψ∓〉 matrix elements,20,24 that the
potential for an exotic class of quantum spin liquid arises,21

a possibility that may have been casually dismissed from
the naive perspective of “there should be negligible quantum
effects in such large J rare-earth systems.”

B. Quantum spin ice and Yb2Ti2O7

The Dy2(Ti,Sn,Ge)2O7 and Ho2(Ti,Sn,Ge)2O7 pyrochlore
oxide materials, along with the CdEr2Se4 spinel,46 are classical
Ising systems which may be viewed in their spin ice regime as
collective paramagnets47 or, employing a more contemporary
terminology, classical spin liquids.1 As discussed above,
highly frustrated magnetic systems, by virtue of their low
propensity to develop classical long-range order, are attractive
candidates to search for quantum spin liquid behavior. Spin
ice, reinterpreted as a classical spin liquid,1 may thus be
viewed as a natural setting to explore how the addition of
quantum dynamics may give rise to a quantum spin liquid
state. Such a topic was originally explored by Hermele, Fisher,
and Balents48 and Castro-Neto, Pujol, and Fradkin49 a few
years ago in the context of minimal theoretical models. These
two groups argued in their respective papers that the addition
of quantum dynamics within a parent (constrained) classical
spin ice manifold may promote the system to a U(1) quantum
spin liquid. Such a state would be describable by a quantum
field theory analogous to that of quantum electrodynamics
(QED) in 3 + 1 dimensions. As a consequence, this U(1) spin
liquid state would display “electric” and “magnetic” charge
excitations and an accompanying gauge boson, or “artificial
photon.”48,49 Numerical simulations have, over the past few
years, suggested that such phenomenology may indeed be
at play in various lattice models.50,51 Such a U(1) quantum
spin liquid state, which may be referred to as “quantum spin
ice,”27 has been suggested to explain some of the properties
of real materials such as Tb2Ti2O7 (Refs. 27 and 28) and
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Pr2(Sn,Zr)2O7.29 Most recently, it has been proposed that Yb-
based Yb2M2O7 pyrochlore oxides20,21 may offer an exquisite
class of systems to investigate the possible existence of a
quantum spin ice state and where the complexities of virtual
crystal-field fluctuations27,28 and magnetoelastic coupling52,53

that complicate the Tb2(Ti,Sn)2O7 compounds are avoided. In
a theory paper building on the original work of Hermele et al.,48

Savary and Balents have recently put forward a mean-field
lattice gauge theory21 which identifies a number of possible
phases, the most exotic ones being the aforementioned U(1)
spin liquid48,49 as well as a novel Coulomb ferromagnet state.
This approach has been further extended to non-Kramers ion
systems.22 Finally, the question of how to probe the emergent
photon in a quantum spin ice via inelastic neutron scattering
measurements has been recently discussed.54

One particularly interesting aspect of the search for quan-
tum spin liquids in the Yb-based pyrochlores, and perhaps
Pr-based pyrochlores as well,22,29,55 is that the microscopic
Hamiltonian is parametrized by a handful of independent
anisotropic exchange parameters {Je} (four for Yb3+ and three
for Pr3+)20,22,56–58 between effective spin- 1

2 degrees of freedom
on each pyrochlore lattice site. Furthermore, it may be that
the long-range dipolar interactions, so important in classical
Dy2(Ti,Sn)2O7 and Ho2(Ti,Sn)2O7 spin ices with the large
magnetic moment (10 μB) of Dy3+ and Ho3+,3,11,32,33,59,60

can perhaps be neglected as a first approximation. To make
definite progress at this time, a determination of the effective
anisotropic exchange from experiments and theory that uses
controlled approximations is required in order to position a
candidate spin ice material in the phase diagram of Ref. 21,
or the corresponding phase diagram relevant to non-Kramers
ions.22 In the case of Yb2Ti2O7, the determination of those
interactions from a series of experiments20,34,40,56,61,62 has led
to different {Je} sets with very different numerical values.
Perhaps most noteworthy, a determination of those parameters
from a fit to spin waves in strong magnetic field measured
via inelastic neutron scattering20 gives values significantly
different than those obtained by fitting the zero-field dif-
fuse paramagnetic neutron scattering using a random phase
approximation (RPA) method56 at a temperature T ∼ 1.4 K
or a subsequent polarized neutron scattering version, also
using RPA as the fitting procedure, but now very near
Tc.40 Encouragingly, however, recent numerical linked-cluster
(NLC) calculations63 have found the zero-field magnetic
specific heat data of Yb2Ti2O7 to be well described above 0.7 K
by the {Je} set obtained from the inelastic neutron scattering,20

but not by the other sets determined from RPA fits to diffuse
neutron scattering.40,56

It is clearly desirable to fit bulk measurements to determine
the {Je} parameters in cases where inelastic neutron scattering
studies are impractical, and to corroborate such neutron studies
and understand thermodynamic and bulk magnetic properties
in a common framework with neutron studies whenever
possible. Yet, the scarcity of controlled numerical methods
readily available to calculate the thermodynamic properties of
frustrated three-dimensional anisotropic quantum spin systems
in a temperature regime where nontrivial correlations develop
does not make this task straightforward. With the seeming
success of previous NLC calculations applied to Yb2Ti2O7,63

we are thus naturally led to ask the following broader

question: Can one convincingly demonstrate that NLC does
provide a controlled method to describe bulk data for a
three-dimensional frustrated quantum (spin ice) system as it
progressively enters its low-temperature strongly correlated
regime?

In this paper, we address this question by extending the
work of Ref. 63 by computing the thermodynamic properties
of Yb2Ti2O7 in nonzero magnetic field using NLC and by
comparing the results of such calculations with measurements
above 2 K on single crystals. We show, through a comparison
with NLC, that the effective Hamiltonian with its anisotropic
exchange parameters {Je} previously determined by fitting spin
waves in the field polarized paramagnetic state20 describes,
with no adjustment, the temperature T and magnetic field h

dependence of the magnetization M(T ,h) of Yb2Ti2O7. As a
consequence, we demonstrate simultaneously the usefulness
of the NLC method and further validate63 the quantitative
merit of the effective spin Hamiltonian of Ref. 20 to describe
Yb2Ti2O7.

The rest of the paper is organized as follows. In the next
section, we describe the effective spin- 1

2 model for Yb2Ti2O7

along with the NLC method. In Sec. III, we discuss the details
of the experimental method employed. The NLC results are
presented in Sec. IV, while Sec. V provides a comparison
between experiment and theory. A brief discussion in Sec. VI
concludes the paper.

II. MODEL AND COMPUTATIONAL METHOD

Symmetry considerations imply that nearest-neighbor bi-
linear exchange constants on the pyrochlore lattice can be
parametrized in terms of four distinct exchange parameters
{Je} and two g factors. In the local basis, this model is defined
by the Hamiltonian20,21,55

HQSI =
∑

〈i,j〉

{
JzzS

z
i S

z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±[γijS
+
i S+

j + γ ∗
ij S

−
i S−

j ]

+ Jz±
[
Sz

i (ζijS
+
j + ζ ∗

i,j S
−
j ) + i ↔ j

]}
. (1)

Several notation conventions are possible for HQSI.20,56–58

Here, we adopt the one used in Ref. 20. In Eq. (1), 〈i,j 〉
refers to nearest-neighbor sites of the pyrochlore lattice, γij is
a 4 × 4 complex unimodular matrix, and ζ = −γ ∗.20,21 The ẑ

quantization axis is along the local [111] direction,23 and ±
refers to the two orthogonal local directions. The ←→

g tensor
takes eigenvalues gzz along the local [111] cubic direction
and gxy perpendicular to it.23,24 In the presence of an applied
external magnetic field h, an additional Zeeman interaction
HZ = −h · ←→

g · SμB is added to HQSI, giving a total spin
Hamiltonian H = HQSI + HZ.

According to conventional mean-field theory20 and a recent
gauge mean-field theory (g-MFT),21 the Hamiltonian (1)
displays in the Jz±/Jzz versus J±/Jzz (J±± = 0) plane two
semiclassical long-range ordered phases: an antiferromagnetic
phase and a “splayed ferromagnetic” (sp-FM) one. The sp-
FM phase shares, as we will see later, some similarities
with the behavior of the model (1) for the values {Je} we
consider for Yb2Ti2O7. In the sp-FM phase, each primitive
tetrahedron unit has the same magnetic moment configuration
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(q = 0 ordering wave vector) with the magnetization pointing
along one of the cubic 〈100〉 axes. The g-MFT also predicts
two exotic intrinsically quantum states. The U(1) spin liquid
phase already exposed in Refs. 48 and 49 and a new “Coulomb
ferromagnet” (CFM) phase which has a nonzero magnetization
but deconfined spinon excitations.

As already stated above, there have been several experi-
mental attempts to determine these {Je} effective exchange
parameters leading to widely different results.20,34,40,56,61,62

Among them, Ross et al.20 used inelastic neutron scattering
(INS) data obtained from measurements in high magnetic
fields (i.e., in the polarized paramagnetic state) to determine
the {Je} couplings for Yb2Ti2O7: Jzz = 0.17 ± 0.04, J± =
0.05 ± 0.01, J±± = 0.05 ± 0.01, and Jz± = −0.14 ± 0.01,
all in meV and with gzz = 1.80 and gxy = 4.32. In a recent
numerical study,63 it was found that the zero-field specific
heat and entropy deduced from the data of Blöte et al.36

are well described only by the exchange parameters obtained
by Ross et al.20 A key goal of this paper is to investigate
further the validity of the Hamiltonian (1) as a description
of the bulk properties of Yb2Ti2O7 with the {Je} exchange
couplings from Ref. 20. We do so by performing calculations
of the thermodynamic properties of model (1) as a function of
temperature T and magnetic field h and compare the numerical
results with those obtained from experimental measurements.
We find an excellent agreement without any adjustment of
the parameters determined by Ross et al.,20 hence providing
a strong validation to the {Je} parameters determined by
INS. As a corollary, our work confirms that fitting the INS
spectra at high magnetic field is an excellent method to
determine the exchange constants for pyrochlore oxides with
well-isolated magnetic ground doublets and which are well
described by an effective spin-half model.55 Further implica-
tions of this agreement will be discussed in the concluding
Sec. VI.

To calculate the thermodynamic properties of model (1),
we turn to numerical linked-cluster (NLC) expansions.64 In
this method, an extensive property P (such as heat capacity
or magnetization) of a thermodynamic system is calculated as
a sum over contributions from different clusters embedded in
the lattice:

P/N =
∑

c

L(c) × W (c). (2)

Here, L(c) is the count of the cluster per lattice site, defined as
the number of ways to embed the cluster. W (c) is the weight
of the cluster which is obtained by calculating the property for
a given cluster and subtracting the weight of all its subclusters

W (c) = P (c) −
∑

s

W (s). (3)

Here, the sum
∑

s runs over all subclusters of the cluster c,
where a subcluster is defined as any cluster smaller than c

that can be embedded in cluster c. This scheme can be used
to develop power series expansions, such as high-temperature
series expansions in powers of inverse temperature β or some
coupling constant expansion (such as expansion in inverse
field strength). It can also be used to numerically calculate
properties for a given value of temperature and coupling
constants, as we do in this work.

The pyrochlore lattice is a lattice of corner-sharing tetra-
hedra and it proves useful to develop NLC in terms of
clusters consisting of complete tetrahedra. We have calculated
temperature and field-dependent properties up to fourth order,
that is, including contributions from all clusters made of up
to four tetrahedra. These NLC calculations are numerically
exact in two limits. They are so at high temperatures since
corrections to fourth-order NLC is of order β6 in the high-
temperature series expansion for ln Z, where Z is the partition
function. The NLC calculations are also exact at high magnetic
field h at all temperatures since corrections to fourth-order
NLC for ln Z is of order (J/h)5 at T = 0 with exponentially
small corrections exp(−αh/T ) at finite temperatures (α is
some h- and T - independent constant). The parameter region
where NLC begins to lose accuracy is when the temperature
and the applied field (Zeeman energy) are both smaller than
the exchange constants. We return to this matter in more detail
when presenting the T and h dependencies of the specific heat
C(T ,h) and entropy S(T ,h) in Sec. V C (Figs. 6 and 7). Thus, as
long as either the high-temperature expansion or the high-field
expansion converges, the NLC calculations should be accurate.

The reason for developing NLC in terms of complete
tetrahedra comes from the fact that, for spin ice systems, the
“ice rule” constraints at the origin of spin ice physics are
local to tetrahedra. Thus, having clusters with only parts of
a tetrahedron would cause wild oscillations in the calculated
properties as the constraints can not be satisfied for such a
cluster. Having only clusters with full tetrahedra allows the
system to always satisfy the ice rule constraint. For example,
in the case of the classical nearest-neighbor spin ice exchange
model, such a tetrahedra-based NLC was found to be highly
accurate.65 In fact, the first-order NLC, which uses a single
tetrahedron and is equivalent to Pauling’s approximation for
the entropy of ice, gives quantities at all temperatures (in zero
external field) that are accurate to a few percent.65

However, in the quantum spin ice problem, NLC must break
down at low temperatures due to the development of either
long-range correlations or long-range entanglement. We have
found (see results below and in Ref. 63) that the first signature
of such a breakdown in the low-temperature and low-field
regions is an alternation of the thermodynamic property P

considered. This reflects the fact that, as system sizes increase,
the thermodynamic properties must approach their infinite-size
values in some way. Now, imagine that, at some order, the
numerically calculated property is a bit too large, giving
rise to a large cluster weight W (c). Subcluster subtraction then
causes the weight in the subsequent order to be too small.
This, in return, causes an alternation with the NLC order
considered in the property obtained when restricting the sum
to some order. Such an alternation is handled well by using the
Euler summation method,66 which ensures that an alternating
piece is completely eliminated from the partial sums at all
orders. Thus, the Euler resummed properties are only missing
the longer-range correlations which are necessarily absent
in finite-order NLC. For Yb2Ti2O7, we have found that in
zero magnetic field63 the thermodynamic properties converge
down to 2 K without the Euler summation and down to about
1 K with Euler summation [the largest exchange constant
for Yb2Ti2O7, Jzz in Eq. (1), being approximately 2 K
(Ref. 20)].
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A. Computational details

NLC using the tetrahedral basis requires exact diagonaliza-
tion of increasingly larger tetrahedral clusters. Using a single
Intel R© CoreTM i7-920 processor and freely available LAPACK

linear algebra routines, diagonalizations for clusters of one
tetrahedron (four sites) and two tetrahedra (seven sites) could
be done in less than a second, while the three-tetrahedron
(10-site) cluster still required less than 10 s. Computing only
the spectrum for a single four-tetrahedron (13-site) cluster
required approximately 25 min of CPU time and 2.1 GB of
memory, or slightly over twice the memory required to store the
full Hamiltonian matrix (226 complex numbers). Generating
the full set of eigenstates required between 4 and 8 GB of
memory. With the computer resources available to us, full
exact diagonalization of larger systems, and thus higher orders
of NLC expansion, were prohibited by memory requirements.

A list of different topological clusters with complete
tetrahedra is shown in Fig. 1. A single site must be treated
as a cluster as well, but is not shown. Because the local
quantization ẑ axis varies from sublattice to sublattice in the
RE2M2O7 pyrochlore oxides,5,23 in the presence of a magnetic
field, each cluster with different types of sublattice site must
be treated separately. For example, each of the four single-site
graphs (in NLC order n = 0) must be treated separately for
a general field direction. A single tetrahedron graph remains
unique even in a field. But, the graph with two tetrahedra
joined at a vertex (NLC order n = 2) is really four distinct
graphs that depend on the type of site (i.e., sublattice) that is
shared between the two tetrahedra. Similarly, all higher-order
graphs must be split into several distinct graphs to complete the
calculation.

FIG. 1. (Color online) List of topological clusters with complete
tetrahedra. In an applied field, each cluster must be treated as several
distinct clusters as explained in the text. The integer n refers to the
order at which the cluster arises and L gives the cluster count in zero
field.

1. Calculation of observables

We use the eigenvalue spectrum {Eα} of H = HQSI + HZ

to compute the partition function Z:

Z = Tr(e−βH) =
∑

α

e−βEα . (4)

The expectation value for the internal energy is computed from
the formula

E = 〈H〉 = Tr(He−βH)/Z. (5)

This quantity is used, in turn, to compute the entropy as

S/kB = βE + ln Z, (6)

to which the heat capacity is related as

C = T
∂S

∂T
. (7)

The average magnetization per site M(T ,h) is calculated
as a derivative of the free energy with respect to the applied
magnetic field h:

M(T ,h) = β−1 ∂

∂h
ln Z. (8)

In practice, an approximation of this derivative at a given
field value requires two separate evaluations of the free energy
separated by a small change of field strength, in this case
10−6 T.

We believe in the correctness of the results from our
calculations of the field-dependent properties for the following
three reasons. First, the same results were obtained from
two independently written computer programs. Second, we
checked that in the limit h → 0, the zero-field results63 were
reproduced. Third, we checked that at high temperatures the
weights of the clusters were found to scale with the expected
powers of inverse temperature β. These powers can be deduced
from considerations of a high-temperature expansion of the
quantity of interest. Consider, for example, an expansion for
ln Z. In such an expansion, either at least two powers of
β ≡ 1/(kBT ) arise for each tetrahedron or at least one power
of β arises for each tetrahedron together with two powers
of β from placing the Zeeman HZ field term on sites at the
outside perimeter of the cluster, as needed to give a nonzero
contribution to the trace in Eq. (4). Thus, the weight of the
four-tetrahedra cluster is of order β8 in zero field and of order
β6 in nonzero field. These latter checks are nontrivial and
demonstrate that all subgraphs have been properly subtracted
within the NLC procedure.

2. Euler summation

NLC generates a sequence of property estimates {Pn} with
increasing order n, where Pn = ∑n

i=1 Si . The convergence of
such a sequence can be improved by Euler summation.63,66

In general, given alternating terms Si = (−1)iui , the precise
infinite-size lattice property P∞(L) is approached by the sum
(with n even)

u0 − u1 + u2 − · · · − un−1 +
∞∑

s

(−1)s

2s+1
[�sun], (9)
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where � is the forward difference operator

�0un = un,

�un = un+1 − un,

�2un = un+2 − 2un+1 + un,

�3un = un+3 − 3un+2 + 3un+1 − un, . . . . (10)

Usually, a small number of terms are computed directly, and the
Euler transformation, Pn,E defined below, is applied to the rest
of the series. In our case, where direct terms were available up
to fourth order, we began the transformation after the second
order, so that the third- and fourth-order Euler-transformed
property estimates P3,E and P4,E, respectively, are given by

P3,E = S0 + S1 + S2 + 1

2
S3,

(11)

P4,E = P3,E + S3 + S4

4
.

III. EXPERIMENTAL METHODS

As we are aiming to establish a close connection between
experiment and theory for the temperature and field depen-
dence of the magnetization M(T ,h), it is necessary to per-
form adequate demagnetization corrections and this, in turn,
necessitates measurements on single crystals. Magnetization
experiments were thus carried out on three single-crystal
pieces. The samples were cut from two large single crystals
grown by the optical floating zone method, using a growth
procedure similar to that previously employed for growing
single crystals of Tb2Ti2O7.67 One crystal, which provided
samples aligned along [110] and [100], was grown at a
rate of 6 mm/h in oxygen pressure of 4 atm. The second
crystal, from which a piece aligned along [111] was cut,
was grown at 5 mm/h in 2 atm of oxygen. The samples
were aligned using x-ray diffraction to within 2◦ of each of
the three high-symmetry directions: [100], [110], and [111].
Two single-crystal samples were cut into rectangular prisms
(“needles”) measuring 0.74 mm × 0.74 mm × 3.74 mm and
0.69 mm × 0.65 mm × 2.67 mm, respectively, with [111] and
[100] directions oriented along their long axes. The applied
magnetic field was also oriented parallel to the long axis. The
third single-crystal piece was cut and polished into a rounded
triangular shape which we approximate, for the purposes of
demagnetization corrections, as an ellipsoid with major axes
a = 1.85 mm, b = 1.5 mm, and c = 0.8 mm. The a direction
made an angle of 22◦ with respect to both [110] and the applied
field direction within the ab plane. The magnetization of the
same [110] sample was also reported in Ross et al.,39 but
without a demagnetization correction applied. The data were
collected with a Quantum Design MPMS instrument, which
uses a SQUID magnetometer to measure the dc magnetization
in magnetic fields up to 5 T and temperatures as low as 1.8 K.
The magnetization data for the [100] and [111] samples were
corrected for demagnetization effects using an approximate
formula for the demagnetization field in rectangular prisms.68

The data for the [110] sample were corrected by approximating
it as a very flat ellipsoid, with the field direction 22◦ from
the (long) a direction. In general, the apparent susceptibility
χA ≡ M(T ,h)/happlied should be corrected to account for the

demagnetization field using the following formula, in SI units:

1/χ = 1/χA − N, (12)

where χ is the actual susceptibility that we aim to compare
with the results M(T ,h)/h from NLC calculations. χA is the
apparent susceptibility and N is the demagnetization factor,
which depends on the sample geometry.68

IV. NLC RESULTS: THERMODYNAMIC PROPERTIES

The temperature dependence of the magnetization M(T ,h)
divided by the strength of the applied magnetic field h along
the cubic [100] direction and calculated using the NLC method
is shown in Fig. 2. Figures 2(a) and 2(b) show the results for
a field of 0.2 and 1.0 T, respectively. The experimental values
of M(T ,h)/h, after demagnetization corrections, are shown
for the same applied field values and are marked by black
pluses. The number beside each curve labels the NLC order
at which M(T ,h) was calculated (see Sec. II). NLC-0 (red
curve, label “0”) considers a single-site cluster. It therefore
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FIG. 2. (Color online) The figure illustrates the evolution of the
magnetization divided by the field strength M(T ,h)/h with NLC
order n and convergence towards the experimental data. Panels (a)
and (b) are for h = 0.2 and 1.0 T, respectively, and with the field
h applied along the [100] direction. Solid curves are for the NLC
calculations and the number beside each curve corresponds to the
order n up to which the calculations were carried out. Pluses are
the demagnetization corrected experimental M(T ,h) results divided
by h.
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does not incorporate the effect of the interactions in Eq. (1)
between the Yb3+ ions and thus corresponds to the Yb3+
single-ion property with g-tensor components gzz = 1.80 and
gxy = 4.32. The significant differences between NLC-0 and
the experimental data emphasize the importance of interactions
and concurrent development of correlations below 10 K.
The importance of interactions on causing a departure of
M(T ,h)/h from its single-ion value below T � 10 K had
previously been noted on the basis of a determination of the
local susceptibility from polarized neutron measurements61,62

as well as a subsequent theoretical calculation of the local
susceptibility69 using exchange parameters determined from
RPA fits to the diffuse paramagnetic scattering.56 However,
none of these works61,62,69 had the quantitative descriptive
power of the present NLC calculations.

Compared to NLC-0, NLC-1 incorporates the effect of
interactions and correlations at the scale of one tetrahedron
(see Fig. 1). Focusing on the case h = 0.2 T, one observes little
difference between NLC-0 and NLC-1 above T ∼ 2 K, but a
large increase in M(T ,h)/h in going from NLC-1 to NLC-2
for T � 7 K. The results for NLC-1 require the exact diago-
nalization of the Hamiltonian over a single tetrahedron and,
therefore, incorporates spatial spin-spin correlations extending
only over a nearest-neighbor distance (see panel for n = 1
in Fig. 1). In contrast, NLC-2 considers two tetrahedra (see
panel for n = 2 in Fig. 1) and therefore considers correlations,
and associated fluctuations, reaching out to third-nearest
neighbors. As first noted by Ross et al.,20 and further expanded
upon by Applegate et al.,63 the fluctuations of the joining
spin/site of two tetrahedra mediate, via the Jz± coupling
in Eq. (1), an effective ferromagnetic third-nearest-neighbor
coupling (J3 in Ref. 63). This fluctuation-induced interaction
promotes ferromagnetic correlations among the otherwise
degenerate classical 2-in/2-out spin ice states, an effect that
we believe important to induce ferrimagnetic correlations in
Yb2Ti2O7.20,21,63 The incorporation of this fluctuation process
and induced effective J3 coupling only happens for NLC order
n � 2 and is thus absent for NLC-1. We believe that the large
increase of M(T ,h)/h in going from NLC-1 to NLC-2 results
from the ability of clusters of two tetrahedra to support that
type of fluctuation physics while a single tetrahedron can
not. One may want to argue that the observed large increase
of the calculated M(T ,h)/h, when going from NLC-1 to
NLC-2, is further evidence that Yb2Ti2O7, as described by
the effective exchange parameters of Ref. 20, is either on its
way or at the verge of developing spontaneous ferrimagnetic
order at low temperature. The current lack of consensus35,37–41

about the ground state of Yb2Ti2O7 below the Tc ∼ 0.26 K
transition35,42–44 indicates that if this system does indeed have
a tendency towards splayed ferromagnetic (sp-FM) order, this
tendency is either interrupted at T � Tc or is quite fragile with
respect to perturbations not included in the model (1). We
return to this point below in Sec. V C when we discuss the
magnetic entropy S(T ,h) in nonzero magnetic field h.

Considering the results of Fig. 2(a), we observe that the
NLC-2, -3, and -4 results are quite close to each other
down to T ∼ 1.8 K, the lowest temperature available for the
experimental data. Most importantly, one should note that
NLC-2, -3, and -4, using the effective anisotropic exchange
parameters {Je} of Ref. 20, already provide, without Euler

FIG. 3. (Color online) Calculated magnetizations as a function of
temperature for different field strengths and directions are shown
using the fourth-order Euler-transformed results from the NLC
expansion [see. Eq. (10)]. The magnetic fields are applied along the
[100], [110], and [111] directions.

summation, and without any adjustment of the parameters
defining HQSI and HZ, a very good agreement with the
experimental data. A similarly good agreement is also found
between the experimental data and the NLC results for
the highest NLC orders (n = 3,4) for a field h = 1 T [see
Fig. 2(b)].

Having demonstrated that (i) interactions do play a strong
effect in renormalizing M(T ,h) for T � 10 K and that
(ii) NLC orders n = 3 and 4 give a highly suitable description
of the experimental data even for the weakest field h = 0.2 T
considered (see the discussion in Sec. II), we henceforth solely
report results from the Euler transformation method to order
n = 3 and 4 [see Eqs. (10) and (11)] to generate theoretical
values of M(T ,h)/h versus temperature and for various field h

along the three high-symmetry cubic directions ([100], [110],
and [111]).

Figure 3 shows M(T ,h)/h, obtained using the fourth-order
Euler-transformed NLC results, as a function of temperature T

for fields h of strength 0.2, 1, 3, and 5 T oriented parallel to the
[100], [110], and [111] directions. Again, the calculation em-
ployed the microscopic Hamiltonian appropriate to Yb2Ti2O7

as derived from inelastic neutron scattering data at high field.20

Figure 3 shows fourth-order NLC results for M(T ,h)/h per
Yb3+ ion versus temperature T , with both quantities plotted
on a log scale. The calculated magnetization is relatively
independent of direction and levels off at low temperatures,
with the temperature at which it levels off being lower with
smaller applied magnetic fields. While the magnetization is
only weakly dependent on the direction of the applied magnetic
field, such differences in the magnetization as a function of
direction of field are only evident at low temperatures.

V. MAGNETIZATION: CONFRONTING THEORY
WITH EXPERIMENT

A. Field-dependent magnetization

Figure 4 shows the experimentally determined magnetiza-
tion as a function of temperature on a semilog plot. Data are
shown for applied magnetic field directions parallel to [100],
[110], and [111], from top to bottom, and for field strengths
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FIG. 4. (Color online) Calculated magnetizations using the n = 3
and 4 Euler-transformed M(T ,h)/h NLC expansion results [see
Eq. (10)] are compared with the measured magnetization versus
temperature for fields applied along the [100], [110], and [111]
directions. The parameters for H = HQSI + HZ are those determined
from the spin-wave results of Ref. 20. Appropriate demagnetization
corrections have been applied to all experimental data. Departures
between n = 3 and 4 NLC expansion results become noticeable at
temperatures T � 1.8 K.

of 0.2, 1, 3, and 5 T. Once again, M(T ,h)/h is normalized per
Yb3+ ion. Two sets of NLC expansion calculations using the
Euler transformation are shown in Fig. 4; calculations to order
n = 3 are shown as the solid lines and those to order n = 4
are shown as the dotted-dashed lines. Here again, the NLC
expansions utilized the microscopic Hamiltonian derived from
the high-field inelastic neutron scattering (INS) data20 with no
adjustment in the parameters so determined.

Several features are immediately clear from this comparison
between theory and experiment. First, the (Euler-transformed)
NLC expansion results to both n = 3 and 4 orders provide an
excellent description of the magnetization for all field strengths
and directions as well as all temperatures considered. The fact
that a remarkable degree of quantitative agreement between
theory and experiment is achieved without any adjustment
of the microscopic Hamiltonian appropriate to Yb2Ti2O7 is
strong validation of the determination of the microscopic
Hamiltonian.20 As the INS measurements were performed at
T = 0.03 K and applied magnetic fields of h = 2 and 5 T with
h parallel to [110], while the magnetization measurements are
performed for T > 1.8 K and fields �5 T, it would thus appear
that we now have a very accurate description of Yb2Ti2O7

using the same microscopic Hamiltonian over a remarkably
large region of its h − T phase diagram. We return to this
point in Sec. VI.

Looking at the Euler-transformed NLC expansion results
for n = 3 (solid line) and 4 (dotted-dashed line) in Fig. 4,
one can see that, as expected, the two calculations are quite
consistent with each other for T � 1.8 K, but depart from each
other at lower temperatures. There is also a better agreement

at lower temperatures between n = 3 and 4 NLC expansions
for higher fields, independent of the direction of the applied
magnetic field, as anticipated on the basis of the general
arguments presented in Sec. II.

B. Other parametrizations of HQSI

Apart from Ref. 20, there have been over the last four years
a number of other studies34,40,56,61,62 combining experiment
and theory that were aimed at determining the strength of
the anisotropic interactions in Yb2Ti2O7. We believe that
most of these studies, if not all, including Ref. 56 that was
coauthored by one of us, are beset by significant drawbacks
compared to the in-field inelastic neutron scattering measure-
ments of Ross et al.20 In fact, one might have wondered
whether the anisotropic exchange parameters {Je} extracted
in Ref. 20 in magnetic fields of 5 T might have suffered
from large renormalization due to magnetoelastic effects. The
good agreement between experimental and NLC results for
zero magnetic field specific heat63 and those presented in
this paper for the temperature and magnetic-field-dependent
magnetization M(t,h) provide compelling evidence that such
renormalization, if it exists, is well within the experimental
uncertainty of the estimated {Je} parameters.20 That being
said, we now discuss each of the other works.

Cao et al. used polarized neutron diffraction to extract
the local susceptibility tensor of a number of RE2Ti2O7

pyrochlores, including Yb2Ti2O7, in an applied external field
of 1 T along the [100] crystallographic direction.61,62 Their
analysis was based on a mean-field theory that ignores the
sublattice nature of the pyrochlore lattice and incorporates
the effect of the local mean-field only via two independent
coupling constants referred to as λz and λ⊥. By construction,
such an approach with two free parameters makes it difficult
to extract the microscopic exchange parameters of the spin
Hamiltonian with four {Je} parameters. Furthermore, as they
do not comment on this, it is not clear that their data analysis
took into account demagnetization effects. Malkin et al. rein-
vestigated the description of the bulk and local susceptibility
of RE2Ti2O7 compounds, but now starting from a micro-
scopic formulation, and incorporating an adequate sublattice
structure in their model as well as including demagnetization
corrections.34 In the case of Yb2Ti2O7, they reported being
unable to describe the longitudinal site susceptibility χ of
Cao et al. by using a single set of crystal-field parameters.
It is perhaps important to note that Malkin et al. assumed
that the bilinear anisotropic interactions between the mag-
netic moment operators were symmetric, which amounts to
neglecting Dzyaloshinskii-Moriya- (DM-) type interactions.
This may have been partly responsible in causing difficulties
for obtaining a quantitative description of this material.

Thompson et al.56 were the first to consider a microscopic
theory which incorporates the single-ion crystal-field Hamil-
tonian Hcf for Yb3+ in Yb2Ti2O7, the four symmetry-allowed
bilinear nearest-neighbor interactions, Kuv

ij between the J i

angular momentum operators along with the long-range mag-
netostatic dipole-dipole interactions.56 In order to determine
the Kuv

ij couplings, Thompson et al. used a random phase
approximation to calculate the diffuse (energy-integrated)
neutron scattering intensity S(q) in the [hhl] scattering phase
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and compare with experimental measurements at a temperature
Tfit = 1.4 K.70 With the Curie-Weiss temperature of Yb2Ti2O7

given by θCW ∼ 0.5 ± 0.2 K, it would have seemed that RPA,
which is in essence a mean-field scheme, may be a priori
reasonably quantitatively accurate at a temperature T = 1.4 K
with a frustration/fluctuation level set by θCW/T � 0.3. Forced
by construction to describe short-range diffuse scattering, the
RPA fit of Ref. 56 provided a set of couplings Kuv

ij allowing
for a good fit of S(q) and, by “retroactive consistency,” a
mean-field critical temperature T RPA

c ∼ 1.1 K < Tfit = 1.4 K.
When translating the determined Kuv

ij parameters in the {Je}
notation of Ross et al., one finds a large difference between
the two sets.63 The authors of Ref. 40 commented in the
Supplemental Material section of their paper that a possible
reason for the failure of the model of Thompson et al.56 to
agree with the results of Ross et al.20 is that the former work
neglected multipolar interactions between the J i operators
beyond the considered bilinear ones. However, as discussed in
the Supplemental Material of Ref. 56, such critique40 would
appear of little merit for the following reason. Thanks to the
essentially total isolation of the Kramers crystal-field doublet
of Yb3+ from the excited states, the projection onto the
ground crystal-field doublet acts as an almost exact invertible
unitary transformation of the Kuv

ij Ji,uJj,v interactions. This
then provides for a one-to-one correspondence between the
bilinear Kuv

ij couplings and the {Je} effective anisotropic

exchange between effective spin- 1
2 operators of Ross et al.20

In other words, the bilinear Kuv
ij Ji,uJj,v model of Ref. 56

can be viewed as a “high-energy” model whose projection
(with “correct” values of the Kuv

ij couplings) gives the JeS
u
i Sv

j

interactions in the model of Eq. (1).20

Rather than being flawed for ignoring multipolar interac-
tions, the difficulty with Thompson et al.’s results56 can be
readily understood on the basis of the mean-field theory results
presented in Ref. 20. The mean-field T mf

c determined using the
{Je} parameters from Ref. 20 is approximately T mf

c ∼ 3.5 K >

T RPA
c . Such a high T mf

c compared to the Tfit = 1.4 K RPA fit
of S(q) means that the extracted Kuv

ij parameters from Ref. 56
suffer from a very significant and uncontrolled renormalization
from thermal (and possibly quantum) fluctuations. Concerns
that Tfit = 1.4 K might have been too low for a quantitative
RPA fit of S(q) of Yb2Ti2O7 and that fits of the higher
temperature 9.1-K data56 might have been more appropriate
had been expressed in Ref. 70. Unfortunately, the diffuse
signal at 9.1 K proved too weak to proceed. As demonstrated
by Applegate et al. in their NLC calculations,63 because of
their renormalization, the anisotropic exchange parameters of
Ref. 56 provide a poor description of the zero-field magnetic
specific heat C(T ) of Yb2Ti2O7.

Chang et al. most recently reported their own estimate of the
exchange parameters for Yb2Ti2O7.40 They also employed an
RPA scheme to fit the (polarized) neutron scattering intensity
of the compound, but using an effective spin- 1

2 model rather
than the bilinear Kuv

ij Ji,uJj,v interactions plus Hcf as done by
Thompson et al.56 Perhaps believing in the incorrectness of the
latter description (see discussion two paragraphs above),
the authors of Ref. 40 passed over in the body of their paper
the opportunity to offer a critique of Thompson et al.’s model.
That said, with the published evidence from Ref. 20 that
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FIG. 5. (Color online) The figure shows that M(T ,h) from NLC
calculations (orders n = 0,1,4) using the {Je} parameters reported by
Chang et al. (Ref. 40) dramatically fail to describe the experimental
M(T ,h) results (plus symbols). See text.

T mf
c for Yb2Ti2O7 may be as high as 3.5 K,20 and that the

RPA fits of Thompson et al. at Tfit = 1.4 K may thus be of
questionable quantitative merit, it is surprising that Chang et al.
did nevertheless proceed to use RPA to fit the polarized neutron
scattering at a temperature as low as 0.3 K, which is a mere
25% higher than the experimental Tc ∼ 0.24 K. It is also not
clear how the authors of Ref. 40 find a similarity between their
{Je} values and those of Ross et al., especially after evidence
had been reported by Applegate et al.63 that the {Je} of Ref. 40
fail to describe the magnetic specific heat C(T ), while those
of Ross et al. provide a quite adequate description of C(T ).63

Chang et al. propose a rationalization of the low-temperature
state of Yb2Ti2O7 on the basis of a Higgs-type phase and
suggest positioning this material in a {Je} parameter space near
a parent classical spin ice. Yet, at the same time, they overlook
to comment on the inability of their microscopic model with
its RPA-determined set of {Je} to describe C(T ).63 As in the
case of Thompson et al.’s RPA analysis,71 Chang et al.’s fit to
the neutron scattering data provides, by the very consequence
of using RPA at a temperature T , with Tc � T � T mf

c , for
a set of coupling parameters which are significantly and
uncontrollably renormalized downward compared to the bare
{Je}. This is illustrated in Fig. 5 where it is shown that
NLC-1 and NLC-4 using the {Je} parameters of Chang et al.
do not describe M(T ,h) for temperatures T � 10 K, where
correlations have barely started to develop.56 In fact, down to
T = 1 K, there is little difference between either NLC-1 and
NLC-4 with the single-ion magnetization with all interactions
turned off and given by the NLC-0 results.

To conclude this discussion, it thus appears that only
Ross et al.’s set of microscopic parameters20 consistently
describe Yb2Ti2O7 for fields h < 5 T and temperatures T �
0.7 K. We return to this in Sec. VI.

C. Field-dependent specific heat

While we are not aware of in-field specific heat C(T ,h)
measurements on Yb2Ti2O7 single crystals, we expect these
to be soon carried out given the interest devoted to this
compound. One perspective as to why such measurements
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might be of interest is the following. The Er2Ti2O7 pyrochlore
antiferromagnet displays a transition to long-range order at
Tc ∼ 1.2 K.6,72,73 The application of a magnetic field along
[110] ultimately destroys that order at T = 0, giving rise to
a quantum phase transition at hc ∼ 1.5 T.72,73 Specific-heat
measurements in nonzero field have been found useful to
characterize the evolution of this system in and out of the
long-range-ordered phase at h � 1.5 T and T � 1.2 K.72,73

Measurements of C(T ,h) in Yb2Ti2O7 for T < 0.3 K may
thus well be very interesting. This would be especially true if,
once the sample dependence of Tc has been understood and,
if Tc = 0.26 K does indeed turn out to be a phase transition
to a ferrimagnetically ordered state, as suggested by some
experiments40 and theory,20,21,63 but not all experiments.35,41,74

Thus, in anticipation that such measurements may be per-
formed on Yb2Ti2O7, we have used NLC expansion to
calculate C(T ,h).

The specific heat C(T ,h)/R (R is the molar gas constant),
calculated using the Euler-transformed NLC expansion to
order n = 4 and the microscopic Hamiltonian determined for
Yb2Ti2O7 from inelastic neutron scattering (Ref. 20) is shown
in Fig. 6. We present results for C(T ,h)/R for a field parallel
to [100], [110], and [111] from top to bottom, respectively. In
all cases, calculations are presented for field strengths ranging
from 0.2 to 5 T. The magnetic entropy S(T ,h) results are
shown in Fig. 7, with the same sequence of field magnitude
and directions as in Fig. 6.

The curves of Fig. 6 show significant departure between
the Euler-3 (E3) and Euler-4 (E4) results at temperatures
T � 1 K for the lowest field of 0.2 T, accompanied by

FIG. 6. (Color online) The calculated molar specific heat using
NLC is shown as a function of temperature and magnetic field with
field applied along, from top to bottom, the [100], [110], and [111]
directions. These results were calculated using the n = 3 and 4 Euler
transformation NLC results using the {Je} parameters of Ref. 20. The
shaded region at low temperatures and fields indicates the regime
where accurate NLC results are not available, as described in the text.

FIG. 7. (Color online) The calculated molar entropy using NLC
is shown as a function of temperature and magnetic field with field
applied along, from top to bottom, the [100], [110], and [111]
directions. These results were calculated using the n = 3 and 4 Euler
transformation NLC results using the {Je} parameters of Ref. 20. The
shaded region at low temperatures and fields indicates the regime
where accurate NLC results are not available, as described in the text.

C(T ) becoming negative for a certain temperature window.
This is a nonphysical behavior and a consequence of the
truncation of the NLC at order n = 4 and the neglect of
correlations that would be supported by clusters of larger size
than NLC-4 considers (see Fig. 1). Specific-heat results below
T ∼ 1 K should probably be viewed as inaccurate while the
entropy S(T ,h) results are perhaps accurate at 0.2 T down
to a slightly lower temperature (T ∼ 0.7 K).63 We identify,
somewhat conservatively, the range T < 1 K where results
become inaccurate by a shaded gray region in Figs. 6 and 7.
As discussed in Sec. II, the lowest temperature at which the
NLC results become numerically accurate decreases as the
magnetic field h increases, as can be seen in Figs. 6 and 7
when the E3 and E4 results agree.

The trend in the specific-heat data of Fig. 6 is very similar
for all three field directions. A broad peak is observed for a field
strength h above ∼2 T, with the peak position moving to lower
temperatures as h is decreased. While the NLC calculation is
inaccurate for temperatures less than ∼1 K (see Ref. 63) and for
appropriately low-field strengths, the calculated molar specific
heat at the lowest applied magnetic fields is qualitatively
consistent with that observed experimentally in zero field,36

which shows a sharp anomaly at very low temperatures as
well as a broad shoulder near 2 K.

Even though, at first sight, the thermodynamic properties
look independent of the field direction, there are subtle
differences at low temperatures and fields, which could be
taken as evidence, at least in the model, of an ultimate
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spontaneous ferrimagnetic ordering with M along [100] in
zero field.20,21,40,63,74 On close inspection, one finds that for
fields of 1 T and lower, C(T ,h) is higher at temperatures
around 1 K for the [100] direction and, as a result, the entropy
S(T ,h) is substantially lower. In fact, as shown in Fig. 7, the
entropy for fields h = 0.5 and 1 T along [100] appears to
become vanishingly small at temperatures T � 0.8K, whereas
there remains a residual entropy along the other two directions.
The residual entropy remains largest along the [111] direction.
This observation is consistent with the picture of a zero-field
ordering in this system, characterized by M along one of
the 〈100〉 crystallographic directions.20,21,40,63 In that case,
applying a field along [100] selects one ordered state and the
system merely exhibits a crossover to a paramagnetic state
at a temperature of order 1 K. The entropy then displays
an activated temperature dependence at low temperatures.
In contrast, for small fields along [110], two degenerate
ordered states remain while three degenerate states remain
for small fields along [111]. Thus, there should continue to
be a low-temperature phase transition in sufficiently weak
magnetic fields along either [110] or [111], with only below the
transition the entropy going to zero. By its nature, NLC does
not allow for our theoretical calculations to converge at low
enough temperatures and magnetic fields to fully confirm this
picture. It would thus be interesting to investigate its validity
via experimental C(T ,h) measurements.

To summarize, for the model of Eq. (1) that we consider for
Yb2Ti2O7, the rather large anisotropic exchange interactions
lead to the development of a collective paramagnetic state
at T < T mf

c ∼ 4 K with θCW � T mf
c , being thus somewhat

“hidden” and difficult to quantitatively describe using standard
textbook (e.g., RPA and other mean-field-like) methods. In
this material, and perhaps in other candidate quantum spin ice
materials,35 the fit of bulk thermodynamic data such as M(T ,h)
and C(T ,h) using NLC may provide a useful alternative to
parametrize their spin Hamiltonian.

VI. DISCUSSION AND CONCLUSION

In this paper, we have compared the results from numerical
linked-cluster (NLC) calculations of the temperature and
magnetic-field-dependent magnetization of Yb2Ti2O7 with
those obtained from experimental measurements on this
material in a temperature range T ∈ [1.8,20] K and magnetic
field range h ∈ [0.2,5] T. The NLC calculations were per-
formed on a Hamiltonian describing the interactions between
pseudospins S = 1

2 and characterized by effective anisotropic
exchange couplings determined via inelastic neutron scattering
(INS) measurements in the polarized paramagnetic state of
Yb2Ti2O7.20 The overall agreement between the NLC and
the experimental results were found to be excellent (see
Fig. 4). Conversely, NLC magnetization results obtained using
the exchange couplings determined from a random phase
approximation analysis of the diffuse paramagnetic neutron
scattering40,56,71 were found to be in significant disagreement
with the experimental magnetization measurements. The
excellent agreement between NLC and experimental measure-
ments of M(T ,h), down to a temperature of about 1 K, indicate
that (i) the proposed nearest-neighbor exchange model20 is
quantitatively accurate to describe Yb2Ti2O7, that (ii) high-

field inelastic scattering in the polarized paramagnetic state is
a reliable method for extracting effective exchange parameters,
and that (iii) long-range dipolar interactions appear to not play
an important role in the energetics of the system. The latter con-
clusion is perhaps a bit surprising given that long-range dipolar
interactions play a key role in the physics of classical (dipolar)
spin ices.32,59,60 One obvious difference is that, relative to
the Jzz effective exchange interaction, the nearest-neighbor
contribution of the magnetostatic dipole-dipole interactions in
Yb2Ti2O7 is approximately one order of magnitude smaller
than in the classical dipolar spin ices.11,16,32,33 At the very
least, one may consider that the nearest-neighbor contributions
of the dipolar interactions are “already” incorporated in the
{Je} effective anisotropic exchange. Then, it thus appears
that the perturbative long-range (beyond nearest-neighbor)
part of the dipolar interactions plays no dramatic role in a
field greater than 0.2 T and down to 1.0 K (Figs. 6 and 7)
or, in zero field, down to approximately 0.7 K as found in
Ref. 63. It may be that, if Yb2Ti2O7 does indeed possess
a splayed ferromagnetic ordered state with a magnetization
along the 〈100〉 axes, as suggested by some studies,37,40 that
the sole role of dipolar interactions is to weakly renormalize
the critical temperature and the level of quantum fluctuations,
along with inducing ferrimagnetic domains. Yet, perhaps one
should not be too expedient in assuming a generic irrelevance
of long-range dipolar interactions of order 10−1 compared
to Jzz for any candidate quantum spin ice material. One can
imagine that dipolar interactions may play an important role,
possibly inducing novel phases, in a material that would, based
solely on its effective anisotropic exchange couplings {Je}, find
itself at the boundary between the various semiclassical and
intrinsically quantum phases identified in mean-field lattice
gauge theories of quantum spin ices.21,22

It is useful at this point to discuss how our results fit with
the current state of affairs regarding Yb2Ti2O7. For the values
Je = Jzz,Jz±,J±,J±± for model (1) that we used, mean-field
theory20 predicts a long-range-ordered ferromagnetic state
with a nonsaturated magnetization along one of the 〈100〉 axes,
and with the magnetic moment at each site splayed away from
the magnetization direction. The same splayed-ferromagnetic
(sp-FM) state phase is predicted on the basis of a gauge
mean-field theory (g-MFT).21 Indeed, on the basis of the
latter work, Yb2Ti2O7 would be predicted to be located deep
in the sp-FM phase, far from the phase boundary with an
antiferromagnetic state as well as far from a U(1) quantum spin
liquid state or the exotic Coulomb ferromagnetic state. The
results presented in this paper [see discussion of the field and
temperature dependence of C(T ,h) and S(T ,h) in relation to
Figs. 6 and 7] suggest that the model is developing correlations
that would, below the lowest temperature where the current
NLC calculations are reliable, lead to this sp-FM phase.

One notes that the sp-FM phase is the one that has been
reported in a recent neutron scattering experiment on a single
crystal,40 as suggested by earlier studies.37 However, other
single-crystal neutron scattering experiments,20,39 neutron
depolarization measurements38 and muon spin relaxation
studies41 have not confirmed such a sp-FM state. In the same
vein, and rather interestingly, a very recent work on the closely
related Yb2Sn2O7 material45 has found a sharp first-order
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transition at Tc ∼ 0.15 K to a state, which according to 170Yb
Mössbauer spectroscopy and powder neutron scattering, is
precisely a sp-FM phase.45

If the sp-FM phase is a natural state for the Yb2M2O7 (M =
Ti, Sn) materials, why then does Yb2Ti2O7 fail to display a
robust sp-FM ordering? The answer to this question may be
partly related to the recent evidence that there is a tendency
for a small percentage [O(1%)] of Yb3+ to occupy Ti4+ sites
in single crystals grown via the image furnace method.44

This phenomenon is referred to as “stuffing.” Such a form of
disorder would lead to effective random bonds being generated
between the original Yb3+ pyrochlore lattice ions. Naively, one
might have thought that if such frustrating random bonds were
sufficiently strong to fully undermine the development of the
sp-FM phase, the system would then go into a spin glass state.
However, to the best of our knowledge, no experiment has
reported evidence for a spin glass state in Yb2Ti2O7.38,41,75

In light of the observation that single-crystal samples may
be prone to stuffing and that some powder samples display
very sharp specific-heat anomaly,44 it might be worthwhile
to carry out a new generation of powder neutron scattering
measurements on samples with the sharpest specific-heat
anomaly.44

In summary, our results confirm the values of the anisotropic
exchange previously determined in Ref. 20. In the simplest
scenario, these couplings would lead to a ferromagnetic phase
with moments splayed away from the 〈100〉 axes. What
prevents Yb2Ti2O7 to enter this state is at this time not known.
Until the nature of the state below Tc ∼ 0.26 K has been
determined experimentally and understood theoretically, the
problem of Yb2Ti2O7 will not have been completely solved.

Let us conclude with a few general comments. We believe
that it would be, at this time, very interesting and most useful to

carry out similar studies that combine inelastic neutron scatter-
ing and thermodynamic bulk measurements for other candidate
quantum spin ice materials, with Yb2Sn2O7 (Ref. 45) and
Yb2Ge2O7 being obvious choices. From the lessons learned in
this work, as well as from Ref. 63, we anticipate that NLC will
contribute to help developing a quantitative parametrization
of microscopic models of quantum spin ices and help pave
the way for an ultimate understanding of these fascinating
systems. However, for this program to be successful, the
availability of high-resolution inelastic neutron scattering data
sets will likely prove to be essential. In parallel, in-field single-
crystal specific-heat and magnetization measurements which
properly account for demagnetization effects will also be
necessary.

Note added in proof. Recently, a transition at a temperature
0.15 K to a canted ferromagnetic phase in Yb2Sn2O7,
a close analog of Yb2Ti2O7, was reported.45 On the
other hand, another study on Yb2Sn2O7 did not find evi-
dence for such a long-range ordered canted ferromagnetic
phase.78
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