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The thermodynamic properties of ferromagnetic spin chains have been analyzed with a variety of microscopic
methods over the years: Bethe ansatz, spin-wave theory, Schwinger-boson mean-field theory, Green functions,
and renormalization group methods. Surprisingly, in all these different studies, the manifestation of the spin-wave
interaction in the low-temperature series for the thermodynamic quantities, in the presence of a finite magnetic
field, has been largely neglected. In the present work, we address this problem by following a different path,
based on the systematic effective Lagrangian method. We evaluate the partition function up to two-loop order
and derive the low-temperature expansion of the energy density, entropy density, heat capacity, magnetization,
and susceptibility in the presence of a weak external magnetic field. Remarkably, the spin-wave interaction only
manifests itself beyond two-loop order. In particular, there is no term of order T 2 in the low-temperature series
of the free energy density. This is the analog of Dyson’s statement that there is no term of order T 4 in the
low-temperature series of the free energy density in the case of three-dimensional ideal ferromagnets. The range
of validity of our series is critically examined in view of the nonperturbatively generated energy gap. We also
compare our results with the condensed matter literature and point out that there are some misleading statements.
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I. INTRODUCTION

Ideal ferromagnets, i.e., ferromagnetic systems, which are
governed by purely isotropic exchange coupling between the
nearest neighbors and by the interaction with a weak external
magnetic field, have been the subject of an impressive number
of publications over the past few decades. In three spatial
dimensions, the situation is well-known: after various unsuc-
cessful attempts, the correct low-temperature series for the
spontaneous magnetization was first given by Dyson in Ref. 1.
Many authors after Dyson also discussed the low-temperature
series for the three-dimensional ideal ferromagnet, based on
other microscopic methods, such as spin-wave theory and
Green functions. A simple and elegant method, according to
Dyson,2 is provided by Ref. 3. Recently, using the systematic
effective Lagrangian technique, Dyson’s series was rederived
in Ref. 4 and extended to higher orders in Ref. 5.

Remarkably, regarding the low-temperature series describ-
ing two-dimensional ferromagnets, only a few papers are
available, almost all of them dealing with noninteracting spin
waves.6–19 Within the effective Lagrangian framework, the
question of how the spin-wave interaction manifests itself
in the low-temperature properties of two-dimensional ideal
ferromagnets has been solved in Refs. 20 and 21.

In the present work, we apply the effective Lagrangian
method to ferromagnetic spin chains: one-dimensional sys-
tems have never been studied within the systematic effective
loop expansion. As we explain below, Lorentz- or pseudo-
Lorentz-invariant systems, such as antiferromagnets, cannot
be systematically analyzed within the framework of effective
Lagrangians in one spatial dimension: the linear, i.e., relativis-
tic, dispersion relation of the magnons in an antiferromagnet
spoils the systematic loop expansion where the method is
based upon. In this respect, ferromagnetic magnons, which
display a quadratic dispersion relation, represent an interesting
exception; for this nonrelativistic system, the loop expansion
perfectly works in one spatial dimension, such that the

powerful method of effective Lagrangians can indeed be
applied to ferromagnetic spin chains.

The effective Lagrangian method corresponds to an expan-
sions of observables in powers of momentum or, equivalently,
in powers of temperature. The systematic effective framework
is based upon the fact that loops in Feynman diagrams are
suppressed by some power n of momentum: otherwise the
loop expansion does not converge and the effective field
theory method fails. As we will see, the power n referring
to the suppression of momentum depends on the spatial
dimension of the system and on the dispersion relation.
In (pseudo-)Lorentz-invariant effective field theories, which
include the effective theories of quantum chromodynamics
and antiferromagnets, the Goldstone bosons display a linear,
i.e., relativistic, dispersion relation. Here, every loop in a
Feynman diagram corresponds to a suppression of pds−1

powers of momentum. The effective expansion thus works
in three and two spatial dimensions but is not applicable to
one-dimensional (pseudo-)Lorentz-invariant systems. In this
respect, the ferromagnet, its magnon displaying a quadratic
dispersion relation, represents a peculiar case. Here, every loop
in a Feynman diagram leads to a suppression of pds powers of
momentum, implying that the systematic effective Lagrangian
method works in three, two, and one spatial dimension.

In the present study, we evaluate the partition function of
ferromagnetic spin chains up to two-loop order in the presence
of a weak external magnetic field. The low-temperature series
for the free energy density, energy density, entropy density,
heat capacity, magnetization, and susceptibility are given. It is
pointed out that the spin-wave interaction does not yet manifest
itself at this order of the effective expansion: it only enters at
the three-loop level.

The range of validity of the low-temperature series is
more restricted in one than in two spatial dimensions. This
has to do with the fact that, unlike in two spatial dimen-
sions, the nonperturbatively generated correlation length of
ferromagnetic magnons is no longer exponentially large. We
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carefully examine the domain of validity of the effective
low-temperature series and, in particular, underline that it is
conceptually inconsistent to switch off the magnetic field in
these expressions.

While the thermodynamics of ferromagnetic spin chains
has not been analyzed with effective Lagrangians so far,
these systems have attracted a lot of attention over the past
few decades and many methods have been used to derive
their low-temperature properties. Early studies were based
on the Bethe ansatz, amounting to numerically solving a
system of coupled integral equations.22–30 Later on, modi-
fied spin-wave theory—a variant of conventional spin-wave
theory, designed to cope with two- and one-dimensional
systems—was used in Refs. 9, 10, and 31. Ferromagnetic
spin chains were also addressed with Schwinger-boson mean-
field theory,13,14 Green functions,16,32–38 spin-wave theory at
constant order parameter,19 renormalization group and scaling
methods,33,39–45 and by Monte Carlo simulations.37,46–52 Yet
other approaches to ferromagnetic spin chains can be found in
Refs. 53–58.

Most of these studies focus on the limit of a zero magnetic
field. Our effective analysis, on the other hand, is valid in
a different regime where the magnetic field is weak but not
zero. Still, some of the above authors also consider the case
of a nonzero magnetic field, such that their findings can be
compared with our effective results. As it turns out, there
are some misleading statements in the literature regarding
conventional and modified spin-wave theories.

We would like to stress again that the manifestation of the
spin-wave interaction in the low-temperature series describing
ferromagnetic spin chains has not been considered explicitly
in any of the above references, except for Ref. 19, which we
discuss in detail. So it remains rather unclear whether the
low-temperature series presented in these studies are indeed
correct, i.e., complete up to the order considered, or whether
they receive corrections due to the spin-wave interaction. This
is one of the main problems we address in the present work.

The rest of the paper is organized as follows. In Sec. II, we
provide a brief outline of the effective Lagrangian method
with special attention to the loop counting in one spatial
dimension. The partition function for ferromagnetic spin
chains is evaluated perturbatively up to two-loop order and the
low-temperature series for various thermodynamic quantities
are derived in Sec. III. The range of validity of these series
is critically examined in Sec. IV. The relevant condensed
matter literature on ferromagnetic spin chains is reviewed and
compared with our effective results in Sec. V. Finally, Sec. VI
contains our conclusions.

At the end of this section, we would like to mention that the
systematic effective Lagrangian method has been used to study
a variety of condensed matter systems with a spontaneously
broken internal spin symmetry. In three spatial dimensions, the
low-energy properties of ferromagnets and antiferromagnets
were analyzed in Refs. 59–66. Two-dimensional ferromagnets
and antiferromagnets were the subject of Refs. 20, 21, and
67–70. Of particular interest are two-dimensional antiferro-
magnets, which turn into high-temperature superconductors
upon doping with either holes or electrons. These systems have
been analyzed within the effective field theory framework, both
for underlying square and honeycomb lattices, in Refs. 71–81.

Finally, the consistency of the effective Lagrangian method
with high-precision numerical simulations and microscopic
models was demonstrated in Refs. 82–86.

II. EFFECTIVE LAGRANGIANS AND LOOP COUNTING

In this section, we focus on some essential aspects of
the effective Lagrangian method at finite temperature. The
interested reader may find a more detailed account on finite-
temperature effective Lagrangians in Appendix A in Ref. 5
and in the various references given therein. In addition, for
pedagogic introductions to the effective Lagrangian technique,
we refer to Refs. 87–91. We would like to stress, however, that
the present section is self-contained and that there is no need to
read many references in parallel. The references above and
those cited in the course of this section are provided in case
the reader is interested in the foundations of the method, in
the explicit derivation of the effective Lagrangian, or in other
details, not really needed to understand the present calculation.

The basic degrees of freedom of the effective Lagrangian
are the Goldstone bosons which are a consequence of the
spontaneously broken continuous symmetry. At low energies
or low temperatures, these particles dominate the physical
behavior of the system. In the present case of ferromagnetic
spin chains, we are dealing with magnons that are the
Goldstone bosons of the spontaneously broken spin rotation
symmetry; while the Heisenberg model is invariant under the
group O(3), the ground state—at zero temperature—is only
invariant under O(2).

The systematic construction of the terms in the effec-
tive Lagrangian is straightforward: the link between the
underlying theory and the effective theory is provided by
the symmetries.92–94 One first identifies all symmetries of
the underlying theory. In our case, the Heisenberg model
exhibits an O(3) spin rotation symmetry as well as parity and
time reversal symmetry. The effective Lagrangian, or more
precisely, the effective action for the ferromagnetic spin chain,

Seff =
∫

d2xLeff, (1)

inherits all these symmetries of the underlying Heisenberg
model.

Since we are interested in the low-energy—or low-
temperature—dynamics, terms in the effective Lagrangian
which contain only a few derivatives are the most significant
ones, while terms with more derivatives are suppressed.
This organization of terms represents the very basis for the
systematic expansion of observables in powers of momentum
p (or energy or temperature).

As derived in Ref. 59, the leading-order effective La-
grangian of the ideal ferromagnet in ds spatial dimensions
is of order p2 and takes the form

L2
eff = �

εab∂0U
aUb

1 + U 3
+ �μHU 3 − 1

2
F 2∂rU

i∂rU
i,

(2)
r = x1, . . . ,xds

.

The effective degrees of freedom are contained in the two
real components of the magnon field, Ua(a = 1,2), which
represent the first two components of the three-dimensional
magnetization unit vector Ui = (Ua,U 3). The magnetic field
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points along the third direction, �H = (0,0,H ), much like
the magnetization. Our convention is H = | �H | > 0, i.e., the
quantity H is always positive. While the structure of the above
terms is an immediate consequence of the symmetries of
the underlying theory, at this order, two a priori unknown
low-energy constants emerge: the spontaneous magnetization
at zero temperature � and F . These low-energy constants
have to be determined by experiment, numerical simulation
or by comparison with the underlying microscopic theory. In
particular, the constant F can be extracted from comparison
with microscopic results (see Sec. IV) and expressed as

F 2 = JS2a, (3)

where J is the exchange integral of the Heisenberg model and
a is the distance between two spins. Note also that the sign
of � is positive: taking the limit �H → 0 at zero temperature,
the spontaneous magnetization points into the same direction
as the magnetic field, which is the positive 3-direction by our
convention.

The Lagrangian (2) leads to a quadratic dispersion relation,

ω(�k) = γ �k2 + O(|�k|4), γ ≡ F 2

�
, (4)

obeyed by ferromagnetic magnons. The low-energy constant F
is thus related to the spin stiffness, or helicity modulus, γ . Note
that this relation dictates how time and space derivatives in the
systematic effective expansion have to be counted: one time
derivative (∂0) is on the same footing as two space derivatives
(∂r∂r ), i.e., two powers of momentum count as only one power
of energy or temperature: k2 ∝ ω,T .

As derived in Ref. 4, the next-to-leading terms in the
effective Lagrangian are of order p4 and contain four spatial
derivatives. In two or three spatial dimensions, we have a total
of three independent terms:

L4
eff = l1(∂rU

i∂rU
i)

2 + l2(∂rU
i∂sU

i)
2 + l3�Ui�Ui

(ds = 2,3), (5)

where � is the Laplace operator in ds spatial dimensions.
At next-to-leading order in the effective Lagrangian, we
have three effective couplings: l1, l2, and l3. In one spatial
dimension, however, the first two terms coincide and we are
left with only two independent terms of order p4,

L4
eff = l1

(
∂x1U

i∂x1U
i
)2 + l3∂

2
x1

Ui∂2
x1

Ui (ds = 1). (6)

Higher-order pieces L6
eff,L8

eff, . . . of the effective Lagrangian,
as we discuss below, are irrelevant for the evaluation of the
partition function considered in this work. Much like the
leading-order constants F and �, these higher-order effective
constants have to be determined by experiment, numerical
simulation or by comparison with the underlying microscopic
theory. The latter is performed in Secs. IV and V.

In conclusion, the effective Lagrangian for the ferromag-
netic spin chain relevant for the present evaluation is

Leff = �
εab∂0U

aUb

1 + U 3
+ �μHU 3 − 1

2
F 2∂rU

i∂rU
i

+ l1
(
∂x1U

i∂x1U
i
)2 + l3∂

2
x1

Ui∂2
x1

Ui. (7)

The fundamental object in finite-temperature field theory
is the partition function, represented as a Euclidean functional
integral

Tr[exp(−H/T )] =
∫

[dU ] exp

(
−

∫
T
dds+1xLeff

)
. (8)

Here, the integration extends over all magnon field configura-
tions that are periodic in the Euclidean time direction U (�x,x4 +
β) = U (�x,x4), where β ≡ 1/T is the inverse temperature. The
quantity Leff on the right-hand side of the representation (8)
is the Euclidean effective Lagrangian, consisting of a string of
terms,

Leff = L2
eff + L4

eff + O(p6), (9)

which involve an increasing number of derivatives.
The essential point in the perturbative evaluation of Eq. (8)

is that to a given order in the low-temperature expansion
only a finite number of Feynman graphs and only a finite
number of effective constants are relevant. More concretely,
the low-temperature expansion of the partition function is
obtained by analyzing the fluctuations of the spontaneous
magnetization vector �U = (U 1,U 2,U 3) around the ground
state �U0 = (0,0,1), i.e., by expanding its third component,
U 3, in powers of the spin-wave fluctuations Ua ,

U 3 = √
1 − UaUa = 1 − 1

2UaUa − 1
8UaUaUbUb − · · · .

(10)

Inserting this expansion into Eq. (8), one then generates the
set of Feynman diagrams depicted in Fig. 1. The leading
contribution in the exponential on the RHS of Eq. (8) is of
order p2 and stems fromL2

eff . It contains a term quadratic in the
spin-wave field Ua—with the appropriate derivatives and the
magnetic field given in Eq. (2)—and describes free magnons.
The corresponding diagram for the partition function is the
one-loop diagram 3 of Fig. 1.

The nonleading terms in the effective Lagrangian in the
path integral representation of the partition function (8), i.e.,
L4

eff + L6
eff + · · ·, are treated as perturbations. The Gaussian

integrals are evaluated in the standard way (see Ref. 95, in

2 3 4 5d

5a 5b 5c

4

FIG. 1. Feynman graphs related to the low-temperature expansion
of the partition function for the ferromagnetic spin chain up to
order p5. The numbers attached to the vertices refer to the piece
of the effective Lagrangian they come from. Vertices associated
with the leading term L2

eff are denoted by a filled circle. Note that
ferromagnetic loops are suppressed by one power of momentum in
one spatial dimension, ds=1.
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particular, chapter 3), and one obtains a set of Feynman rules
which differ from the zero-temperature rules of the effective
Lagrangian technique only in one respect: the periodicity
condition imposed on the magnon fields alters the propagator,
which, at finite temperature, is now given by

G(x) =
∞∑

n=−∞
�(�x,x4 + nβ), �x = (

x1, . . . ,xds

)
. (11)

Here, �(x) is the Euclidean propagator at zero temperature,

�(x) =
∫

dk4d
ds k

(2π )ds+1

ei�k�x−ik4x4

γ �k2 − ik4 + μH

= 
(x4)
∫

dds k

(2π )ds
ei�k�x−γ �k2x4−μHx4 . (12)

An explicit expression for the thermal propagator, dimension-
ally regularized in the spatial dimension ds , is

G(x) = 1

(4πγ )
ds
2

∞∑
n=−∞

1

x
ds
2

n

e
− �x2

4γ xn
−μHxn
(xn), (13)

with

xn ≡ x4 + nβ. (14)

We restrict ourselves to the infinite volume limit and
evaluate the free energy density z, defined by

z = −T lim
L→∞

L−ds ln[Tr exp(−H/T )]. (15)

From a conceptual point of view it is quite remarkable
that the effective field theory method can be applied to
one-dimensional systems, such as ferromagnetic spin chains.
In fact, ferromagnets represent a peculiar case. The crucial
point is that, in the effective field theory framework, the
perturbative evaluation of the partition function is based on the
suppression of loop diagrams by some power of momentum.
This suppression of loops depends on the spatial dimension
ds of the system as well as on the dispersion relation of
its Goldstone bosons. Now for systems with a quadratic
dispersion relation, such as the ferromagnet, each loop involves
an integral of the type∫

dωdds k
1

ω − γ �k2
∝ pds , (16)

related to ferromagnetic magnons circling in the loop. On
dimensional grounds, the integral is proportional to ds powers
of momentum. While loops in three- (two-) dimensional ferro-
magnets are suppressed by three (two) powers of momentum,
each loop in a Feynman diagram referring to ferromagnetic
spin chains is still suppressed by one power of momentum p.
The one-loop diagram 3 is of order p3, as it involves L2

eff (p2)
and one loop (p). The two-loop diagram 4 is of order p4, as it
involves one more loop compared to diagram 3.

This suppression rule lies at the heart of the organization
of the Feynman graphs of the partition function referring to
ferromagnetic spin chains depicted in Fig. 1. Now we also
understand why the piece L6

eff is not needed for the present
study: the corresponding one-loop graph with a vertex from
L6

eff is of order p7, i.e., beyond the order we are concerned
with here.

In the next section, we evaluate the partition function of
the one-dimensional ideal ferromagnet in full generality up to
order p4. The evaluation at order p5 is much more involved.
Specifically, the renormalization and numerical evaluation
of the three-loop graph 5c turns out to be rather elaborate:
the detailed account of this calculation will be presented
elsewhere.96 In the present study, we rather focus on the
general structure of the low-temperature expansion and answer
the question of which contributions in the thermodynamic
quantities are due to noninteracting spin waves and which
ones originate from the spin-wave interaction. Still, we also
evaluate graph 5d, which is related to noninteracting magnons,
in order to compare our results with the literature.

We emphasize that the suppression of loops in the case of
ferromagnets is different from the loop suppression for systems
with a linear dispersion relation. There, a loop corresponds to
an integral of the type∫

dωdds k
1

ω2 − c2�k2
∝ pds−1. (17)

On dimensional grounds, the integral is proportional to ds-1
powers of momentum. This means that for antiferromagnetic
magnons, loops in three (two) spatial dimensions are sup-
pressed by two (one) power of momentum and that the effective
loop expansion perfectly works in these cases. However, in
one spatial dimension, loops are not suppressed at all and
that’s why the effective Lagrangian method cannot be used to
systematically analyze antiferromagnetic spin chains or any
other one-dimensional (pseudo-)Lorentz-invariant system in
terms of a loop expansion.

III. LOW-TEMPERATURE PROPERTIES OF
FERROMAGNETIC SPIN CHAINS

We now consider those Feynman diagrams of Fig. 1
that contribute to the partition function up to order p4 or,
equivalently, up to order T 2. We also include the diagram 5d,
because we want to compare our results with the condensed
matter literature which is restricted to noninteracting spin
waves. Additional information on finite-temperature effec-
tive Lagrangians and the evaluation of the corresponding
Feynman diagrams—going beyond the outline given in the
previous section—can be found in Ref. 5 (see Sec. III and
Appendix A). Again, we like to point out that we are consider-
ing one-dimensional ideal ferromagnets, i.e., ferromagnetic
spin chains that are governed by the isotropic exchange
interaction between nearest neighbors and by the interaction
with a weak external magnetic field.

At leading order p2, the tree graph 2, which involves L2
eff ,

merely leads to a temperature-independent contribution to the
free energy density,

z2 = −�μH. (18)

The leading temperature-dependent contribution comes from
the one-loop graph 3 and is of order p3. It is related to a (ds +
1)-dimensional nonrelativistic free Bose gas and amounts to

zT
3 = − 1

2π
1
2 γ

1
2

T
3
2

∞∑
n=1

e−μHnβ

n
3
2

. (19)

184420-4



LOW-TEMPERATURE PROPERTIES OF FERROMAGNETIC . . . PHYSICAL REVIEW B 87, 184420 (2013)

At order p4, the first two-loop graph shows up. This contribu-
tion, associated with graph 4, is proportional to single space
derivatives of the propagator at the origin,

z4 ∝ [
∂x1G(x)

]
x=0

[
∂x1G(x)

]
x=0 = 0, (20)

and thus vanishes because the thermal propagator is invariant
under parity, much like the Heisenberg Hamiltonian. As we
have pointed out, the effective action—and thus the thermal
propagator—inherits all the symmetries of the underlying
Heisenberg model.

Finally, we include the one-loop graph 5d of order p5,
which corresponds to noninteracting magnons. Here, the next-
to-leading-order Lagrangian L4

eff comes into play through a
two-magnon vertex,

z5d = −2l3

�

[
∂4
x1

G(x)
]
x=0, (21)

yielding the temperature-dependent contribution

zT
5d = − 3l3

4π
1
2 �γ

5
2

T
5
2

∞∑
n=1

e−μHnβ

n
5
2

. (22)

Gathering terms, the free energy density of the ferromag-
netic spin chain becomes

z = −�μH − 1

2π
1
2 γ

1
2

T
3
2

∞∑
n=1

e−μHnβ

n
3
2

− 3l3

4π
1
2 �γ

5
2

T
5
2

∞∑
n=1

e−μHnβ

n
5
2

+ O(p5). (23)

The contributions of order T 3/2 and T 5/2 originate from one-
loop graphs and are both related to noninteracting spin waves.
While the former is fully determined by the leading-order
effective constants � and F (γ = F 2/�), the latter involves
the next-to-leading-order constant l3.

It is quite remarkable that the spin-wave interaction does
not yet manifest itself at next-to-leading order p4 in the
low-temperature expansion of the free energy density. The
only potential candidate, the two-loop diagram 4 of order
T 2, turns out to be zero due to parity. This is the analog of
Dyson’s statement that, in the case of the three-dimensional
ideal ferromagnet, there is no term of order T 4 in the low-
temperature series of the free energy density. Likewise, there
is no interaction term of order T 3 in the low-temperature series
of the free energy density referring to the two-dimensional
ideal ferromagnet. Regardless of the spatial dimension, the
relevant two-loop diagram turns out to be zero due to
parity.4,5,20,21 In the case of ferromagnetic spin chains, the
spin-wave interaction enters through the three-loop graphs
5a–5c, yielding additional terms of order p5 ∝ T 5/2 in the
series (23).

It is important to stress that our rigorous approach is
completely systematic and does not resort to any kind of
approximations or ad hoc assumptions. The structure of the
above low-temperature series is an immediate consequence
of the symmetries inherent in the one-dimensional ideal
ferromagnet.

We now discuss the effect of a weak magnetic field. We
thus expand the result (23) in the dimensionless parameter

σ = μHβ = μH

T
, (24)

i.e., the ratio between the magnetic field H = | �H | > 0 and
temperature. Retaining all terms up to quadratic in σ , we obtain

z = −�μH − 1

2π
1
2 γ

1
2

T
3
2

[
ζ

(
3

2

)
− 2π

1
2 σ

1
2 − ζ

(
1

2

)
σ

+ 1

2
ζ

(
−1

2

)
σ 2 +O(σ 3)

]
− 3l3

4π
1
2 �γ

5
2

T
5
2

×
[
ζ

(
5

2

)
− ζ

(
3

2

)
σ + 4

3
π

1
2 σ

3
2 + 1

2
ζ

(
1

2

)
σ 2 +O(σ 3)

]
+O(p5). (25)

A thorough discussion of the range of validity of this series will
be given in Sec. IV. As it turns out, it would be inconsistent
to take the limit H → 0. Note that, due to our convention
H = | �H | > 0, the parameter σ defined in Eq. (24) and the
spontaneous magnetization at zero temperature (�) always
take positive values. In particular, the above series for the
free energy density does not depend on the direction of the
magnetic field.

We also consider the low-temperature series for the energy
density u, for the entropy density s, and for the heat capacity
cV of the ferromagnetic spin chain. They can be obtained from
the thermodynamic relations

s = ∂P

∂T
, u = T s − P, cV = ∂u

∂T
= T

∂s

∂T
. (26)

Because the system is homogeneous, the pressure is given by
the temperature-dependent part of the free energy density,

P = z0 − z, (27)

and the thermodynamic quantities take the form

u = 1

2π
1
2 γ

1
2

T
3
2

[
σ

∞∑
n=1

e−σn

n
1
2

+ 1

2

∞∑
n=1

e−σn

n
3
2

]

+ 3l3

4π
1
2 �γ

5
2

T
5
2

[
σ

∞∑
n=1

e−σn

n
3
2

+ 3

2

∞∑
n=1

e−σn

n
5
2

]
+ O(p5),

s = 1

2π
1
2 γ

1
2

T
1
2

[
σ

∞∑
n=1

e−σn

n
1
2

+ 3

2

∞∑
n=1

e−σn

n
3
2

]

+ 3l3

4π
1
2 �γ

5
2

T
3
2

[
σ

∞∑
n=1

e−σn

n
3
2

+ 5

2

∞∑
n=1

e−σn

n
5
2

]
+ O(p3),

cV = 1

2π
1
2 γ

1
2

T
1
2

[
σ 2

∞∑
n=1

e−σn

n− 1
2

+ σ

∞∑
n=1

e−σn

n
1
2

+ 3

4

∞∑
n=1

e−σn

n
3
2

]

+ 3l3

4π
1
2 �γ

5
2

T
3
2

[
σ 2

∞∑
n=1

e−σn

n
1
2

+ 3σ

∞∑
n=1

e−σn

n
3
2

+ 15

4

∞∑
n=1

e−σn

n
5
2

]
+ O(p3). (28)
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Again, for a weak magnetic field H , the series may be expanded in the parameter σ = μH/T ,

u = 1

2π
1
2 γ

1
2

T
3
2

[
1

2
ζ

(
3

2

)
+ 1

2
ζ

(
1

2

)
σ − 3

4
ζ

(
−1

2

)
σ 2 + O(σ 3)

]

+ 3l3

4π
1
2 �γ

5
2

T
5
2

[
3

2
ζ

(
5

2

)
− 1

2
ζ

(
3

2

)
σ − 1

4
ζ

(
1

2

)
σ 2 + O(σ 3)

]
+ O(p5),

s = 1

2π
1
2 γ

1
2

T
1
2

[
3

2
ζ

(
3

2

)
− 2

√
πσ

1
2 − 1

2
ζ

(
1

2

)
σ − 1

4
ζ

(
− 1

2

)
σ 2 + O(σ 3)

]
(29)

+ 3l3

4π
1
2 �γ

5
2

T
3
2

[
5

2
ζ

(
5

2

)
− 3

2
ζ

(
3

2

)
σ + 4

√
π

3
σ

3
2 + 1

4
ζ

(
1

2

)
σ 2 + O(σ 3)

]
+ O(p3),

cV = 1

2π
1
2 γ

1
2

T
1
2

[
3

4
ζ

(
3

2

)
+ 1

4
ζ

(
1

2

)
σ + 3

8
ζ

(
−1

2

)
σ 2 + O(σ 3)

]

+ 3l3

4π
1
2 �γ

5
2

T
3
2

[
15

4
ζ

(
5

2

)
− 3

4
ζ

(
3

2

)
σ − 1

8
ζ

(
1

2

)
σ 2 + O(σ 3)

]
+ O(p3),

where we have retained terms up to quadratic in the magnetic
field.

Note that all terms in the above series for u, s and cV

originate from the two one-loop graphs displayed in Fig. 1. The
explicit contribution due to the spin-wave interaction, entering
at order p5 ∝ T 5/2 (p3 ∝ T 3/2) for u (s,cV ), will be considered
in detail in Ref. 96. Here, we want to emphasize that there is
no interaction term of order p4 ∝ T 2 in the energy density and
no interaction term of order p2 ∝ T in the entropy density and
heat capacity.

Let us now turn to the magnetization. With the expression
for the free energy density (23), the low-temperature expansion
for the magnetization

�(T ,H ) = − ∂z

∂(μH )
(30)

of ferromagnetic spin chains takes the form

�(T ,H )

�
= 1 − α̃0T

1
2 − α̃1T

3
2 + O(p3). (31)

The coefficients α̃i depend on the dimensionless ratio σ =
μH/T and are given by

α̃0 = 1

2π
1
2 �γ

1
2

∞∑
n=1

e−σn

n
1
2

, α̃1 = 3l3

4π
1
2 �2γ

5
2

∞∑
n=1

e−σn

n
3
2

.

(32)

Finally, the susceptibility,

χ (T ,H ) = ∂�(T ,H )

∂(μH )
, (33)

of ferromagnetic spin chains amounts to

χ (T ,H ) = κ̃0T
− 1

2 + κ̃1T
1
2 + O(p), (34)

with coefficients

κ̃0 = 1

2π
1
2 γ

1
2

∞∑
n=1

e−σn

n− 1
2

, κ̃1 = 3l3

4π
1
2 �γ

5
2

∞∑
n=1

e−σn

n
1
2

.

(35)

In what follows, we critically examine the range of validity of
the series presented in this section and thereby put the above
low-temperature expansions for a one-dimensional system on
a firm basis, on the same footing as the low-temperature
series for ferro- and antiferromagnets in three or two spatial
dimensions.

IV. LOW-TEMPERATURE SERIES: RANGE OF VALIDITY

The range of validity of the low-temperature series pre-
sented in this work is restricted due to the Mermin-Wagner
theorem.97 The theorem states that, in one or two spatial
dimensions, no spontaneous symmetry breaking at any finite
temperature can occur in the O(3)-invariant Heisenberg model.
Also, in the context of the ferromagnet, an energy gap is
generated nonperturbatively and the correlation length of
the magnons is no longer infinite. Still, even in one spatial
dimension, the correlation length is large, being proportional
to the inverse temperature,39

ξnp = aC
(0)
ξ

JS2

T

[
1 + C

(1)
ξ

1

π

√
T

JS3
+ O(T )

]
. (36)

Here, a is the spacing between two neighboring sites of the
spin chain and the quantities C

(0)
ξ and C

(1)
ξ are dimensionless

constants. According to Ref. 39, they take the values

C
(0)
ξ = 1.14 ± 0.11, C

(1)
ξ = 0.6514 ± 0.0012. (37)

On the other hand, the value for the first constant, quoted in
Refs. 10 and 98, is C

(0)
ξ = 1, which is the number we will use

for the estimate below. It is important to note that, unlike in
two spatial dimensions,99 the correlation length of magnons in
one spatial dimension is no longer exponentially large.

Apart from the nonperturbatively generated correlation
length ξnp, ferromagnetic magnons are also characterized by
the correlation length ξ which is related to the magnetic field.
As long as the correlation length ξ of the Goldstone bosons is
much smaller than the nonperturbatively generated correlation
length ξnp, our low-temperature series are valid: in this regime,
the spin-waves are well-defined and represent the relevant
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low-energy degrees of freedom. A natural way to define the
correlation length ξ for ferromagnetic magnons is based on
their dispersion relation,

ω(k) = γ k2 + μH + O(k4), γ ≡ F 2

�
, (38)

leading to

ξ =
√

γ

μH
= F√

�μH
. (39)

This quantity has dimension of length and tends to infinity
if the magnetic field is switched off. Indeed, the correlation
length of the magnons in a ferromagnetic spin chain is infinite
at zero temperature.

For the low-temperature series to be valid, the ratio

x = ξ/ξnp (40)

of the two correlation lengths must be a small number. Using
Eqs. (36) and (39), and expressing the effective constant γ in
terms of the exchange integral J of the underlying theory as100

γ = JSa2, (41)

we arrive at
μH

T
= 1

S3x2

T

J
. (42)

For S = 1
2 and with the ratio x = 1

10 , we obtain the relation

μH

T
= 800

T

J
, (43)

which can be interpreted as follows. The exchange integral J

defines a scale in the underlying theory and for the effective
expansion to be valid, the temperature has to be small with
respect to this scale. For practical purposes, we may choose

T

J
= 1

50
=⇒ μH

T
= σ = 16. (44)

The parameter σ can thus be large, i.e., the magnetic field
need not be small compared to the temperature. What is
essential, however, is that the magnetic field itself—much like
the temperature—is small compared to the intrinsic scale J of
the underlying theory.

It is important to note that we cannot completely switch off
the magnetic field in our low-temperature expansions. Rather,
we start running into trouble as soon as we choose a ratio
μH/T , which is smaller than 800T/J ; we then leave the
domain of validity of the low-temperature series derived in
this work, because the effective calculation does not take into
account the nonperturbative effect.

To illustrate the range of validity, we consider the two-
dimensional domain defined by the parameters T/J and
μH/J , which both have to be small for the effective expansion
to be valid. In terms of these parameters the condition (43)
takes the form

μH

J
= 800

T 2

J 2
. (45)

This is the line plotted in Fig. 2. In the parameter space above
that curve, the low-temperature series derived in this work
are valid. In one spatial dimension, the parameter regime is
thus quite restricted. In particular, note that the horizontal axis

0.000 0.005 0.010 0.015 0.020
0.00

0.05

0.10

0.15

0.20

0.25

T

J

H
µ J

FIG. 2. (Color online) Range of validity of the effective low-
temperature expansion of the ferromagnetic spin chain. The allowed
parameter regime corresponds to the area above the curve and is
restricted to very low temperatures.

corresponding to zero magnetic field is outside the allowed
domain.

It is very instructive to compare this result with the range of
validity of the analogous low-temperature series, referring to
two-dimensional ideal ferromagnets. There, the nonperturba-
tively generated correlation length is exponentially large, the
argument of the exponential being proportional to the inverse
temperature,99

ξnp = CξaS− 1
2

√
T

JS2
exp

(
2πJS2

T

)
(ds = 2), (46)

where a is the spacing between two neighboring sites on the
square lattice, and the quantity Cξ ≈ 0.05 is a dimensionless
constant.

Following the same steps as before, for two-dimensional
ideal ferromagnets, one derives the relation20

μH

T
= 400S4

x2

J 2

T 2
exp

(
−4πJS2

T

)
(ds = 2), (47)

or

μH

T
= 2500

J 2

T 2
exp

(
−π

J

T

)
(ds = 2), (48)

for S = 1
2 and x = 1

10 . In two spatial dimensions, it is also
conceptually inconsistent to switch off the magnetic field; here,
we start running into trouble as soon as the ratio μH/T is
smaller than the value given by the right-hand side (RHS) of
Eq. (48).

Rewritten in terms of the parameters T/J and μH/J , the
condition (48) implies

μH

J
= 2500

J

T
exp

(
−π

J

T

)
(ds = 2). (49)

This is the line plotted in Fig. 3, indicating that the effective
low-temperature series derived in Refs. 20 and 21 are valid in
the parameter space above this line. As one can see, the allowed
parameter regime is much larger than in one spatial dimension.
Again, this is due to the fact that in two spatial dimensions,
the nonperturbative correlation length is exponentially large.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00
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0.25

T

J

H
µ J

FIG. 3. (Color online) Range of validity of the effective low-
temperature expansion of the two-dimensional ideal ferromagnet.
The allowed parameter regime corresponds to the area above the
curve.

In the previous section, we have considered the effect of a
weak magnetic field by Taylor expanding the low-temperature
series for z,u,s, and cV in the small parameter σ = μH/T .
In order to illustrate in which parameter regime the Taylor
expansion does make sense for the free energy density, in
Fig. 4, we have plotted the quantity �,

� = 1 −
∑∞

n=1
e−μHnβ

n3/2

ζ
(

3
2

) , σ = μHβ = 800
T

J
, (50)

as a function of the parameter T/J . The quantity � must
be small, let us say � � 0.05, in order for the Taylor series
(25) to make sense: the leading term proportional to ζ ( 3

2 )
in the expansion (25) then makes up 95% or more of the
full leading-order contribution displayed in the numerator of
Eq. (50). However, according to Fig. 4, for that to be the case,
the temperature has to be extremely small compared to the
scale J . We thus conclude that the Taylor expansions for z, as
well for u,s, and cV , in the parameter σ only make sense in a
very small domain. Still, we have provided these expansions in

0 5. 10 7 1. 10 6 1.5 10 6 2. 10 6
0.00

0.01

0.02

0.03

0.04

0.05

T

J

FIG. 4. (Color online) Ferromagnetic spin chain: the Taylor
expansion for the free energy density in the parameter σ , Eq. (25),
only makes sense at very low temperatures compared to the scale J .

0.10 0.12 0.14 0.16 0.18 0.20 0.22
0.00

0.01

0.02

0.03

0.04

0.05

T

J

FIG. 5. (Color online) Two-dimensional ideal ferromagnet: the
Taylor expansion for the free energy density in the parameter σ ,
Eq. (III.8) of Ref. 20, makes sense up to temperatures which are
about one fifth of the scale J .

the previous section for completeness, and also because in the
next section, we want to compare them with the literature. We
have to stress, however, that their range of validity has never
been thoroughly discussed in the literature, i.e., the leading
terms in these Taylor series were given in Refs. 9, 10, and 19
without actually pointing out that these series are only valid in
an extremely small parameter regime.

Again, it is instructive to also consider the situation in two-
dimensional ideal ferromagnets. The analogous quantity � for
the free energy density, according to Eq. (III.8) of Ref. 20, is

� = 1 −
∑∞

n=1
e−μHnβ

n2

ζ (2)
,

(51)

σ = μHβ = 2500
J 2

T 2
exp

(
−π

J

T

)
(ds = 2).

This is the curve plotted in Fig. 5, indicating that the situation
here is entirely different: in two spatial dimensions, where the
nonperturbative correlation length is exponentially large, the
parameter regime in which the Taylor expansion in σ for z,
as well as for u,s, and cV makes sense, is much larger: the
temperature need not be tiny with respect to the scale J .

We have argued that the magnetic field cannot be switched
off in the present study. While the case �H = 0 is beyond
the reach of the effective expansion presented here, it is not
beyond the reach of the effective field theory method. Rather,
one has to establish a different type of systematic perturbative
expansion, which can cope with a zero magnetic field. Work
in this direction is in progress.

V. COMPARISON WITH THE LITERATURE

The thermodynamic properties of ferromagnetic spin chains
have been analyzed with a variety of microscopic methods:
spin-wave theory, Bethe ansatz, Schwinger-boson mean-field
theory, Green functions, and renormalization group methods.
Almost all of these references obtain a term of order T 2 in the
low-temperature expansion of the free energy density, which
appears to be in contradiction with the systematic effective
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field theory calculation. In fact, we have argued that there is
no T 2 term in this series, because the only potential candidate,
the two-loop graph 4 of Fig. 1, vanishes due to parity. This
is an exact statement and represents the analog of Dyson’s
statement that, in three spatial dimensions, there is no term of
order T 4 in the free energy density of an ideal ferromagnet.

The essential point is to realize that most of the above
references refer to ferromagnetic spin chains in zero external
magnetic field. This is not the domain where the effective
Lagrangian method presented in this work operates: for our
expansions to be valid, the magnetic field is always different
from zero. It should be pointed out that some references indeed
consider a finite magnetic field and provide low-temperature
expansions for this case (see, e.g., Ref. 40), but the magnetic
field there is tiny compared to the temperature, such that
these series lie outside the parameter regime of our effective
expansions. Also, given the fact that the ferromagnetic spin
chain is integrable, and exact results and analytical expressions
can be obtained, it is rather surprising that low-temperature
expansions in the presence of a weak (but not tiny or zero)
magnetic field—which thus could be compared with our
results—appear to be unavailable.

While the focus of the pioneering articles by Takahashi,
Refs. 9 and 10 is on H = 0, the nonzero field case is also
considered there. The method developed and advocated is
modified spin-wave theory. As Takahashi states in Ref. 9,
modified spin-wave theory is restricted to zero external
magnetic field. Conventional spin-wave theory, on the other
hand, should be used if one wants to study the low-temperature
properties of ferromagnetic spin chains in the presence of a
magnetic field. Indeed, conventional spin-wave theory predicts
that there is no term of order T 2 in the free energy density of
a one-dimensional ferromagnet,9,10

z = −T

[
1.0421869

(
T

J

) 1
2

+ 0.0668971

(
T

J

) 3
2

+ · · ·
]

(
S = 1

2

)
, (52)

in agreement with the systematic effective field theory result.
However, two comments are in order here.

First, Takahashi’s analysis is restricted to noninteracting
spin waves; in accordance with the effective analysis, free
magnon particles do not produce a term of order T 2 in the
above series. The crucial point is that, as the effective analysis
demonstrates, the spin-wave interaction does not lead to a T 2

term, either. This result is entirely new.
Second, Eq. (52)—in view of the way it was derived—

cannot be trusted. Apparently, in order to obtain the above
expression, Takahashi has taken the limit H → 0, which
appears to be conceptually inconsistent: conventional spin-
wave theory does not operate in this sector. Likewise, as we
have discussed at length in the previous section, the magnetic
field in our effective low-temperature series cannot be switched
off, either. Furthermore, the statements that—in the absence
of a magnetic field—conventional spin-wave theory applies
to some degree (see Ref. 10, p. 168), or that conventional
spin-wave theory is valid in some sense (see Ref. 101, p. 156),
are misleading in our opinion.

Takahashi’s expression (52) can still be used to extract
the effective low-energy coupling l3 by taking the same
(conceptually inconsistent) limit H → 0 in our effective
expansion (25). Matching the two expressions, we end up with

l3 =
√

πc5/2

6
√

2ζ
(

5
2

)Ja3 ≈ 0.0104Ja3

(
S = 1

2

)
, (53)

where the quantity c5/2 = 0.0668971 is the second coefficient
in Takahashi’s expansion (52). For general spin S, the effective
constant l3 reads

l3 = JS2a3

24
. (54)

The ferromagnetic spin chain in nonzero magnetic field was
also considered in Ref. 19, where another variant of conven-
tional spin-wave theory, capable to deal with low-dimensional
systems—spin-wave theory at constant order parameter—was
invented. The authors also discuss the case H 
= 0 and obtain
the following expansion for the magnetization m(H ):

m(H )

S
= 1 − ζ

(
1
2

)
2S

√
π

√
t − 1

2S

√
t

v
+ O(t,t3/2v−1/2),

(55)

t = T

JS
, v = H

T
.

Indeed, Eq. (55) agrees with the leading terms of our effective
result (31).

In fact, the authors of Ref. 19 provide a further term in the
above expansion that is related to the spin-wave interaction:(

m(H )

S

)
int

= 1

16

(
1

2S

√
t

v

)3

. (56)

Although our calculation does not yet include the impact of
the interaction, we note that the above term appears to be not
quite correct. More precisely, the authors of Ref. 19 conclude
that the coefficient (2S)−1√t/v is close to unity. For S = 1/2
this implies v = t , which is equivalent to

μH

J
= 2

T 2

J 2
. (57)

However, according to Eq. (45), we are clearly outside the
domain where the spin-wave picture applies. Because the
parameter (2S)−1√t/v is close to unity, the authors of Ref. 19
state that the leading fluctuation correction to the Hartree-Fock
theory is not controlled by a small parameter. In fact, for
S = 1/2 the second temperature-dependent term in Eq. (55)
is close to −1, and does not represent a small correction to
the magnetization m(H )/S. This also seems to hint at an
inconsistency related to the interaction contribution (56).

For the reader’s convenience, expressing the effective con-
stants γ and l3 in terms of microscopic parameters according
to Eqs. (41) and (54), we rewrite our series in a form where
the 1/S expansion becomes manifest:

z = −SμH

a
− 1

2π
1
2

√
JSa

T
3
2

∞∑
n=1

e−μHnβ

n
3
2

− 1

32π
1
2

√
J 3S3a

T
5
2

∞∑
n=1

e−μHnβ

n
5
2

+ O(p5),
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u = 1

2π
1
2

√
JSa

T
3
2

[
σ

∞∑
n=1

e−σn

n
1
2

+ 1

2

∞∑
n=1

e−σn

n
3
2

]

+ 1

32π
1
2

√
J 3S3a

T
5
2

[
σ

∞∑
n=1

e−σn

n
3
2

+ 3

2

∞∑
n=1

e−σn

n
5
2

]

+O(p5),

s = 1

2π
1
2

√
JSa

T
1
2

[
σ

∞∑
n=1

e−σn

n
1
2

+ 3

2

∞∑
n=1

e−σn

n
3
2

]

+ 1

32π
1
2

√
J 3S3a

T
3
2

[
σ

∞∑
n=1

e−σn

n
3
2

+ 5

2

∞∑
n=1

e−σn

n
5
2

]

+O(p3),

cV = 1

2π
1
2

√
JSa

T
1
2

[
σ 2

∞∑
n=1

e−σn

n− 1
2

+ σ

∞∑
n=1

e−σn

n
1
2

+ 3

4

∞∑
n=1

e−σn

n
3
2

]
+ 1

32π
1
2

√
J 3S3a

T
3
2

[
σ 2

∞∑
n=1

e−σn

n
1
2

+ 3σ

∞∑
n=1

e−σn

n
3
2

+ 15

4

∞∑
n=1

e−σn

n
5
2

]
+ O(p3),

�(T ,H )

�
= 1 − 1

2π
1
2

√
JS3

∞∑
n=1

e−σn

n
1
2

T
1
2

− 1

32π
1
2

√
J 3S5

∞∑
n=1

e−σn

n
3
2

T
3
2 + O(p3),

χ (T ,H ) = 1

2π
1
2

√
JSa

∞∑
n=1

e−σn

n− 1
2

T − 1
2

+ 1

32π
1
2

√
J 3S3a

∞∑
n=1

e−σn

n
1
2

T
1
2 + O(p). (58)

In contrast to Refs. 9, 10, and 19 we have carefully discussed
the range of validity of the above series in the previous
section, and thus have put these low-temperature expansions
on safe grounds, on the same footing as the low-temperature
series for ferro- and antiferromagnets in three and two spatial
dimensions.

It is important to emphasize that all the theoretical refer-
ences providing low-temperature series for ferromagnetic spin
chains in the presence of a magnetic field, were restricted
to free magnons so far (except for Ref. 19, which we have
discussed above). The important question of whether the
spin-wave interaction—in the case �H 
= 0—already shows up
at order T 5/2 in the free energy density, or rather beyond, has
been neglected. In other words, it remained unclear whether
the series in Refs. 9 and 10 referring to the ideal magnon gas
and derived within spin-wave theory, are indeed complete up
to order T 5/2.

We have demonstrated that the spin-wave interaction starts
manifesting itself at the three-loop level in the systematic
effective expansion. In the low-temperature series of the free
energy density, the corresponding three-loop graphs 5a–5c
of Fig. 1, indeed lead to a contribution of order p5 ∝ T 5/2.
The explicit evaluation is quite involved and will be presented

elsewhere.96 Here, we rather wanted to draw the attention to the
general structure of the low-temperature series in the presence
of a weak external magnetic field and critically examine their
range of validity, as well as compare our systematic results with
the condensed matter literature, which is restricted (except for
Ref. 19) to noninteracting spin waves.

VI. CONCLUSIONS

We have studied the low-temperature behavior of ferro-
magnetic spin chains in the presence of a weak external
magnetic field. While these systems have been investigated
by many authors using different techniques, such as Bethe
ansatz, spin-wave theory, and Schwinger-boson mean-field
theory, in the present study, we have made use of the
systematic effective Lagrangian method. We have evaluated
the low-temperature expansion of the partition function of
ferromagnetic spin chains in a weak magnetic field up to
two-loop order and derived the low-temperature series for the
energy density, entropy density, heat capacity, magnetization,
and susceptibility. Interestingly, the spin-wave interaction does
not yet manifest itself at this order in the low-temperature
expansions: the only two-loop graph turns out to be zero due to
parity. The spin-wave interaction only enters at the three-loop
level.

From a conceptual point of view, it is quite remarkable
that the low-temperature properties of systems defined in
one spatial dimension can be analyzed within the systematic
effective loop expansion. One-dimensional systems, which
display a linear, i.e., relativistic, dispersion law cannot be
systematically analyzed with effective Lagrangians, because
the loop counting breaks down. However, for systems with a
quadratic dispersion relation like the ferromagnet, the method
perfectly works, because loop graphs are still suppressed by
one power of momentum.

We have carefully examined the range of validity of the
low-temperature series that is quite restricted. Unlike in two
spatial dimensions, where the nonperturbatively generated
correlation length of the spin waves is exponentially large
at low temperatures, in one spatial dimension, the nonpertur-
bative correlation length is only proportional to the inverse
temperature. As a consequence, both in one and two spatial
dimensions, it is conceptually inconsistent to switch off the
magnetic field in our series as we would then leave their
domain of validity. We have confronted our results with those
obtained by spin-wave theory and have pointed out that there
are some misleading statements in the literature.

In the above microscopic studies, the magnons were
considered as ideal Bose particles: the problem of the spin-
wave interaction was neglected (except for Ref. 19 which we
have discussed in detail) and it thus remained unclear whether
the low-temperature series given in these articles are complete
or will receive additional corrections due to the interaction.
While we have argued that, in the presence of a magnetic
field, the spin-wave interaction enters at order p5 ∝ T 5/2 in the
free energy density of ferromagnetic spin chains, the explicit
evaluation of the corresponding three-loop graphs has not been
considered here: this will be the subject of Ref. 96.

The present study demonstrates that the effective La-
grangian technique is a very powerful tool to analyze the
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general structure of the low-temperature expansion of the
partition function for systems with a spontaneously broken
global symmetry. Not only have we rigorously discussed
the impact of the spin-wave interaction and a weak external
magnetic field in a systematic manner, but also have we put
our low-temperature series on a firm basis.

It would be very interesting to establish the effective La-
grangian method in the parameter regime where the magnetic
field is zero. This quite nontrivial problem has been solved

in Ref. 69 for the two-dimensional antiferromagnet in zero
magnetic and staggered field. Work on transferring these
techniques to the ferromagnet is in progress.
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74C. Brügger, C. P. Hofmann, F. Kämpfer, M. Pepe, and U.-J. Wiese,
Phys. Rev. B 75, 014421 (2007).
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77F.-J. Jiang, F. Kämpfer, C. P. Hofmann, and U.-J. Wiese, Eur. Phys.
J. B 69, 473 (2009).
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