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Monte Carlo simulation of the effects of higher-order anisotropy on the spin reorientation transition
in the two-dimensional Heisenberg model with long-range interactions
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The strength of perpendicular anisotropy is known to drive the spin reorientation in thin magnetic films.
Here, we consider the effect different order anisotropies have on two phase transitions: the spin reorientation
and the orientational order transitions. We find that the relative magnitude of different order anisotropies can
significantly enhance or suppress the degree to which the system reorients. Specifically, Monte Carlo simulations
reveal significant changes in the cone angle and planar magnetization. In order to facilitate rapid computation,
we have developed a stream processing technique, suitable for use on graphics processing unit (GPU) systems,
for computing the transition probabilities in two-dimensional systems with dipole interactions.
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I. INTRODUCTION

In two dimensions, the effect of thermal fluctuations is
enhanced. The number of possible symmetries is lower than in
three-dimensional systems, and this reduced symmetry means
that there are fewer degrees of freedom to absorb energy.1–3

The discovery of a divergence in the susceptibility in the XY

model,4 caused by topological excitations,5,6 meant that the
existence and stability of spontaneous ordered states in two
dimensions has been a rich and often contentious3,4,7–15 area
of theoretical interest. In particular, the dimensionality of the
field,15,16 finite size effects,17 and anisotropies18 can effect the
phase diagram.

Two-dimensional systems can be realized experimentally as
thin (typically <15 atomic layer) magnetic films. By varying
the composition and thickness of thin films, a large variety
of magnetic properties have been obtained.19 It is possible to
create films that strongly favor either in-plane or perpendicular
orientation of the magnetization.20 The functional dependence
of energy on perpendicular magnetization varies and can be
altered using ion beam irradiation.21,22 In the presence of
strong uniaxial anisotropy favoring perpendicular alignment,
the competition between the entropy favored in-plane mag-
netization and the energetically favored out of plane state
can lead to a temperature driven spin reorientation transition
(SRT).23–25 The nature of this transition is known to be
dependent on the relative strengths of different orders of
anisotropy.26–28 In these systems, the ratio of long-range dipole
coupling and short-range exchange coupling can lead to the
formation of striped domains of alternating spin direction;
either as the ground state29,30 or as a mechanism of spin
reversal.31 Films have been produced with stripes observed
running parallel with a common orientation,30–32 as zigzags
between regular defects33 or forming complex patterns with
no orientational order.30,34 The width and mobility of stripes
depend on temperature.35 In particular, these systems can
display strong thermal memory in which the domain configu-
ration depends on the rate of heating or cooling.36,37 Both the
reorientation and stripe melting transitions have been studied
analytically38–41 and by using Monte Carlo simulation.42,43

Here, we propose a technique in which energy differences
arising from long-range dipole coupling are approximated.

This approximation allows for computation to be parallelized
significantly; reducing the computational time required. Hav-
ing first examined the extent to which this approximation
influences the results of simulation, the method is applied
to a two-dimensional Heisenberg model where the effects of
higher-order anisotropy are examined.

II. THEORY

A. Dipole coupling

Consider a thin ferromagnet, modeled as a two-dimensional
square lattice of Heisenberg spins (�s ∈ S2). The spins experi-
ence a long-range dipole interaction,

HD = CD

2

∑
n,m

1

r3
nm

(�sn · �sm − 3�sn · r̂nm�sm · r̂nm), (1)

where n and m represent vertices of the two-dimensional lat-
tice, �rnm is the vector from n to m, and CD is a constant, CD =
(M2μ0)/(4π ). In simulations, periodic boundary conditions
are used to approximate an infinite system. The total system
consists of a tiling of replicas. For simulation size L × L,
spins separated by a vector �G = (aL,bL) with a,b ∈ Z being
identical. To compute the infinite sum introduced by periodic
boundary conditions, a new set of coordinates is introduced:
�rnm = �G + �ρnm. Here, �ρ is restricted to �ρ = (ρx,ρy) with
ρx,ρy ∈ [0,L]. The dipole energy at a site n can then be written
(taking the square lattice to be in the x-y plane):

Hn = 1

2
CD

∑
m�=n

∑
�G

sα
n sβ

m lim
r→0

∂α∂β

1

| �ρnm + �G − �r|

+ CD

(
sα
n

)2
lim
r→0

∂2
α

∑
�G �=0

1

| �G − �r| , (2)

where sα
n represents �sn.α̂ and expressions are summed over re-

peated greek indices. In order to achieve efficient computation,∑
�G limr→0 ∂α∂β

1
| �ρnm+ �G−�r| can be calculated in advance for all

choices of n, m, α, and β. Since the sum is slow to converge,
it can be split into a short-range real-space term and a long-
range Fourier-space term according to the technique described
by Harris44 based on the analogous three-dimensional case
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developed by Ewald.45 Letting f (�r) = ∑
�G

1
|− �ρnm+ �G+�r| , one

has f = fL + fS with46

fS(�r) =
∑

�G

1

|�r − �ρnm + �G|erfc

( |�r − �ρnm + �G|
2η

)
(3)

and

fL(�r) = 1/L2
∑

�k
h̃L(�k,z) exp(i2π �k · �r), (4)

where

h̃L(�k,z) = π

k
e−i�k· �ρnm

[
ek|z−znm|erfc

( |z − znm|
2η

+ kη

)

+ e−k|z−znm|erfc

(−|z − znm|
2η

+ kη

) ]
. (5)

Despite the efficiency gained by precalculating the interactions
and using this rapid summation technique, the calculation of
the dipole interaction is still computationally intensive. In
order to calculate the energy of a single spin in the system,
one must calculate N = L2 interactions, when calculating the
energy of a state of the system CN

2 interactions are required.
For a moderate system size L = 64, this equates to 4096
interactions for a single spin and over 8 × 106 for a single state.

B. Monte Carlo simulation

When considering a system at finite temperature, observ-
able quantities O are calculated as expectation values of the
Boltzmann distribution:

〈O〉 =
∑

i Ô[φi] exp
(−Hi

kBT

)
Z

. (6)

In order to approximate the properties of this distribution, a
subset of possible states is selected using a Markov chain
Monte Carlo method with transition function

PT (φj → φk) =
{

exp
[−(Hk−Hj )

kBT

]
for (Hk − Hj ) > 0,

1 otherwise.
(7)

Known as the Metropolis algorithm,47 Eq. (7) does not define
a method for selecting the prospective new state. There are
numerous methods for constructing new states and the decision
is based largely on the system being analyzed. In the case
of magnetic systems, the simplest and most common choice
is single spin flips. For a system of size N , one Monte
Carlo step (MC step) requires N spin flips. Herein lies
the computational difficulty, in order to complete one MC step
in a two-dimensional system, one must calculate the energy
of a single spin N = L2 times. If there is dipole coupling
present, each energy calculation requires L2 interactions to be
computed. In order to compute MC steps more efficiently, we
present a stream processing algorithm in Sec. III that reduces
this computational load.

III. GPU PARALLEL PROGRAMMING AND
SIMULTANEOUS FLIPPING

In order to perform Monte Carlo simulations at an
acceptable speed, we make use of a graphics processing
unit (GPU). Most modern computing systems implement a

single instruction single data execution model. In contrast,
some systems implement a single instruction multiple data
execution model, sometimes referred to as stream processing.
In stream processing, a single function (kernel) is executed
simultaneously on a large number of different inputs (the
stream), the execution of each input (thread) is independent
and there is no communication between threads.48 Here, we
present a stream processing algorithm to perform rapid Monte
Carlo simulations exploiting the parallelism available in GPU
cards. While our implementation makes use of GPUs, it
is not entirely accurate to say that GPU chips implement
a steam processing architecture. On modern GPUs, each
multiprocessor has a small level one cache (typically tens of
kilobytes) and a larger coherent level two cache (typically
several hundred kilobytes). It is possible to pause execution
of identical threads until all threads have reached a designated
execution point, allowing one to avoid the race errors normally
associated with different parallel threads reading and writing
from the same memory location. In this sense, the GPU chips
are capable of limited communication between threads.49 For
spin lattice models where interactions are limited to nearest or
next-nearest neighbor, the problem of implementing a parallel
GPU algorithm has been examined previously and several
algorithms exist to distribute computation over single50–52 or
multiple GPUs.53 In these cases, multiple single spin flips
can be performed simultaneously (provided potential update
sites are not nearest neighbors). In recent work, Campos
et al.54 have approached the problem of long-range coupling by
parallelizing the long-range sum in three dimensions. Here, we
go beyond the work of Campos et al. and focus on performing
multiple simultaneous MC steps.

A. Algorithm

Here, we describe a method for parallelizing MC simu-
lations in the presence of dipole coupling. A pseudocode
implementation of the algorithm is given in Appendix B.
The algorithm depends on the size of the system L and two
parameters that will be defined below: l and P . For clarity
of exposition, figures in this section will use a fixed small
system size L = 8 and the parameters l = 4 and P = 4 (l
and P need not be equal in general). When describing the
algorithm we take the “host” to indicate any computation
not performed on the GPU. Calculations run on host are
implemented in the normal serial fashion. We will refer to
the GPU card as the “device” and calculations run on device
are implemented as parallel operations and have access to
device memory (VRAM).

Initially, the current state of the system is held in the
device memory, either from initialization or from the previous
iteration of the algorithm. On the host, a site is selected at
random, in Fig. 1, this site is denoted by a blue circle numbered
1. Additional sites are then selected at fixed multiples of l

according to i = (al,bl) + i1 for a,b ∈ [0,L/l]. These n =
(L/l)2 values of i are the update sites and are represented in
Fig. 1 as circles numbered 2, 3, and 4. Next for each site, a
new spin value is selected at random as the potential new spin
values. In Figs. 1, 3, and 4, these potential new spin values are
represented as diamonds. The location of the selected sites and
the potential new spin values are copied to the device memory.
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FIG. 1. (Color online) An 8 × 8 sample where in each square
represents a spin site. Site 1 is chosen at random. Update sites 2–4
are selected at fixed distances from 1. In addition, four alternative
spin values are also generated (indicated here as diamonds) giving
a total of (2L2)/l2 = 8 energies that need to be calculated. Gray
squares indicate the nearest-neighbor sites used in the calculation of
short-range interactions.

The device then launches 2n threads to calculate nearest-
neighbor exchange coupling.55 The nearest-neighbor spins
accessed by these threads are indicated as gray boxes in Fig. 1.
Simultaneously, the system launches 2Pn threads to calculate
the dipole interactions. Each thread calculates the interaction
between a spin at an update site and spins in a vertical
sub-section of the total system with width L/P . Figure 2
presents a subset of these threads that calculate the interactions
associated with a single update site. When the above threads
are complete, all interactions have been computed. For each
of the n potential update sites, the results of both the current

FIG. 2. (Color online) The dipole interactions between update
site 1 (blue circle) and the rest of the system are parallelized into
four threads, which compute a subset of the possible interactions
shown here as pink shaded squares. Simultaneously, threads will be
executing the calculation of dipole coupling for the other seven spin
values.

FIG. 3. (Color online) One of the n simultaneous spin flipping
threads. The original spin value and the alternative spin value for site
1 each require five threads to compute all interactions. One thread
to calculate the short-range interactions with gray squares in Fig. 1
(represented by a gray arrow) and P = 4 threads to calculate the
dipole interactions with the subsystems shown as pink squares in
Fig. 2 (represented by pink arrows). The results of the ten threads are
then fed into a single thread that calculates the flipping probability
for update site 1.

and the potential new spins are passed into a single thread.
Each of the n new threads calculates any single-site energies
(anisotropies and applied fields), then applies the metropolis
algorithm and updates the state accordingly (see Fig. 3). In
Fig. 4, all the threads executed in one iteration of the algorithm
for the hypothetical small system are displayed.

B. Approximation

The algorithm presented here reduces the computation
required by simultaneously executing P × (L/l) partial sums
of size L/P . However, in doing so, an approximation has
been made. In Fig. 5, a single thread will compute the dipole
interaction between a potential update site (blue circles in
the figure) and a subset of the sample of width L/P (pink).
Some subsets will contain another potential update site (the
interactions of which are being processed simultaneously
another thread). If two spin updates were computed without
parallelization, there are four possibilities for the new state
φi given in Fig. 6: neither spin is flipped (φ0), the first spin

FIG. 4. (Color online) For each of the four current spins and each
potential new spin, the five threads shown in Fig. 3 are computed
and the results are fed into n = 4 threads that calculate the flipping
probability. One of the possible 2n possible resulting spin updates is
shown.
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FIG. 5. (Color online) The interactions calculated by two of
simultaneously executed threads. On the left, site 2 interacts with a
section of the system that contains site 1. On the right, site 1 interacts
with a section of the system that contains site 2.

flips (φ1), the second spin flips (φ2), or both spins flip (φ3).
Denote the probability that the first spin flips as P1, the
probability that the second spin flips given the first spin has
flipped as P12, and that the second flips given the first spin is not
flipped as P1̄2. Then the probability that the system finishes in
state φ0, isP0 = ¬P1¬P1̄2, where we have used ¬P1 to denote
the probability that P1 does not occur [¬P1 = (1 − P1)].
Similarly, P1 = P1¬P12, P2 = ¬P1P1̄2, and P3 = ¬P1P12. If
the two spins do not interact, then P12 = P1̄2 and depends
only on the energies H0 and H2. In this case, simultaneously
updating sites gives the same statistics as the conventional
sequential flipping. If the spins do interact, as is the case
with long-range coupling, then the above algorithm makes
the approximation P12 = PT (φ1 → φ3) ≈ PT (φ0 → φ2) or
H3 − H1 ≈ H2 − H0.

In order to approximate, the size of this error first denote
original spin values as �s1 and �s2 and the potential new values as
�S1 and �S2. Then φ0 = (�s1,�s2), φ1 = (�S1,�s2), φ2 = (�s1,�S2), and
φ3 = (�S1,�S2). Assuming that spins are not nearest-neighbors,
then the error ε12 = |H3 − H1 − H2 + H0| depends only on
the dipole energy. The error is

ε12 = CD

r3
12

|δ1 · δ2 − 3(δ1 · r̂12)(δ2 · r̂12)| = CD

r3
12

D, (8)

where δ1 = �s1 − �S1, δ2 = �s2 − �S2, and D = |δ1 · δ2 − 3(δ1 ·
r̂12)(δ2 · r̂12)|. We wish to find the maximal values of D. There

FIG. 6. (Color online) The four possible states that result from
two potential spin flips and the associated probabilities.

are two cases in which local maxima occur. The first case,
which we shall refer to as the perpendicular case, is δ1 =
±δ2 = ±(0,0,2) corresponding to D = 2. The second case,
which we shall refer to as the planar case, is δ1 = ±δ2 = ±2r̂12

corresponding to D = 4.
Here, we have calculated the maximum error introduced

by flipping two spins simultaneously. However, due to the
periodic boundaries conditions described in Sec. II A, flipping
a spin also flips its image in each replica that makes up
the infinite system. For the perpendicular case, each replica
introduces an additional error εR = (2CD)/(| �G + �r12|3). For
the in-plane case, the maximum D = 4 requires δ1 and δ2 to
be parallel to the vector connecting the updated spins, �r12 + �G,
which will not be possible for all �G. To estimate the error for
the in-plane case, let

�r12 + �G
|�r12 + �G| = ( cos(γ ), sin(γ ),0) (9)

then fixing the δ1 ‖ δi givesD = 1 − 3 cos(γ )2. Since simulta-
neously flipped spins and their replicas will exist in all possible
directions, we take the root-mean-square average with respect
to γ giving D ≈ 2. Based on this argument, including all
simulated spins, we estimate the maximum error in H3 − H1 as

εTotal = L2

l2

n∑
i=−n

n∑
j=−n

∑
G

CD

[(il + Gx)2 + (j l + Gy)2]
3
2

.

(10)

The flipping probability will now be exp[ −(Hk−Hj )
kBT

± εTotal
kBT

].
This error places an upper bound on the error for a iteration
of the algorithm spin flip, however, it does not preclude the
possibility of large errors accumulated over the multiple spin
flips that will be performed in simulation, typical simulations
may involve tens of millions of single spin flips. Notably,
the error depends on the value of l and selection of an
appropriate value should try to minimize the error as much
as possible, however, large values of l reduce the parallelism.
In the work below, we consider the system size L = 64,
restricting the choice of l to 2, 4, 8, 16, or 32.56 In order
to keep the error in flipping probability below 1% over the
range of temperatures considered here, we select l = 32 for
C−1

D kBT = 0.1 (the small value of T considered), the error in
the flipping probability is approximately 0.21%. In contrast,
the next smallest choice l = 16 corresponds to 10% error
at C−1

D kBT = 0.1. In Appendix C, we present the results
of simulating the two-dimensional Ising model with strong
dipole interactions in order to attempt to place an upper bound
on the accumulated error. We find that, when compared with
conventional techniques, the algorithm produces a maximum
error of around 8% on the obtained critical values.

With any parallel algorithm, one must ensure that the
throughput is sufficient to overcome any memory and in-
structional latencies introduced by the parallelization. For the
production runs below, 64 × 4 = 256 threads are executed in
parallel and the GPU is far from being full loaded. This raises
the reasonable question as to whether the GPU is experiencing
sufficient throughput. In order to obtain some measure of
the improvement, we compared the GPU simulation (Intel
E5620 2.4 GHz, Tesla C2050 with blocksize = 128) with the
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computation of the dipole sum implemented on the central
processing unit (CPU). We found that the GPU simulation
performed around 12 times faster. While not experiencing
the huge improvement some algorithms have achieved, this
performance enhancement is still significant.

IV. FOURTH-ORDER ANISOTROPIES IN THE
HEISENBERG MODEL

In two-dimensional magnetic systems, the phase diagram
depends on two ratios. The first is the ratio of perpendicular
anisotropy to dipole coupling. In two dimensions, the dipole
energy favors in-plane ordering of spins at T = 0,42,43 how-
ever, a sufficiently strong perpendicular anisotropy can create
a ground state with perpendicular spins. At finite temperature,
the free energy F = E − T S is minimized and the higher
entropy in-plane state can become favored and the spin reori-
entation transition occurs. The other ratio determining the pos-
sible phases of the system is exchange to dipole coupling. For
sufficiently strong dipole coupling, the system forms stripes
in the ground state, with stronger dipole coupling favoring
thinner stripes. The total energy for such a system is given by

H = J

2

∑
〈i,j〉

�si · �sj +
∑

i

HA i

+ CD

2

∑
i,j

1

r3
ij

(�si · �sj − 3�si · r̂ij �sj · r̂ij ), (11)

where HA i is the single site magnetic anisotropy. In the
absence of stripes, the spin reorientation transition is known
to depend on the higher-order anisotropy terms.23–25 We
are interested on the effect of varying the ratio of second-
to fourth-order anisotropy while keeping the anisotropic
energy difference between the in-plane and out of plane spins
constant. The anisotropy is defined as

HA i = K[(1 − a)(�si · ẑ)2 + a(�si · ẑ)4] (12)

with K < 0 and a > −1. Here, K represents the strength of
the anisotropy and a determines the ratio of fourth-order to
second-order anisotropies. Theoretically, the dependence of
spin orientation on higher-order anisotropy has been studied as
a function of thickness57 and temperature.58,59 In these cases,
the reorientation of spins is modeled as a competition between
competing anisotropy terms which depend on temperature. In
our simulations, the anisotropy is considered constant.

Previously, the case of a = 0 and varying K has been
examined by Whitehead et al.43 The broad thermal phase
evolution, ordered stripes at low temperature followed by
in-plane magnetization followed by the paramagnetic tran-
sition, is reasonably well understood.41,43 The behavior near
the SRT is not well understood, experiments performed on
Pt/Co(0.5 nm)/Pt films by Bergeard et al.60 have indicated
long-time scale dynamics consisting of regions fluctuating
between perpendicular stripes and in plane magnetic order.
The authors note that near the SRT, quadratic coupling alone
is not sufficient to account for this mixed behavior. Using
ac susceptibility studies of striped phases in Fe/Ni films by
Abu-Libdeh et al.,36,37,61 have also indicated the presence of
long-time scale dynamics. By varying the order of anisotropy,

we wish to investigate the nature of the phase transition
between the striped and in-plane phases.

Here, increasing the value of a suppresses states
with canting. We consider three choices of parameter a;
a = −1 corresponding to a system that favors canting (F),
a = 2 corresponding to a state with suppressed canting (S)
and a = 0 corresponding to an intermediate propensity for
canting (I).

We understand this as follows. Consider the restoring force
due to anisotropy experienced by a spin slightly canted away
from perpendicular alignment. For the intermediate case, the
restoring force is given by the derivative of energy with
respect to zenith angle −∂θi

HAi
|θi=0 = −2K (with the same

results for θi = π ), so for a small amount of canting away
from the perpendicular alignment the change in energy is
HAi

(θi) = 2Kθi . For the case of canting suppression, we
have −∂θi

HAi
|θi=0 = 0 and so there is no force experienced

for small spin canting. For the case of strong suppression,
−∂θi

HAi
|θi=0 = −6K and the restoring force is three times

stronger than the equivalent quadratic anisotropy.

A. Results

Normalizing against the strength of the dipole coupling CD

to give dimensionless parameters, we define T = (kBT )/CD ,
J = J/CD , and K = K/CD . The exchange coupling was
fixed atJ = 8.9 giving a ground state with stripe width w = 8.
The anisotropy strength was fixed at K = 15.

The system is initialized in a perpendicular striped state,
and then an ensemble is generated using the above parallel
Monte Carlo algorithm with parameters L = 64, P = 64,
and l = 32. In order to examine the convergence properties,
we examine the results for varied equilibrium times at
temperatures where we expect the slowest relaxation: at low
temperatures and near the transition points. In almost all
cases, energy converges rapidly, taking several hundred Monte
Carlo steps. The morphological properties take longer. Slow
relaxation of stripe patterns has been observed in studies
of Ising systems.62 However, in our simulations, we find
that the in-plane magnetization is the slowest converging
measure, often taking several tens of thousands of steps to
equilibrate. There are, however, two regions where equilibrium
is significantly slower. The first is near the sharp transition
for the a = 2 case near T = 4. At T = 3.5 (just below the
transition), all parameters converge rapidly. At T = 4 (just
above the transitions), the energy is slow to converge, taking
approximately 5 × 104 steps. In this case, it takes 7.5 × 104

steps for the magnetization to reach convergence. The other
region where some care is needed is the a = −1 case at
T = 0.5. Recalling −∂θi

HAi
|θi=0 = 0, spins have the ability

to cant even at low temperatures, and the system carries a net
magnetization. Since the system is initialized in a perpendic-
ular state, the relaxation time required to form stripes is large,
in this case, we find that the system requires approximately
1.25 × 105 steps to equilibrate. In Appendix A, we give the
results of varied equilibrium times for these slowly converging
temperatures. Here, we have taken a fairly course temperature
spacing between simulations in order to explore the phase
space of the system. If one were to attempt simulations closer
to the transition points, it is likely that the required equilibrium
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FIG. 7. (Color online) Example spin configurations for a canting favored system (a = −1). Each state is represented by three images, from
left to right, showing the z, x, and y components of spins, respectively. Left column from top: T = 0.25,1.0,1.5,2.0. Right column from top:
T = 2.5,3.5,6,10.

time will increase, particularly for the a = 2 case where
we have already observed a large increase in the required
equilibrium time. Once at equilibrium, an additional 5 × 104

steps are simulated with the state recorded every 50 steps to
form an ensemble. This ensures that the correlation between
the same spin in subsequent states of the ensemble is limited.
Waiting 50 steps corresponds to an average value of the time
correlation 〈�si(t = to) · �si(t = to + 50)〉 ≈ 0.5 at T = 4. The
ensemble size n = 1000 ensures that the standard error in the
thermal averages of order parameter O,

SE〈O〉 =
( 〈O2〉 − 〈O〉2

n

)1/2

, (13)

remains smaller than the errors due to the algorithm discussed
in Sec. III. We also calculate the errors using nonparametric
jack-knife resampling,63 in cases where the error is larger than
the plot points, it is indicated on plots as error bars. One should
still be careful when interpreting the results. Resampling only
gives the deviation from the calculated values due to finite
ensemble size, it can give no information about the cumulative
error due to the algorithm discussed in Sec. III B.

Example states for each value of a are given in Figs. 7–9.
For the case of favored spin canting, a = −1 (see Fig. 7),
the system has stable stripes in the ground state, but the
perpendicular magnetization is not saturated. The in-plane
components display long-range ordering. As temperature is
increased, the stripes display roughening, and then bridging
is leading to the eventual loss of orientational order. As
temperature is further increased, the in-plane order breaks
into domains, before the system enters the high-temperature
paramagnetic phase.

For the intermediate case, a = 0 (see Fig. 8), we observe
perpendicular stripes at low T . The boundaries of these stripes
undergo roughening and eventual bridging, analogous to the
canting favored case, before orientational order is destroyed
with increasing temperature. Unlike the canting favored case,
we note the presence of increased canting at the domain
boundaries. Above this temperature, we observe a mixed phase
in which perpendicular domains are interspersed with regions
of in-plane magnetic order. As temperature is further increased,
these domains become increasingly granular until the system
reaches the paramagnetic limit.

When canting is suppressed, a = 2 (see Fig. 9), the
system forms perpendicular stripes in the ground state. As the
temperature is increased, the walls undergo roughening but not
the bridging and gradual loss of orientational order displayed in
the a = 0 and −1 simulations. Instead, the system undergoes
a sudden transition into a state with only small regions of
perpendicular alignment remaining and strong in-plane order.
As temperature is increased, we observe an increasing number
of perpendicular regions as the in-plane order breaks into
domains. At high temperature, in-plane order is destroyed as
the system becomes paramagnetic.

In order to locate domain walls, we define horizontal
and vertical order parameters based on those described by
Whitehead et al.:43,64

nz
v =

∑
i

1 − sgn
(
sz
i s

z
i+ŷ

)
, nz

h =
∑

i

1 − sgn
(
sz
i s

z
i+x̂

)
,

(14)

with analogous definitions for the x and y components of the
spins. At low temperatures when the systems are dominated by
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FIG. 8. (Color online) Example spin configurations for the intermediate case (a = 0). Left column from top: T = 0.5,2,2.5,3. Right
column from top: T = 3.5,4.5,8,10.

perpendicular alignment, the density of perpendicular domain
boundaries is given by (nz

v + nz
h)/(4N ). In Fig. 10, we see

that for the intermediate and canting favored states, the wall
density increases gradually with temperature. This represents

roughening and then the bridging before perpendicular order
is lost and the wall density tends to the T → ∞ value of
1/2. In contrast, the canting suppressed state undergoes far
less roughening and the wall density remains small until

FIG. 9. (Color online) Example spin configurations for the canting suppressed case (a = 2). Left column from top: T = 0.5,1.5,2.5,3.25.
Right column from top: T = 3.5,4,6,10.
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FIG. 10. Total wall length for the canting favored a = −1 (F),
intermediate a = 0 (I), and canting suppressed a = 2 (S) cases.

the system undergoes a sudden change into the high-T
state.

1. Orientational order transition

The orientational order is given by considering the ratio of
horizontal and vertical domain boundaries,

Oα =
〈∣∣nα

h − nα
v

∣∣
nα

h + nα
v

〉
(15)

for α ∈ {x,y,z}. In Eq. (14), we have defined separate order pa-
rameters for each component rather than defining the combined
parameters nv = ∑

i 1 − �si�si+ŷ and nh = ∑
i 1 − �si�si+x̂ . This

definition is robust against canting, meaning reduction in O
due to changing stripe morphology (such as coarsening or
bending) can be distinguished from changes in the cone angle.
Consider the low T states shown in Figs. 7 and 9, both states
have stripes with no coarsening or bending and the definition
given in Eq. (14) assigns the same order parameters to both
states. In Fig. 11, this Oz is plotted for the three values of
a. Ox and Oy were also calculated and were zero in all
cases. For higher a, the stripes are stabilized at higher T . For
perpendicular stripes, high a values suppress small fluctuations
at the stripe boundaries preventing the roughening and eventual
bridging that leads to a loss of orientational order.

2. Spin reorientation transition

When the spins are not entirely perpendicular to the plane,
it is possible for the system to acquire in-plane ferromagnetic
order. If we define Mx = 1/N

∑
i s

x
i and My = 1/N

∑
i s

y

i ,
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z
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FIG. 11. The orientational order for favored canting a = −1 (F),
intermediate canting a = 0 (I), and suppressed canting a = 2 (S).

then the parallel magnetization is given by

M‖ = 〈(
M2

x + M2
y

) 1
2
〉
. (16)

The appearance of nonzero ferromagnetic order is not inher-
ently indicative of global spin reorientation. Canted spin states
and finite thickness domain walls can account for significant
magnetic order.43,65 To measure the degree to which the spins
reorient as a function of temperature, we introduce the cone
angle η:

η = 1

N

∑
i

√
(2/π )2〈(θi − π/2)2〉, (17)

where θi is the zenith angle of spin �si , θi = arccos(sz
i ), and

we have normalized η so that 0 � η � 1. In Fig. 12, η is
shown as a function of T , along with the T → ∞ value η =√

(2/π )2[1/4(π2 − 8)]. Despite the energy difference between
parallel and perpendicular alignment remaining constants, the
behavior varies dramatically with a.

For the canting favored case, a = −1, we see that by
reducing the energy cost of canting spins, the sample does not
experience a spin reorientation transition, instead it remains
canted for all temperatures. In Fig. 13, it is seen that this canting
allows the sample to have nonzero magnetic order at T = 0.
The appearance of maximum magnetic ordering at T = 0
is characteristic of weaker values of K < 13 and a = 0.43

However, in these cases, the low T parallel magnetization
does not occur simultaneously with orientational order. As
T is increased, the degree of canting remains practically
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FIG. 12. (Color online) η as a function of T for favored canting
a = −1 (F), intermediate canting a = 0 (I), and suppressed canting
a = 2 (S). η = 1 indicates all spins point perpendicular to the plane
(�si .ẑ = ±1), η = 0 indicates all spins lie in plane (�si .ẑ = 0). The
red dashed line represents the T → ∞ value. The solid blue line
represents (�si .ẑ = 1/

√
2).

unchanged with the orientational order decreasing over the
range of 1 < T < 2.5.

For the intermediate case, a = 0, we observe results con-
sistent with those of Whitehead et al.:43 a loss of orientational
order over a small region, 1 < T < 3, in which stripes also be-
come slightly canted leading to a small in-plane magnetization.
Above this temperature, the in-plane magnetization increases
as η decreases, resulting in a peak in-plane magnetization
of M‖ ≈ .46 at T = 4.5. For T > 4.5, the a = 0 system
is identical to the a = −1 system, η slowly decreasing and
magnetic order gradually reduced to zero at T = 8.

For the spin suppressed state, a = 2, we observe the same
perpendicular ground state as in the a = 0 case. Unlike the
previous cases, the orientational order is stabilized up to
T = 4, at which point the system undergoes a sharp transition
to a parallel ferromagnetic state. In Fig. 12, we see that
η simultaneously undergoes a sharp transition, representing
the spin reorientation transition. Above T = 4, we observe a
gradual reduction in magnetic order until the system enters the
paramagnetic state above T = 8.

V. FLUCTUATIONS

In order to examine fluctuations near critical points, we
calculate the autocorrelation,66

σ 2(X) = 〈(X − 〈X〉)2〉, (18)
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FIG. 13. M‖ as a function of T for favored canting a = −1
(F), intermediate canting a = 0 (I), and suppressed canting a =
2 (S).

of the three order parameters M‖, Oz, and η, which we denote
σ 2

‖ , σ 2
O, and σ 2

η , respectively. The small numerical values of
these variances means that they are affected to a greater extent
by errors introduced by the simultaneous flipping.

In Fig. 14, we observe peaks in σ 2
‖ associated with the

loss of in-plane magnetization for each choice of a. In
addition, we observe a smaller peak at around T = 3 for
the intermediate, a = 0, case corresponding to the formation
of in-plane magnetic order. This low-temperature peak is
absent in the canting suppressed case due to the first-order
nature of the phase transition. The sharp in-plane transition
does not correspond to a significant change in ferromagnetic
ordering. In both the perpendicular striped phase and in-plane
ferromagnetic state, the exchange energy is minimized for
the majority of spins. In the canting favored state, the low-T
transition is absent since maximum magnetic order occurs at
the lowest temperature simulated T = 0.2.

In Fig. 15, σ 2
η is plotted for the three choices of a. For

the canted favored case the fluctuations are small, culmi-
nating in shallow peak at T = 5. This is consistent with
the nearly homogeneous cone angle. For the intermediate
case, the fluctuations displays a broad peak centered just
below the minimum cone angle at T = 4. For the canting
suppressed case, there is a small peak corresponding to the
initial reorientation of the spins followed by a broad peak
as the cone angle starts to approach the high-temperature
average.

In Fig. 16, the fluctuations of Oz are plotted as a function
of temperature. In each case, the variance forms a peak
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FIG. 14. σ‖ as a function of T for favored canting a = −1 (F),
intermediate canting a = 0 (I), and suppressed canting a = 2 (S).

corresponding to the loss of orientational order. Increased
canting suppression corresponds to thinner peaks, as the
transition occurs over a smaller temperature range. We note
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FIG. 15. ση as a function of T for favored canting a = −1 (F),
intermediate canting a = 0 (I), and suppressed canting a = 2 (S).
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FIG. 16. σO as a function of T for favored canting a = −1 (F),
intermediate canting a = 0 (I), and suppressed canting a = 2 (S).

also that the strength of the peak is smaller for the canting
suppressed case, due to the fact that only roughening occurs
but not bridging.

VI. CONCLUSIONS AND COMMENTS

Here, we have examined the nature of stripe formation
and spin reorientation in the presence of strong perpendicular
anisotropy. In order to do so, we have proposed an approxima-
tion that allows for a parallel algorithm for performing Monte
Carlo simulations in cases where there is long-range coupling.
We have argued that, since the dipole coupling contributes
with a r−3 dependence, for appropriate choice of algorithm
parameters the approximation is acceptable. This algorithm
reduces significantly the computation time associated with
increased system size. The algorithm has been applied to the
case of Ising spins in the presence of dipole coupling and
shown to be consistent with results obtained by conventional
methods.

It is possible that further increases in computational effi-
ciency might be gained through more efficient parallelization
of the dipole sum. Furthermore, the concept of simultaneous
flipping might be particularly useful in three dimensions where
the computational issues are enhanced, the caveat of course
being that care must be taken with parameter choice since
the number of simultaneous spins is greatly increased. This
technique has then been used to examine the effects of higher
order anisotropy in striped systems where we have shown that
the anisotropy order can suppress or enhance the SRT in cases
with strong out of plane anisotropy.
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TABLE I. T = 3.5.

a = −1 a = 0 a = 2

Equilibrium Steps M‖ (0.001) O (0.002) η (0.001) M‖ (0.003) O (0.002) η (0.003) M‖ (5 × 10−4) O (0.004) η (0.001)

24 900 0.517 0.024 0.724 0.397 0.026 0.863 0.0092 0.582 1.646
50 000 0.518 0.023 0.724 0.400 0.026 0.862 0.0092 0.583 1.646
75 200 0.518 0.023 0.723 0.402 0.025 0.861 0.0091 0.584 1.647
100 000 0.517 0.025 0.723 0.400 0.027 0.861 0.0092 0.584 1.646

When comparing our simulations to analytic results, we
note several discrepancies. Although we were able to observe
the coexistence of stripes and magnetic order, we did not
observe domain formation of the cone angle as suggested
by Abanov.41 We also did not observe any magnetic order
due to correlations in the in-plane magnetization of domain
walls in the wall segments dividing stripes. Whitehead et al.
also noted the absence of such correlations,43 however, Yafet
and Gyorgy have argued that correlations between domain
walls leading to ferromagnetic order are possible.65 The
discrepancy between analytic and computational results might
largely be a result of limited system size. In particular,
it is not possible to make a fine grained examination of
wall profiles in these small systems. The parallel algorithm
presented here reduces the computational cost of scaling
system size. In the future, it would be interesting to use
the algorithm to simulate far bigger systems, in which
domain wall structure could be more reasonably simulated,
providing more insight into correlations that occur on finer
scales.
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APPENDIX A: CONVERGENCE MEASURES

Here, we give the results of calculating order parameters
with variable equilibrium times in Tables I–IV.67 In each
case, the uncertainty is estimated by considering the standard
error based on the standard deviation calculated from the
longest equilibrium time,68 this uncertainty is indicated in

brackets at the top of each column. The system is considered
equilibrated when values agree within the uncertainty for
three subsequent simulation times. For the a = −1 case
at temperatures below T = 1, the uncertainty due to finite
ensemble size is smaller than the uncertainty introduced from
a single pass of the multiple spin-flip algorithm (sample
variance decreases with temperature, while the multiple spin-
flip error increases). In this cases, we assume convergence
when the calculated values have converged to three significant
figures.

APPENDIX B: PSEUDOCODE

In order to implement the parallel algorithm described, one
needs to address the potential update sites and the subset
of sites with which they interact as a function of the thread
identifier. Here, we give the pseudocode addressing this for
the subsystems described above. The state is initialized on the
host memory and consists of two one-dimensional arrays of
size L2. These arrays store the azimuthal (φ) and zenith (θ )
angles. In what follows, we will use �sj to represent values of
both φ and θ at some position j in these arrays. A number of
potential update sites are selected separated horizontally and
vertically by a fixed number of sites, which we denote l, i.e.,
j = (al,bl) + j1. The interactions between array elements
is calculated according to the algorithm below in which
blockIdx.x, blockDim.x, and threadIdx.x are system integers
that identify a thread address. In the following, a\b is defined
as a\b = floor(a/b). For example, 7\3 = 2 and 2 × (7\3) +
7mod3 = 7.

ON HOST
S1 = Random Integer ∈ [1,l]
S2 = Random Integer ∈ [1,l]
N = L\l
for j = 1; j < N do
Select a series of new states:
θ [j ] = Random Real ∈ [0,2π ]
φ[j ] = Arccos(Random Real ∈ [−1,1])

TABLE II. T = 6.

a = −1 a = 0 a = 2

Equilibrium Steps M‖ (0.006) O (0.001) η (0.001) M‖ (0.009) O (9 × 10−4) η (0.002) M‖ (0.002) O (8 × 10−4) η (0.002)

6300 0.134 0.013 0.719 0.166 0.0121 0.704 0.533 0.0105 0.480
12 500 0.137 0.013 0.719 0.166 0.0121 0.704 0.532 0.0105 0.480
24 900 0.135 0.013 0.719 0.168 0.0120 0.704 0.532 0.0105 0.480
50 000 0.133 0.013 0.719 0.172 0.0120 0.703 0.532 0.0105 0.480
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TABLE III. T = 4.

a = −1 a = 0 a = 2

Equilibrium Steps M‖ (0.002) O (0.002) η (0.001) M‖ (0.003) O (0.001) η (0.003) M‖ (7 × 10−4) O (8 × 10−4) η (8 × 10−4)

3200 0.480 0.018 0.708 0.455 0.016 0.740 0.6486 0.0099 0.4381
6300 0.488 0.018 0.708 0.455 0.016 0.740 0.6576 0.0098 0.4235
12 500 0.495 0.017 0.708 0.454 0.016 0.740 0.6764 0.0098 0.3936
24 900 0.495 0.018 0.707 0.455 0.016 0.739 0.7159 0.0098 0.3310
50 000 0.496 0.018 0.708 0.454 0.016 0.740 0.8094 0.0099 0.1832
75 200 0.495 0.018 0.708 0.457 0.016 0.739 0.8141 0.0098 0.1762
100 000 0.495 0.019 0.707 0.457 0.016 0.738 0.8146 0.0096 0.1760
125 000 . . . . . . . . . . . . . . . . . . 0.8146 0.0099 0.1761
150 000 . . . . . . . . . . . . . . . . . . 0.8148 0.0106 0.1762

Copy all variables arrays to GPU
end for
ON GPU: Exchange Interaction
Tid = blockIdx.x ∗blockDim.x + threadIdx.x;
if Tid � L2\l2 then
Sx = S1 + l(TidmodN )
Sy = [S2 + l(Tid\N )]
j = SyL + Sx

calculate the exchange coupling between �sj and its
immediate neighbors
calculate the exchange coupling between (θ [j ],φ[j ]) and
�sj ’s immediate neighbors
end if
ON GPU: Dipole Interaction
Tid = blockIdx.x*blockDim.x + threadIdx.x
Sid = Tid\P
if Sid � L2\l2 then
Sx = S1 + l(SidmodN )
Sy = [S2 + l(Sid\N )]
j = SyL + Sx

σ = (L + 1)\P
ρ = [(L + 1)modP ] − 1
for k = −L\2; k � L\2 do
for i = −L\2 + σTidmodP ); i < −L\2 + σ (TidmodP +
1) do
j ′ = {[(Sy + k)modL]L} + (Sx + i)modL

Calculate the dipole coupling between �sj and �sj ′

Calculate the dipole coupling between (θ [j ],φ[j ]) and �sj ′

end for

end for
end if
ON GPU: Single Site Energies and Spin Flips
Tid = blockIdx.x*blockDim.x + threadIdx.x;
if Tid � L2\l2 then
Sx = S1 + l(TidmodN )
Sy = [S2 + l(Tid\N )]
j = SyL + Sx

calculate anisotropy and Zeeman energies for �sj

calculate anisotropy and Zeeman energies (θ [j ],φ[j ])
replace �sj with (θ [j ],φ[j ]) or �sj according to the Boltzmann
probability
end if

APPENDIX C: DIPOLE ISING MODEL

In Sec. III B, it was argued that the error introduced by a
single pass of the proposed GPU algorithm is bounded. How-
ever, this does not ensure that the error is not compounded over
a large number of passes leading to large systematic errors. In
order to investigate this possibility, we consider the result of
applying the algorithm when every accepted spin update cor-
responds to a complete reversal: �si = (0,0,sz

i ) = (0,0,±1). We
select the same algorithm parameters that are used in Sec. IV:
L = 64 and l = 32. This corresponds to four simultaneous
attempted spin flips for each cycle of the algorithm. Since
each site is restricted to only two states the energy can be

TABLE IV. T = 0.5.

a = −1 a = 0 a = 2

Equilibrium Steps M‖ O η M‖ (4 × 10−4) O (0) η (5 × 10−4) M‖ (1 × 10−4) O (0) η

24 900 . . . . . . . . . 0.0075 1 2.0180 0.0017 1 2.203
50 000 . . . . . . . . . 0.0076 1 2.0179 0.0017 1 2.203
75 200 . . . . . . . . . 0.0074 1 2.0177 0.0017 1 2.203
100 000 0.622 1 0.764 0.0076 1 2.0178 0.0017 1 2.203
125 000 0.625 1 0.764 . . . . . . . . . . . . . . . . . .

150 000 0.625 1 0.764 . . . . . . . . . . . . . . . . . .

175 000 0.625 1 0.764 . . . . . . . . . . . . . . . . . .
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TABLE V. Various parameters calculated using the GPU algo-
rithm and conventional techniques74.

Parameter GPU algorithm Conventional MC

Tc 0.85 0.82
γ 1.62 1.75
β 0.08 0.08

written as

H = J

2

∑
〈i,j〉

sisj + CD

2

∑
i,j

sisj

r3
ij

. (C1)

In the presence of a sufficiently strong dipole interaction,
the ground state of the system will form a striped pattern
of alternating spins. In order to ensure that dipole coupling
contributes significantly to the total energy, (increasing the
error) parameters are selected such that J/CD = 1.7, which
corresponds to the thinnest possible stable stripe width h =
1. The order parameter for such a system is formed by
considering a series of sublattices in the manner described
by Binder and Landau.69 For h = 1, the system is broken
into four sublattices mλ, horizontal stripes are described
by mh = m1 + m2 − m3 − m4 and vertical stripes by mv =
m1 + m4 − m3 − m2. The order parameter is then the stag-
gered magnetization mst = 〈(m2

h + m2
v)1/2〉. In Fig. 17, this

staggered magnetization is shown as a function of a normalized
temperature T = kBT C−1

D . The staggered susceptibility χst =
L2

kBT
(〈m2

st〉 − 〈mst〉2) is also calculated. By determining the
location of the peak in Fig. 18, the critical temperature of
the phase transition Tc can be determined, the result is shown
in Table V. The peak lacks the δ-like structure associated
with a first-order transition, instead displaying an exponential
decay consistent with a continuous phase transition,70,71 this
is consistent with previous simulations with strong dipole
coupling.72 In Fig. 19, we show the probability distribution
of the average energy per spin for various temperatures near
the transition. At each temperature, the distribution displays a
single turning point, this is also consistent with the expected
continuous transition.72 Near the critical temperature, the
system displays critical behavior. After rescaling temperature
as t = L

1
ν |1 − T/Tc|, one expects the following scaling rela-

tionships: mst = L− β

ν m0(t) and χst = L
γ
ν

t
χ0(t), where m0(t)

and χ0(t) are universal scaling functions.73,74 Close to the
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FIG. 17. The staggered magnetization as a function of T showing
the order-disorder transition.

0.5 1. 1.5 2. 2.5
0.

50.

100.

150.

200.

kBTCD
1

χ s
t

FIG. 18. The staggered susceptibility as a function of T .

critical point, when |1 − T/Tc| is small and L large, these
universal scaling functions are expected to show a power-law
behavior m0(t) → Btβ and χ0(t) → At−γ . In order to extract
parameters from simulation, one usually makes use of the
universality of m0(t) and χ0(t) and simulates the system for a
number of different sizes before varying the parameters until
the results of all simulations lie on a single curve.74,75 However,
performing such analysis would not be a suitable test of the
algorithm, for any choice L < l, there is no simultaneous
flipping and hence no approximation is being made. If one were
to change the size of l to simulate smaller systems, the degree of
approximation would be changed (the error will be increased
for decreasing l). Instead, we use the value of the scaling
constant ν calculated by Rastelli et al. to rescale temperature
and then use the power-law dependence of the system near Tc to
extract β and γ . A comparison of the critical properties is given
in Table V. The use of the GPU has introduced some error
in the critical parameters of the system, the largest error
being slightly less than 8%. Current generation GPU cards
use lower than the IEEE recommended precision on certain
functions (notably trigonometric and exponential functions
required here).76,77 In previous simulations of the Heisenberg
model, the discrepancy between CPU and GPU results of up
to 5% have been attributed to different levels of numerical
precision.54 Since this previous implementation did not use
Ewald summation, the number of floating point operations
performed on the GPU is larger than in our work. It is likely
then that the error introduced by our approximation is largest
source of discrepancy, indeed the errors introduced in our work
are larger than those described by Campos et al.
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FIG. 19. (Color online) Probability distributions of energy near
the critical point: T = 0.833 (blue circles), 0.85 (red squares), 0.867
(yellow diamonds), 0.884 (green triangles).
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