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Nonequilibrium Rashba field driven domain wall motion in ferromagnetic nanowires
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We study the effects of spin-orbit interaction (SOI) on the current-induced motion of a magnetic (Bloch) domain
wall in ultrathin ferromagnetic nanowires. The conspiracy of spin relaxation and SOI is shown to generate a
strong nonequilibrium Rashba field, which can dominate even for weak SOI. This field causes intricate spin
precession and a transition from translatory to oscillatory wall dynamics with increasing SOI. We show that
current pulses of different lengths can be used to efficiently control the domain wall motion.
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I. INTRODUCTION

The efficient and reliable manipulation of magnetic
microstructures forms the basis for most information storage
devices used nowadays. Commonly, an applied local magnetic
field controls the magnetization in a given domain. The
alignment direction encodes a classical bit, and the data
storage density is limited by the domain size. Recent advances
in nanofabrication have implemented Berger’s proposal1 of
moving a domain wall (DW) by a current-induced spin torque.2

This may allow for ultrasmall magnetic devices with high
data storage density in ferromagnets carrying a spin-polarized
current. The local magnetization can be electrically controlled
by a spin torque arising from the exchange coupling of the
local spins to conduction electron spins. Across a wide DW,
the polarization of the itinerant spins adiabatically follows
the magnetization direction, angular momentum is transferred
due to total spin conservation, and DW motion along the
current direction is induced. In addition to this adiabatic spin
torque,2 a nonadiabatic spin torque plays a prominent role.3–7

This so-called “β term” is due to spin relaxation, which
causes the itinerant spin polarization to “lag” behind the local
magnetization. This nonequilibrium contribution to the torque
critically determines the DW velocity and shape, as well as the
depinning and critical (Walker breakdown) current densities.

Ferromagnetic nanowires are natural candidates for build-
ing ultrafast memory and logic devices that rely on nanoscale
current-induced DW motion. While quite high DW velocities
(≈100 m/s) are possible in permalloy (NiFe) nanowires,8,9

these setups often suffer from limited reproducibility, strong
DW pinning, and low critical currents. Following earlier
proposals,10,11 recent experiments12 realized Co nanowires in
an AlOx /Co/Pt trilayer structure, where structural inversion
asymmetry causes an interfacial electric field and thus a
Rashba spin-orbit interaction (SOI).13 This electronic SOI
is strong, can be tuned by electrostatic gating, and allows
one to largely circumvent the above problems.12,14,15 The
observed DW velocities of up to 400 m/s (and other interesting
features, e.g., DW motion against the current direction) were
attributed12 to a conspiracy of the β term and a fieldlike
adiabatic Rashba spin torque,10,11,16–20 denoted T1 below.
While T1 does not involve spin transfer and can be traced
back to the electronic band structure, it depends on the
current and can switch the magnetization. These exciting
experimental observations and their technological promise

have triggered further theoretical works,21–25 which draw a
more complex picture, involving also a Sloncezwski-type
nonadiabatic Rashba spin torque (denoted T2 below) due
to the interplay of SOI and spin relaxation occurring under
nonequilibrium conditions.

Given the complexity of this problem, we here aim to
understand current-induced DW motion in a ferromagnetic
Rashba nanowire in the simpler one-dimensional (1D) limit.
This limit allows for the analytical calculation of the full
current-induced nonadiabatic spin torque appearing in the
Landau-Lifshitz-Gilbert (LLG) equation for the space- and
time-dependent magnetization profile. Previous experiments12

have used Co nanowires of diameter ≈500 nm, much thicker
than the few-channel nanowires studied here, but future
experiments could approach this ultrathin-wire limit. By
numerical solution of the LLG equation including the full spin
torque, with the nanowire initially containing a Bloch DW,
we predict ultrafast DW velocities in current-pulsed setups.
Surprisingly, we find that already weak Rashba spin-orbit
couplings have a huge effect on the DW dynamics due the
appearance of a “nonequilibrium Rashba field.” Spin-orbit
coupled ferromagnetic nanowires are thus predicted to allow
for ultrafast and efficient DW dynamics.

II. MODEL AND LLG EQUATION

We here study an ultrathin ferromagnetic Rashba nanowire
(along the x direction), where localized spins create the
magnetization profile −Msn(x,t), with unit vector n and
saturation magnetization Ms . The magnetization dynamics is
governed by the LLG equation,2

∂tn = −n × Heff + αn × ∂tn + T, (1)

where the effective field Heff(x) generates magnetic texture (for
a specific DW profile, see below) in the absence of a current,
and the Gilbert damping parameter α depends on intrinsic
material properties. The spin torque T(x,t) encapsulates all
current-induced contributions due to the exchange interaction
between localized moments and itinerant electrons, described
here within the standard sd model. The conduction electrons
carry a spin-polarized electric current and also experience the
Rashba SOI. Remarkably, in the 1D limit, analytical results for
the full spin torque can be obtained by employing the textbook
Sugawara representation.26 We discuss the main steps of the

184415-11098-0121/2013/87(18)/184415(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.184415


MARTIN STIER, REINHOLD EGGER, AND MICHAEL THORWART PHYSICAL REVIEW B 87, 184415 (2013)

derivation next (we often use units with h̄ = 1). Technical
details can be found in the Appendix.

III. DERIVATION

At low-energy scales, itinerant electrons in the nanowire
have linear momentum kx ≈ pkF , where p = + (p = −)
stands for a right (left) mover and kF is the Fermi momentum.
Away from the band bottom, the dispersion relation can
be linearized, where the Fermi velocity v sets the slope.
The electronic spin-density vector, s(x) = JR + JL, and the
corresponding spin current, J(x) = v(JR − JL), are thereby
expressed in terms of chiral spin-density vectors JR,L(x) for
p movers only. Similarly, the (scalar) density, ρc = ρR + ρL,
and the charge current flowing through the nanowire,
Ic = ev(ρR − ρL), follow from the chiral particle densities
ρR,L. This separation into left- and right-moving parts is
typical for 1D systems and allows for the analytical progress
reported here. With the exchange coupling �sd, the spin torque
in Eq. (1) is T(x,t) = −�sdn × 〈s〉, where the average is over
the electronic degrees of freedom taking into account the SOI.
Using the dimensionless Rashba coupling αR , the
single-particle Hamiltonian receives the contribution
(�sdαR/2kF )[σykx − σxky],27 where σx,y are spin Pauli
matrices and the channel-mixing term ∝ky is negligible for
ultrathin nanowires,28 As discussed below, T follows by
solving the Heisenberg equations of motion for Jp (with
p = +,− = R,L),

(∂t + pv∂x)Jp = −�sdJp × (n + pαRey)

−
∑

ν=i,ii

β(ν)�sd
(
Jp − J(ν)

p

)
, (2)

where spin relaxation (the last term) has been included phe-
nomenologically within the relaxation-time approximation;
ey is the unit vector in the y direction. We identify two
competing relaxation mechanisms characterized by different
stationary configurations, J(i)

p and J(ii)
p , and different rates

governing the relaxation into them, β(i)�sd and β(ii)�sd,
respectively. Mechanism (i) arises due to the contact of
the nanowire to ferromagnetic leads, which inject the spin-
polarized current Is = h̄P Ic/2e with spin-polarization factor
−1 � P � 1.29 Fluctuations then try to establish the stationary
distribution J(i)

p = 1
2Pρpn.30 Mechanism (ii) instead describes

spin relaxation to the intrinsic stationary solution of Eq. (2),
J(ii)

p (x) = 1
2Pρp[n(x) + pαRey].

For a given magnetization profile n(x,t), since the typical
space-time variations of n are slow compared to electronic
variations, Eq. (2) can now be solved analytically by an
iterative gradient expansion.5 In this approach, we first deter-
mine the spin torque under the assumption that all space-time
derivatives ∂x,tn can be discarded. The resulting zeroth-order
result, T = T(0)(x,t), is then used to obtain the first-order
correction to the spin torque, T(1), calculated by retaining
terms ∼∂x,tn but omitting all higher derivatives. We consider
only those two orders and, for clarity, we write down only
the leading terms in αR � 1 below. Complete spin-torque
expressions, valid for arbitrary αR , are lengthy and given in
the Appendix. Our numerical results for the DW dynamics
(see below) were obtained with the complete expressions but
remain very similar when using only the small-αR spin torque.

IV. CURRENT-INDUCED RASHBA SPIN TORQUE

We recover the two Rashba spin torques already discussed
in Sec. I from the zeroth-order result, T(0) = T1 + T2. The
fieldlike spin torque, T1 = −n × HR , can be written in terms
of a “nonequilibrium Rashba field,”

HR = H
(0)
R ey, H

(0)
R = αRIs�sd/v, (3)

while the Sloncezwksi-type nonadiabatic Rashba spin torque
reads

T2 = (β(i)αRIs�sd/v) n × (n × ey). (4)

The structure of both spin torques agrees with previous
results.21–25 For the first-order correction T(1), we have

T(1) = −Is∂xn + β(i)Isn × ∂xn − H
(1)
R n × ey, (5)

where additional time-dependent terms ∼∂tn (not shown)
effectively renormalize the Gilbert damping parameter. In
Eq. (5), we recognize the adiabatic spin torque (first term)
as well as the β term (second term), where both are present
already without SOI. Finite αR then renormalizes the prefac-
tors in both terms (see Appendix). The last term in Eq. (5)
contributes to the nonequilibrium Rashba field, HR = HRey

with HR = H
(0)
R + H

(1)
R , where we find

HR = αRIs�sd

v
− α2

Rβ(ii)Is

(β(i) + β(ii))2
∂xny + O

(
α3

R

)
. (6)

The first term comes from Eq. (3) and has been discussed
before.10,11,16–20 The second term in Eq. (6) is new and
may dominate for β(i,ii) � α2

R . This implies that a strong
nonequilibrium Rashba field already emerges even for rather
weak Rashba couplings. While nonadiabatic torque contri-
butions [T2 in Eq. (4) and the second term in Eq. (5)] are
due to relaxation mechanism (i), H

(1)
R is mainly caused by

mechanism (ii).31

V. NUMERICAL SIMULATION

To obtain explicit results for the current-induced DW
motion, we have performed numerical simulations. We study
a Bloch-y DW created by the effective magnetic field Heff =
J∂2

x n + Knyey − K⊥nxex in Eq. (1), where J is an exchange
coupling between localized moments, and K and K⊥ are
anisotropy constants. Measuring length (time) in units of x0 =
0.5 nm (t0 = 1 ps), we adopt the following parameter values:
J = 5.2, K = 0.185, K⊥ = 0.008, and α = β(i) = β(ii) = 0.06.
This choice corresponds to Ta/CoFeB/MgO, which is a
material with comparably strong SOI as in Co nanowires
and well-characterized parameter values.17 Furthermore, un-
less stated otherwise, we set �sd/v = 0.2, v = 2 × 105 m/s,
αR = 0.2, P = 1, ρc = Ic/v, and Is = 0.06. The latter value
implies a charge current density Ic = 1012 A/m2. We have
verified from additional calculations for other parameter sets
(not shown) that the results below are generic.

A. Steady-state current

Numerical solution of Eq. (1) with a time-independent
current density Ic confirms that the DW motion is strongly
influenced by the Rashba SOI, with both concerning the
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FIG. 1. (Color online) Velocity of the DW center vs propagation
time for (a) different αR and (b) different Ic (1012 A/m2). An increase
of either αR or Ic increases the Rashba field HR . At the critical value
H WB, we find a current-induced Walker breakdown and the velocity
starts to oscillate. Further increase of αR or Ic increases the oscillation
frequency.

instantaneous (momentary) motion and the asymptotic long-
time behavior. Let us first discuss the time evolution of the
momentary velocity; see Fig. 1. With increasing SOI strength
αR , we observe a transition from purely translatory motion,
with (asymptotically) constant DW velocity, to a regime with
superimposed oscillations in the time-dependent velocity. Our
numerical analysis reveals that the oscillations stem mainly
from the Rashba field HR . In fact, the DW magnetization
n is found to precess around the y axis, which is the
direction of the Rashba field (cf. the Appendix). This behavior
strongly resembles a field-induced Walker breakdown, where
the oscillations appear once HR exceeds a certain critical
Walker field H WB. As is known from the field-induced case,
this critical field depends on the perpendicular anisotropy,
H WB ∝ K⊥.32 Within the regime HR > H WB, we observe
that the oscillation amplitude increases with K⊥, but remains
independent of all other parameters, while the oscillation
frequency is ∝HR . Since HR is affected by a spin-polarized
current Is and not only by αR , the DW motion can be
effectively controlled by Is ; see Fig. 1(b). The impact of all
other parameters on the DW motion is less pronounced and
not discussed here.

B. Nonequilibrium Rashba field

The spatial distribution of the momentary Rashba field,
HR(x), is illustrated in Fig. 2. We focus on the most relevant
behavior of this field close to the DW center. Near the
DW center, ∂xny is sizable, and we then find that H

(1)
R

dominates as long as the damping parameter β stays small,
in accordance with Eq. (6). Far away from the DW center,
as expected, H

(1)
R plays no significant role. Similarly, for

large β, Fig. 2(c) demonstrates that the contribution H
(1)
R is

suppressed against H
(0)
R ; cf. Eq. (3). For sufficiently small

but finite β, we find that H
(1)
R always provides the dominant

contribution to the nonequilibrium Rashba field near the
DW center.

C. Domain wall response to current pulses

Experiments are often carried out with current pulses
instead of steady-state currents.12,33 For rectangular current
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FIG. 2. (Color online) Momentary Rashba field HR (in Tesla)
close to the DW center (taken at xDW = 0). We put α = β (i) = β (ii) ≡ β

and show the behavior for (a) different β (with Ic = 1012 A/m2) and
(b) for different current densities Ic (in 1012A/m2), with β = 0.06.
For comparison, the ny component of the magnetization is shown as a
dashed curve. The last two panels illustrate the Rashba field HR(xDW)
and the contribution H

(1)
R directly at the DW center: (c) HR vs β and

(d) HR vs Ic.

pulses of duration tp, we find that current-induced DW motion
closely resembles the behavior in the field driven case above
the Walker breakdown.2 Here, the DW does not immediately
stop at the end of the pulse, but instead drifts for a certain time
with nearly constant velocity; see Fig. 3. Interestingly, the
drift direction depends on the actual phase of the oscillation
at the end of the pulse. Therefore, even if the DW initially
moves forward due to the current pulse, it may still end
up in a backward position relative to its starting point. For
short current pulses, the drifting mechanism can completely
dominate the total DW displacement.
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FIG. 3. (Color online) Velocity of the DW center vs propagation
time for five current pulses of different length tp . After the pulse,
the DW drifts for a certain time in either positive or negative
direction (depending on the oscillation phase at the pulse end).
The dashed curve shows the corresponding result for a steady-state
current.
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FIG. 4. (Color online) (a) Momentary velocity of the DW center
vs propagation time for a steady-state current. (b) Average DW
velocity 〈vDW〉 = xDW(t → ∞)/tp vs current pulse duration tp with
Ic (1012 A/m2). Depending on the momentary velocity at the pulse
end, the DW drifts in different directions. Especially for short pulses,
this may strongly affect 〈vDW〉.

D. Global average wall velocity

In the current-pulsed case, a straightforward way to
determine the average DW velocity is to measure the initial
and final DW position before and directly after the pulse,
and then to divide this distance by the pulse duration tp.32

In experiments, however, it is often difficult to read out the
DW position right at the end of the pulse, and usually one
obtains the final position only somewhat later. The extracted
average velocity thus coincides with the real one only if the DW
stops instantly when the pulse ends. Figure 3 demonstrates that
such assumptions are not valid in general: The final position,
xDW(t → ∞), typically deviates strongly from the location
right after the pulse, xDW(tp). In the following, we study the
experimentally more accessible “global” average DW velocity,
〈vDW〉 = xDW(t → ∞)/tp. A major issue determining 〈vDW〉
is the oscillation phase reached by the DW at time t = tp.
With changing tp, the oscillatory DW magnetization ends up
in different configurations associated with different drift di-
rections and final positions, xDW(t → ∞) = xDW(tp) + xdrift.
While xDW(tp) ∼ tp is determined by the pulse duration, xdrift
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FIG. 5. (Color online) Global average velocity of the DW center
〈vDW〉 vs current density Ic for fixed pulse duration tp . Since Ic

determines the oscillation frequency, the pulse can end up in different
oscillation states, causing positive or negative drift. This can strongly
change 〈vDW〉 and causes DW motion against the current direction for
small Ic.

can have either sign. For very long pulses (tp → ∞), we have
|xDW(tp)| � |xdrift|, and the conventional average velocity,
x(tp)/tp, coincides with 〈vDW〉. For short pulses, however,
they may differ considerably. We find that the tp dependence
of the global average velocity 〈vDW〉 exhibits a sawtoothlike
behavior; see Fig. 4.

Tuning the pulse duration tp is not the only way to control
the motion of the DW. For fixed tp, we can also change
the oscillation frequency of the DW motion by changing the
current density Ic; see Fig. 5. We again find a sawtoothlike
dependence of 〈vDW〉 on Ic, which roughly oscillates around
the velocity found for αR = 0. For small values of Ic, the
DW even moves against the current flow. Due to the strong Ic

dependence of 〈vDW〉, small changes in the current can here
lead to completely different types of DW motion.

VI. CONCLUSIONS

In this paper, we have shown that Rashba spin-orbit
interactions can qualitatively affect the current-driven DW
motion in ferromagnetic nanowires. Their main influence
is encoded in a nonequilibrium Rashba field HR , which
is responsible for magnetization precession and thereby for
qualitative changes in the DW dynamics. Remarkably, we find
that the conspiracy of spin relaxation and spin-orbit coupling
is able to generate a dominant contribution to HR , even for
weak Rashba couplings. As a consequence, above a critical
current-induced Rashba field HR > H WB, the DW dynamics
is predicted to exhibit oscillatory features (similar to the field
driven case above the Walker breakdown) and a nontrivial
dependence of the DW velocity on the current density. In
fact, the DW motion can turn from a purely translationary
into an oscillatory dynamics due to precession of the DW
magnetization around the local nonequilibrium Rashba field.
When using pulsed currents with variable pulse duration, even
the direction of the DW motion can be controlled. All predicted
effects should be observable with present-day experimental
techniques.
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APPENDIX: DETAILED CALCULATIONS
AND MAGNETIZATION PROFILE

Here we provide a detailed derivation of the spin torque
quoted in the main text and give the expressions valid for
arbitrary Rashba coupling αR . In addition, we briefly discuss
the space-time profile of the magnetization.

1. Derivation of the spin torque

Since we treat a nanowire in the one-dimensional (1D)
limit, we employ a Luttinger liquid (LL) description for the
itinerant electrons. While there are several representations for
the LL Hamiltonian, we choose the Sugawara formulation
which is most convenient here. As discussed in textbooks,26

184415-4



NONEQUILIBRIUM RASHBA FIELD DRIVEN DOMAIN . . . PHYSICAL REVIEW B 87, 184415 (2013)

after linearization of the spectrum, the spin sector of the
kinetic energy is encoded in the universal spin Hamiltonian
H0 = ∑

p
v
2

∫
dx : Jp · Jp : , where : · · · : stands for normal

ordering, v is the spin velocity (which essentially equals
the Fermi velocity), and the chiral spin-density operators
are

Jp(x) = 1
2 : c†pσ (x)σ σσ ′cpσ ′ (x) :

for left and right movers (p = R,L = +,−), respectively.26,34

The 1D fermion operators cp,σ (x) describe a p mover with spin
projection σ , and σ is the vector of spin Pauli matrices. The
spin-density operator is then given by s = JR + JL. Similarly,
chiral density operators are introduced as jp = ∑

σ c
†
p,σ cp,σ ,

with expectation value 〈jp〉 = ρp. The particle density is ρc =∑
p ρp, and the current density is given by Ic = ev

∑
p pρp.

The above description also applies when Coulomb interactions
are important.26

Within the low-energy LL approach, particles are con-
strained to have 1D momenta close to kx ≈ pkF with
Fermi wave number kF . This fact allows us to simplify the
standard two-dimensional Rashba spin-orbit single-particle
Hamiltonian, α̃R(σykx − σxky) with Rashba coupling α̃R ,
by effectively putting kx → pkF and ky → 0. With the
dimensionless Rashba coupling αR = 2α̃RkF /�sd and using
the definition of Jp, we arrive at the second-quantized form

HSOI = �sdαR

∑
p

p

∫
dx Jp · ey. (A1)

Adding the sd Hamiltonian, Hsd = �sd
∫

dxs · n, describing
the exchange interaction between the magnetization n and the
spin density s = JR + JL of the itinerant electrons, we arrive
at the Hamiltonian

Hel = H0 + �sd

∑
p=±

∫
dxJp · (n + pαRey). (A2)

The spin torque, T = −�sdn × 〈s〉, entering the LLG equation
can then be calculated by solving the Heisenberg equations
of motion (EOM) for Jp. With the standard summation
convention, these operators obey the Kac-Moody algebra26

[
J a

p (x),J b
p′ (x ′)

]
−

= ipδabδpp′
∂xδ(x − x ′) + iδpp′

εabcJ c
pδ(x − x ′),

with the Kronecker symbol δab and the Levi-Civita symbol
εabc. The Heisenberg EOM then reads

∂tJp + pv∂xJp = −�sdJp × (n + pαRey),

where a term ∝∂xn, irrelevant to the following discussion,
has been omitted. Itinerant electron spins are also subject to
relaxation processes not captured by the above Hamiltonian,
e.g., due to quasielastic or magnetic disorder effects and/or
additional spin-orbit coupling mechanisms. In this work, we
model relaxation on phenomenological grounds by adding
relaxation terms to the EOM:

∂tJp + pv∂xJp = −�sdJp × (n + pαRey)

−
∑

ν=i,ii

β(ν)�sd
(
Jp − J(ν)

p

)
. (A3)

The index ν stands for different relaxation channels. Each
channel is characterized by the rate β(ν)�sd and a corre-
sponding quasistationary state J(ν)

p (x,t) that the system tries
to reach. We here include two relevant channels: One (ν = i)
is provided by the externally imposed spin-polarized current
Is = h̄P Ic/(2e), where a p mover has density ρp and the
spin-polarization factor is P , with |P | � 1. This implies the
stationary distribution J(i)

p = (Pρp/2)n. The second mecha-
nism (ν = ii) describes intrinsic relaxation to the stationary
solution of Eq. (A3), J(ii)

p = (Pρp/2)[n + pαRey].
In order to solve Eq. (A3) for the physically relevant case

of slow space-time variation of the magnetization, we now
perform an iterative gradient expansion. In this approach,5 Jp

is expanded in orders of derivatives of the magnetization unit
vector n(x,t), Jp = ∑∞

k=0 J(k)
p , where J(k)

p depends on space-
time derivatives of n of the kth order only. With this, the EOM
(A3) can be rearranged according to orders of k, allowing for
an iterative solution. In this scheme, we first solve the k = 0
equations, then use this solution to obtain the k = 1 term, and
so on. In particular, for k = 0, we have to solve

0 = −�sdJ(0)
p × (n + pαRey) −

∑
ν=i,ii

β(ν)�sd
(
J(0)

p − J(ν)
p

)
.

(A4)

The kth-order contribution to the spin torque, T(k), then follows
from

T =
∞∑

k=0

T(k), T(k) = −�sdn ×
∑

p

J(k)
p .

For sufficiently smooth space-time variation of the magnetiza-
tion, the lowest few orders capture the relevant physics. Due
to the complexity of the higher-order terms, we here restrict
the calculations to zeroth- and first-order terms.

)(

FIG. 6. (Color online) The magnetization profile in the vicinity
of the DW center, x ≈ xDW, at different times t (in nanoseconds, from
the bottom to the top). Arrows indicate nx,z(x − xDW,t), while ny is
color coded. For clarity, we show the magnetization profile right at
the DW center, x = xDW, in a separate column on the right of the
profile. Due to the finite Rashba field, the magnetization precesses
around the y axis, i.e., the direction of the Rashba field. Parameters
are as in Fig. 3 for constant current.
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2. Results for the spin torque

As outlined above, we have T(x,t) = T(0) + T(1), where the first term involves no space-time derivatives ∂x,tn and the second
contains exactly one first-order derivative. Some algebra yields T(0) = T1 + T2 with

T1 = �sdαR

vN

{
−Is

[
1 + α2

R

(
1 − 2n2

y

) + β(ii)

β(i) + β(ii)
α2

R

(
1 − 2n2

y + α2
R

)] + ρsv
β(ii)

β(i) + β(ii)
αRny

(
α2

R − 1
)}

n × ey,

T2 = β(i) �sdαR

vN
[
Is

(
1 + α2

R

) + 2ρsvαRny

]
n × (n × ey), N = (

1 + α2
R

)2 − 4α2
Rn2

y,

where ρs = Pρc/(2e). We stress that these results are valid for arbitrary αR . We also provide explicit expressions for the next
order:

T(1) = N−2
∑
ν=x,t

(Aν∂νn + Bνn × ∂νn) − H
(1)
R n × ey,

with

(β(i) + β(ii))At = −Is

v

(
α2

R − 1
)
αRny

{
β(ii)N − 2β(i)

[
1 − α4

R + 2α2
R

(
α2

R − 1
)
n2

y

]}
+ ρs

(−β(ii)N
[
1 + α2

R

(
1 − 2n2

y

)] − β(i)
{
N + α2

Rny

[
8α2

R

(
n2

y − 1
) − N

]})
,

(β(i) + β(ii))Ax = Is

(−β(ii)N
[
1 + α2

R

(
1 − 2n2

y

)] − β(i)
{
N + α2

Rny

[
8α2

R

(
n2

y − 1
) − N

]})
− ρsv

(
α2

R − 1
)
αRny

{
β(ii)N + 2β(i)

[
1 + α2

R

(
1 − 2n2

y

)]}
,

Bt = IsαRny

v

[
4β(i)

(
α4

R − 1
) + 2β(ii)N

] + ρsN
[
β(ii)

(
1 + α2

R

) + β(i)
(
α2

R − 1
)]

,

Bx = Isβ
(i)(1 − α2

R

)(
N + 8α2

Rn2
y

) + 4ρsvβ(i)αRny

(
α4

R − 1
)
,

and

H
(1)
R = N−2

∑
ν=x,t

[hν∂νny + h′
ν∂νn · (n × ey)],

(β(i) + β(ii))2ht = −Isα
3
Rny

v

{
2β(ii)N + β(i)

[−1 + 3α4
R + 2α2

R

(
1 − 2n2

y

)]}

− ρsα
2
R

{
β(i)α2

R

[(
1 + α2

R

)2 − 4n2
y

] + β(ii)
(
1 + α2

R

)
N

}
,

(β(i) + β(ii))2hx = −Isα
2
R

[
β(ii)

(
1 + α2

R

)
N + β(i)αRnyN

]
+ ρsvα3

Rny

{
2β(ii)N + β(i)

[−1 + 3α4
R + 2α2

R

(
1 − 2n2

y

)]}
,

(β(i) + β(ii))h′
t = −4β(i) Is

v
nyα

3
R

(
1 + α2

R

) + β(i)ρsα
2
R

(
N + 8α2

Rn2
y

)
,

(β(i) + β(ii))h′
x = β(i)Is

[(
αR + α3

R

)2 + 4α2
Rn2

y

] − 4β(i)ρsα
3
Rny

(
1 + α2

R

)
.

3. Time-dependent magnetization profile

When the Rashba field exceeds a distinct value, the magnetization starts to precess around the axis defined by the field, in
this case the y axis. Let us illustrate such a scenario; see Fig. 6. As long as a spin-polarized current Is flows, a nonequilibrium
Rashba field is created, which then causes precession of the magnetization n around this field. The resulting precession period
equals two periods of the velocity variation; cf. Fig. 3. When the current is switched off (not shown in the figure), the DW relaxes
slowly back to its stationary state, i.e., the state for t = 0 in the figure.
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