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We study a Kondo impurity model with additional uniaxial anisotropy D in a nonzero magnetic field B using
the numerical renormalization group (NRG). The ratio ge/gS of electron and impurity g factor is regarded as a
free parameter and, in particular, the special cases of a “local” (ge = 0) and “bulk” (ge = gS) field are considered.
For a bulk field, the relationship between the impurity magnetization M and the impurity contribution to the
magnetization Mimp is investigated and it is shown that M and Mimp are proportional to each other for fixed
coupling strength. Furthermore, we find that the g-factor ratio effectively rescales the magnetic field argument of
the zero-temperature impurity magnetization. In case of an impurity with D = 0 and ge = gS , it is demonstrated
that at zero temperature M(B), unlike Mimp(B), does not display universal behavior. With additional “easy-axis”
anisotropy, the impurity magnetization is “stabilized” at a D-dependent value for kBT � gSμBB � |D| and,
for nonzero temperature, is well described by a shifted and rescaled Brillouin function on energy scales that are
small compared to |D|. In the case of “hard-axis” anisotropy, the magnetization curves can feature steps which
are due to field-induced pseudo-spin- 1

2 Kondo effects. For large hard-axis anisotropy and a local field, these
screening effects are described by an exchange-anisotropic spin- 1

2 Kondo model with an additional scattering
term that is spin dependent (in contrast to ordinary potential scattering). In accordance with the observed step
widths, this effective model predicts a decrease of the Kondo temperature with every further step that occurs
upon increasing the field. Our study is motivated by the question as to how the magnetic properties of a deposited
magnetic molecule are modified by the interaction with a nonmagnetic metallic surface.
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I. INTRODUCTION

Magnetic molecules offer the prospect of encoding and
storing information in their magnetic state. The latter point
applies, in particular, to bistable molecules such as single-
molecule magnets (SMMs).1–4 The possibility to store, e.g.,
one bit of information in the state of a single molecule
would constitute an enormous miniaturization and could
lead to data storage technologies with significantly increased
areal density.5 However, to make a (potentially elusive)
technological application feasible, the molecules need to be
individually addressable so that their magnetic state can be
probed and manipulated on a molecule-by-molecule basis. In
the last years, there has been an increasing interest in the
question as to whether this functionality can be achieved by
a controlled deposition of magnetic molecules on suitable
substrates.5–8 While such an approach might solve the problem
of addressability, it can introduce new complications due to
interactions between the molecules and the surface. Depending
on details such as the molecule’s ligands, the presence of an
additional decoupling layer, and, of course, the characteristics
of the surface, the interaction with the substrate might alter
the magnetic properties of the molecule in an important (and
possibly adverse) way. Thus, even if the magnetic response
of the isolated molecule is well understood (e.g., through a
description by a suitable spin model9), its magnetic properties
in contact with the surface have to be reinvestigated.

In this paper, we study a single-channel Kondo impurity
model with nonzero magnetic field and additional uniaxial
anisotropy D(S∼

z)2 for the impurity spin operator S∼. Such an

anisotropy term {along with transverse anisotropy E[(S∼
x)2 −

(S∼
y)2]} is a common part of a pure spin model for the

description of isolated magnetic molecules (in particular,
for representing SMMs).9 The quantum impurity model is
intended to serve as a minimal representation of an anisotropic
magnetic molecule on a nonmagnetic metallic substrate and,
with transverse anisotropy E, has already been used to describe
SMMs interacting with metallic electrodes.10–12 Furthermore,
it has been found that the above uniaxial and transverse
anisotropy terms are also appropriate to model the surface-
induced anisotropy of a single magnetic atom on a metallic
substrate with a decoupling layer.13–15 To investigate how the
interaction with the electrons affects the magnetic properties
of the impurity, we carry out numerical renormalization
group16–18 (NRG) calculations and focus on the magnetic field
dependence of the impurity magnetization.

Regarding the experimental situation, the magnetic mo-
ment of deposited molecules (or atoms)15 can be measured
using methods such as x-ray magnetic circular dichroism
(XMCD).7,19–27 XMCD is an element-specific technique of
high sensitivity based on the absorption of circularly polarized
x rays and can be used to obtain an ensemble-averaged result
for the magnetic-field-dependent molecule magnetization.28–30

In principle, it is also possible to extract information about
different contributions to the observed magnetic moment (such
as the orbital and spin contribution) from the XMCD data
using, e.g., sum rules.7,21,22,24,27 In the last years, magnetization
curves of magnetic atoms on nonmagnetic metallic surfaces
could also be recorded using spin-polarized scanning tunneling
spectroscopy (SP-STS).15,31–35 In contrast to XMCD, this
method provides a time average of the field-dependent mag-
netic moment of a single atom. It has been demonstrated that
SP-STS can also be applied to (suitable) deposited magnetic
molecules.36–38
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The static magnetization of Kondo impurity models (in-
cluding related models such as the single-impurity Anderson
model) has been investigated by a number of techniques.
Among these are Green’s-function methods,39,40 the Bethe
ansatz,41–52 and NRG (Refs. 53–55) (including density matrix
based extensions). By now, there are also several studies of
the time dependence of the magnetization in nonequilibrium
situations (e.g., after a quantum quench or with a nonzero volt-
age bias).56–60 In particular, nonequilibrium spin dynamics of
impurity models can be investigated by using a generalization
of NRG called time-dependent NRG (TD-NRG).12,61,62

This paper extends existing NRG results for the Kondo
model with uniaxial anisotropy63 to the case of nonzero
magnetic field. The system with nonzero field (with a focus
on the properties of spectral functions) has been previously
studied in Refs. 64 and 65. Furthermore, magnetization curves
for isotropic Kondo impurities and for a Kondo impurity
featuring both longitudinal and transverse anisotropy have
been calculated in Ref. 55. We would like to stress, however,
that our investigation places emphasis on different aspects of
the problem and is thus complementary to Ref. 55.

The remainder of this paper is organized as follows.
In Sec. II, the quantum impurity model is introduced and
transformed to a representation that is suitable for further
numerical treatment. Section III provides information about
our use of the NRG method and contains definitions of the
considered observables. In Sec. IV, we study the magnetic
field dependence of the impurity magnetization and the
impurity contribution to the magnetization for an isotropic
system (i.e., with anisotropy parameter D = 0) and analyze
the relation between both quantities. After an investigation
of the Kondo model with additional “easy-axis” anisotropy
(D < 0) in Sec. V, the case of “hard-axis” anisotropy (D > 0)
is considered in Sec. VI. In order to describe the field-induced
pseudo-spin- 1

2 Kondo effects that are observed in the magneti-
zation curves for large hard-axis anisotropy, an effective model
is derived and its properties are studied. We conclude this
paper with a summary of the results in Sec. VII. Appendix A
contains a brief description of the technical details of a NRG
calculation with nonzero magnetic coupling of the conduction
electrons. The remaining Appendices are concerned with the
coupling strength dependence of the magnetization for D = 0
(Appendix B), the effect of a nonzero magnetic coupling of
the conduction electrons on the impurity magnetization curves
(Appendix C), and certain technical aspects relevant to the
study of the effective model (Appendix D).

II. MODEL

A. Hamiltonian

In this work, we study a Hamilton operator H∼ consisting of

three parts:

H∼ = H∼ electrons + H∼ coupling + H∼ impurity. (1)

The first term H∼ electrons represents noninteracting tight-binding

electrons whose hopping between two sites i and j of a periodic
lattice with L sites is described by the corresponding hopping

parameter tij :

H∼ electrons =
∑

i �=j, σ

tij d∼
†
iσ d

∼jσ + geμBBS∼
z. (2)

Here, d∼
(†)
iσ is a destruction (creation) operator for an electron

with spin projection σ = ± 1
2 =̂↑/↓ at lattice site i. The effect

of an external magnetic field B is taken into account by a
Zeeman term with electron g factor ge, Bohr magneton μB ,
and the z component of the total spin of the electrons,

S∼
z = 1

2

∑
i

( n
∼ i↑ − n

∼i↓), (3)

with n
∼iσ = d∼

†
iσ d∼iσ . Using a discrete Fourier transformation

c
∼
†
kσ = (1/

√
L)

∑
j eik·Rj d∼

†
jσ , Hamiltonian (2) can be equiva-

lently written in the more common form

H∼ electrons =
∑
k,σ

(εk + σgeμBB)︸ ︷︷ ︸
= εkσ (B)

c
∼
†
kσ c

∼kσ , (4)

with a dispersion relation εkσ (B), assigning an energy ε to
a wave vector k, that now depends on spin projection and
magnetic field. In general, the spin-independent dispersion
relation εk is anisotropic in k space.

For the interaction term in Eq. (1), we use a standard
isotropic Kondo coupling,

H∼ coupling = J S
∼

· s∼0, (5)

and assume that the impurity spin S∼ couples antiferromagneti-

cally (J > 0) to the electronic spin at the origin, which is given
by s∼0 = (1/2L)

∑
k,k′,μ,ν c

∼
†
kμσμν c∼k′ν with the vector of Pauli

matrices σ .
Finally, the impurity part of Hamiltonian (1) represents

a localized spin with quantum number S which couples to
the external magnetic field with g factor gS and possesses an
additional uniaxial anisotropy D:

H∼ impurity = D(S
∼

z)2 + gSμBBS
∼

z . (6)

With the chosen convention, the impurity spin has an easy
axis for D < 0 and a hard axis or an “easy plane” for
D > 0. A further transverse anisotropy E[(S∼

x)2 − (S∼
y)2] is

not considered in this paper. H∼ impurity can be seen as a minimal

representation of a magnetic molecule with a single magnetic
center or as a “giant spin approximation” for an SMM.9,66

Hamiltonian (1) corresponds to an exchange-isotropic
single-channel Kondo impurity model with additional uniaxial
anisotropy and nonzero external magnetic field. The special
choices ge = 0 and gS for the electron g factor are referred to
as a “local” and “bulk” magnetic field, respectively. Regarding
the modeling of a deposited magnetic molecule, it has to be
emphasized that Hamiltonian (1) suffers from a number of
simplifications. For example, there is no orbital contribution to
the magnetism, and no charge fluctuations between molecule
and surface are possible. In this paper, we only consider the
effect of the Kondo coupling on the magnetic properties of the
impurity spin.
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B. Transformation to an energy representation

In order to treat Hamiltonian (1) using NRG, H∼ electrons and

H∼ coupling are expressed via a continuous energy representation

for the electronic degrees of freedom. To this end, we first
take a standard continuum limit in k space (i.e., we consider
a lattice of dimension d with L 	 1).17 By adapting the
corresponding expression for the two-impurity Kondo model
from Ref. 67 to the single-impurity case (see also Ref. 68), we
then define those states with energy ε to which the localized
spin directly couples:

a
∼εμ = 1√

(2π )dρ(ε − μh)

∫
dk δ(ε − εμ(k,B)) c

∼kμ, (7)

where we have introduced the abbreviation h = geμBB and
the density of states (DOS) per spin projection and lattice site
ρ(ε) = (1/L)

∑
k δ(ε − εk). Denoting the half-width of the

conduction band by W and removing all electronic states that
decouple from the impurity, the desired continuous energy
representation of Hamiltonian (1) is obtained:

H∼ →
∑

μ

∫ W+μh

−W+μh

dε ε a
∼
†
εμa

∼εμ

+ J S
∼

·
∑
μ,ν

(∫ W+μh

−W+μh

dε
√

ρ(ε − μh) a
∼
†
εμ

)
σμν

2

×
(∫ W+νh

−W+νh

dε′ √ρ(ε′ − νh) a
∼ε′ν

)
+ H∼ impurity. (8)

For h = 0, i.e., for B = 0 or ge = 0, Eq. (8) reduces to the
well-known expression for the energy representation of the
Kondo model.69 In the following, we consider the case of a
constant DOS: ρ(ε) = 1/2W = ρ.

III. METHOD AND OBSERVABLES

A. Method: NRG

Approximate eigenvalues and eigenvectors of Hamilto-
nian (8) for the calculation of impurity properties can be
obtained with the numerical renormalization group.16–18 How-
ever, the procedure leading to the parameters of the Wilson
chain has to be slightly modified if h �= 0 (see Appendix A for
a brief discussion of the required changes).

Both a nonzero magnetic field and an additional uniaxial
anisotropy break the full SU(2) symmetry in spin space of
Hamiltonian (1). For this reason, we label eigenstates of H∼
only with the charge quantum number Q and the magnetic
quantum number Sz

total of the z component of the total spin (note
that with additional transverse anisotropy or a magnetic field
applied in some different direction Sz

total would not be a good
quantum number). Except for one example in Appendix D,
all NRG calculations are carried out using the improved
discretization scheme proposed by Žitko and Pruschke70,71

with averaging over four z values that are equidistantly
spaced on the interval (0,1]. The Hamiltonians describing
the truncated Wilson chain are always rescaled by employing
Wilson’s analytical solution for the hopping parameters for the
case of the standard discretization with z = 1.16,18 Observables
are computed using only those states that are kept after

truncation and results are averaged over even and odd sites of
the Wilson chain according to the prescription of Ref. 18. We
use a discretization parameter � = 3, a dimensionless inverse
temperature β̄ = 0.7, and a fixed number of kept states of
the order of 5000 to achieve convergence for all considered
observables within the resolution of the presented plots.
Nevertheless, at � > 1 there might still be slight systematic
deviations for nonzero temperature, which can for example be
demonstrated by setting J = 0 and comparing the NRG results
with the analytical solution for a free spin. It is necessary to
perform a separate NRG calculation for each value of the
magnetic field. If curves are shown in a plot, they are thus
the result of a spline interpolation through the numerically
obtained data points.

Calculation of the impurity magnetization [defined in
Eq. (9)] requires matrix elements of S∼

z with respect to the

eigenstates of the truncated Wilson chains. In each step of the
iterative diagonalization of the Wilson chain, we therefore set
up a matrix representation P(S∼

z) with respect to the current

product basis by using the matrix elements from the previous
step. Having obtained the matrix of eigenvectors U , P(S∼

z) is

then transformed to the eigenbasis of the truncated Wilson
chain according to E(S∼

z) = U†P(S∼
z)U .

A NRG calculation gives thermodynamic expectation val-
ues for a discrete set of nonzero temperatures, which are chosen
(by specifying β̄) in such a way as to sample the “good” part
of the finite-size energy spectrum in each step of the iterative
diagonalization.18 For this reason, it is not possible to truly
consider the case T = 0. If the temperature is referred to as
“negligible” or “approximately zero” in the remainder of this
paper, it is therefore always meant that the thermal energy is
smaller by orders of magnitude compared to all other relevant
energy scales so that no significant temperature-related effects
are observable in the presented results.

B. Observables

In our calculations, we focus on the impurity magnetization
which is defined as the thermodynamic expectation value of
the impurity magnetization operator

M(T ,B) = −
〈

∂H∼ impurity

∂B

〉
= −gSμB〈S

∼
z〉. (9)

Furthermore, we consider the impurity contribution
to the entropy, magnetization, and magnetic susceptibility. The
impurity contribution to some quantityO is defined in the usual
way:18

Oimp = Owith impurity
total − Ow/o impurity

total . (10)

The observable Ow/o impurity
total for the system without impurity

is also calculated using NRG by removing the impurity part
from the Wilson chain. For the entropy S(T ,B), the magne-
tization M(T ,B), and the susceptibility χ (T ,B), we use the
standard definitions S(T ,B) = −∂�(T ,B)/∂T , M(T ,B) =
−∂�(T ,B)/∂B, and χ (T ,B) = ∂M(T ,B)/∂B, with �(T ,B)
being the grand-canonical potential. According to the def-
initions (3), (9), and (10), the impurity contribution to the
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magnetization Mimp can be written as

Mimp = M − geμB(〈S∼
z〉with imp − 〈S∼

z〉w/o imp). (11)

If the electron g factor is zero or if impurity and electrons
decouple (which happens for J → 0 or T → ∞), we thus
have the special case Mimp(T ,B) = M(T ,B). In the grand-
canonical calculations, the chemical potential is assumed to be
zero. For a symmetric DOS, ρ(ε) = ρ(−ε), the free-electron
band is thus on average half-filled for arbitrary magnetic field
and temperature.

IV. IMPURITIES WITH D = 0

Let us first consider the case of an isotropic impurity with
D = 0 in Hamiltonian (6) and study the impurity contribution
to the magnetization Mimp and the impurity magnetization
M, both as a function of temperature and magnetic field.
For the moment, we are only concerned with the special case
of equal g factors of impurity and electrons (corresponding
to a bulk magnetic field). Recalling the motivation given in
the introduction, M as the expectation value of the impurity
magnetization operator should be the observable that is more
closely related to experimental magnetization data obtained
by methods such as XMCD.

A. Field dependence of the magnetization

In case of the Kondo model with D = 0, ge = gS , and
arbitrary impurity spin S, the Bethe ansatz (BA) allows for the
derivation of a closed expression for the impurity contribution
to the magnetization at zero temperature.41–44,46,47 In the scal-
ing regime,47 “bare” parameters of the model can be absorbed
into a certain energy scale kBTH so that the field dependence
of Mimp(T = 0) is described by a universal function fS(x) [see
Eq. (5.1.33) of Ref. 46], with x being the rescaled magnetic
field: x = gSμBB/kBTH . For each value of S, the energy scale
kBTH is chosen in such a way that the asymptotic high-field
(i.e., gSμBB 	 kBTH ) expansion of fS(x) does not contain
terms of order 1/ ln2 (gSμBB/kBTH ).47,72 In case of impurity
spin S = 1

2 , we adopt the convention of Ref. 46 according to
which the Kondo temperature TK is identified with the strong
coupling scale (as opposed to the high-temperature scale)47

and defined as
χimp(T = 0,B = 0)

(gSμB)2
= 1

2π kBTK

. (12)

The relation between TH and TK for S = 1
2 is then given by46

TH =
√

2π

e
TK. (13)

Note that in the remainder of this paper, results for the energy
scales kBTH and kBTK always refer to either the corresponding
situation with D = 0 or a comparable situation with D = 0.

In Fig. 1, we plot the universal BA solution for Mimp(T = 0)
for three different impurity spins S = 1

2 , 1, and 3
2 .73 fS(x) is a

strictly monotonically increasing function of x and approaches
the saturation magnetization of a free spin gSμBS for x →
∞ with slowly decaying logarithmic corrections.46,47,72 The
behavior in the limit x → 0 depends on the value of S: In case
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FIG. 1. (Color online) Main plots: Impurity contribution to the
magnetization Mimp and impurity magnetization M as a function
of magnetic field for ge = gS , three different couplings ρJ , and for
impurity spin (a) S = 1

2 , (b) S = 1, and (c) S = 3
2 . The temperature

is kBT /W ≈ 1.54 × 10−15 ≈ 0 and the field is rescaled using kBTH .
In case of S = 1, part of the universal BA solution for Mimp(x,T = 0)
is missing in the regime gSμBB � kBTH (Ref. 73). Upper left insets
show NRG results for Mimp(B) at T ≈ 0 and finite temperature as a
function of magnetic field, now expressed in units of W . Mimp(B) for
J = 0 is also computed using NRG and resembles the magnetization
of the free spin (Ref. 74). Thermal energies increase from left to right
and range from 1.79 × 10−6W [(a)] or 1.95 × 10−12W [(b) and (c)]
to 6.79 × 10−3W . Results for adjacent temperatures are calculated
using truncated Wilson chains whose lengths differ by five lattice
sites. Lower right insets show a closeup of the magnetization curves
for (b) low fields and (c) high fields along with data points for Mimp

that are multiplied by a coupling-dependent constant �1.
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TABLE I. Approximate values of kBTH /W as used in Fig. 1, obtained by fitting the universal Bethe ansatz solution for Mimp(x,T = 0),
and proportionality factors α(ρJ ) relating M and Mimp according to Eq. (15). The results for α have been averaged over magnetic fields
gSμBB/W ∈ [10−13,10−1] for kBT /W ≈ 1.54 × 10−15 ≈ 0. Numbers in parentheses give the corresponding standard deviation for the last
decimal place. For Zeeman energies close to the band edge (i.e., for gSμBB � W ), which have not been considered for the average, α noticeably
decreases (increases) for S = 1

2 (S = 1, 3
2 ).

S = 1
2 S = 1 S = 3

2

ρJ kBTH /W α kBTH /W α kBTH /W α

0.05 7.29 × 10−10 1.02659(1) 8.49 × 10−10 1.026503(7) 1.05 × 10−9 1.02638(2)
0.07 2.74 × 10−7 1.03822(2) 3.39 × 10−7 1.03792(3) 4.55 × 10−7 1.03751(6)
0.09 7.72 × 10−6 1.05048(3) 1.02 × 10−5 1.04970(8) 1.51 × 10−5 1.0487(2)

of S = 1
2 , f1/2(x) ∝ x for small x, whereas for S � 1 the func-

tion fS(x) goes to the saturation magnetization of a reduced
spin with S − 1

2 , again with logarithmic corrections.46,47,72

This low-field behavior mirrors the underscreened Kondo
effect which, for vanishing magnetic field, reduces the impurity
spin S to a residual spin S − 1

2 in the limit T/TK � 1.75,76 The
magnetic properties of the impurity are furthermore markedly
different from that of a free spin as the magnetization of a free
spin at T = 0 saturates for any positive magnetic field.

Using NRG, we have calculated Mimp(B,T ≈ 0) for several
values of the coupling strength ρJ and have fitted the
obtained curves to the respective universal BA curve by
employing TH as a fit parameter (see Fig. 1). The nice
agreement with the BA solution demonstrates the universal
field dependence that Mimp displays for small ρJ and allows
us to reliably determine the value of TH for all considered
impurity spins. However, note that for very large magnetic
fields (i.e., for gSμBB � W ), we leave the scaling regime
and the rescaled Mimp curves, as calculated by NRG, start
to drop below the universal BA curves (this is not shown
in Fig. 1). The determined approximate values of kBTH/W

are given in Table I. We find that the fitted values of TH

increase with the impurity spin for fixed coupling strength
and, furthermore, that the relative deviation between the results
for different S decreases when ρJ is reduced. However, even
for the smallest considered coupling strength (ρJ = 0.05),
the values of TH for S = 1

2 and S = 3
2 still deviate by about

44%. According to Eqs. (12) and (13), the values of TH

for S = 1
2 reported in Table I correspond to the following

Kondo temperatures: kBTK/W ≈ 4.79 × 10−10 (ρJ = 0.05),
1.80 × 10−7 (0.07), and 5.08 × 10−6 (0.09). For comparison,
the standard estimate for the Kondo temperature16,17

kBT ′
K/W ≈

√
ρJ exp (−1/ρJ ) (14)

gives kBT ′
K/W ≈ 4.61 × 10−10 (ρJ = 0.05), 1.65 × 10−7

(0.07), and 4.48 × 10−6 (0.09). As a further check, we
have determined the Kondo temperature for S = 1

2 and
ρJ = 0.07 by fitting the zero-field BA solution for the
impurity contribution to the susceptibility from Ref. 46 and
the impurity contribution to the entropy from Ref. 77 [the
specified low-temperature limit of the impurity contribution to
the specific heat shows that their definition of TK corresponds
to Eq. (12)]. In both cases, a value of kBTK/W ≈ 1.79 × 10−7

is obtained, which is quite similar to the one following from
Table I.

The upper left insets of Fig. 1 show finite-temperature
NRG results for Mimp(T ,B) with a coupling strength ρJ =
0.07. As a reference point, we replot the zero-temperature
magnetization curves that cross over to the strong coupling
regime in the vicinity of gSμBB ≈ kBTH . As long as the
thermal energy is small compared to the Zeeman energy,
the magnetization always closely follows the respective zero-
temperature curve. On the other hand, if the thermal energy is
not negligibly small compared to the Zeeman energy, we have
to distinguish between complete screening and underscreening
of the impurity spin. For S � 1, nonzero temperature is
always important as it also affects the residual spin. On
the energy scale gSμBB ≈ kBT , there is a swift drop of
Mimp(B) that is eventually followed by a linear decay for small
fields gSμBB � kBT . In the special case S = 1

2 , however,
nonzero temperature has little effect if T � TK and the
magnetization already displays a linear dependence on the
magnetic field for gSμBB ≈ kBT due to the Kondo screening.
In the upper left insets of Fig. 1 we also compare the results
for Mimp(T ,B) with NRG calculations for vanishing coupling
J = 0.74 At high temperatures (compared to TH ), the impurity
spin is progressively decoupled from the electronic system
and becomes asymptotically free so that its magnetization
resembles the result for J = 0 more closely.

In addition to the impurity contribution to the magnetization
Mimp, we also plot the impurity magnetization M(B) for the
same values of the coupling ρJ and negligible temperature
in Fig. 1. The magnetic field is again rescaled by kBTH

using the values from Table I. We find that M and Mimp

differ for all considered magnetic fields with M(B) being
larger than Mimp(B) for given B. According to Eq. (11), this
means that the magnetization of the conduction electrons
is reduced due to the interaction with the impurity spin.
Upon decreasing ρJ at constant rescaled field x, we observe
that the impurity magnetization becomes smaller and thus
approaches the universal curve for Mimp(x). A comparison of
the NRG results forM and Mimp shows that both quantities are
proportional to each other for fixed coupling strength ρJ , i.e.,

M(B,T ≈ 0) = α(ρJ ) Mimp(B,T ≈ 0) , (15)

with a proportionality factor α > 1 that depends on ρJ [see
Table I for a list of the calculated values of α(ρJ )]. With the
accuracy indicated in Table I, relation (15) holds for Zeeman
energies that are small compared to the half-bandwidth W . It
is illustrated for the case of small magnetic fields (for S = 1)
and large magnetic fields (for S = 3

2 ) in the lower right insets
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of Fig. 1. While the obtained values for α(ρJ ) decrease
with increasing impurity spin S, the values for different S

differ by less than 0.2% according to Table I. Since impurity
and electrons progressively decouple at high temperatures,
we expect α to be temperature dependent with α → 1 for
kBT /W 	 1 [cf. Eq. (11)]. The results presented in Fig. 1
show that the magnetic field can not be rescaled by kBTH or
any energy scale proportional to it so as to produce a universal
curve for the field-dependent impurity magnetization M.
This conclusion applies although the field dependence of
Mimp is given by a universal function and M(B) ∝ Mimp(B)
for fixed coupling strength ρJ since the proportionality factor
in Eq. (15) depends on the value of ρJ .

To elucidate our findings, we refer to one of the original
Bethe ansatz investigations of the Kondo model.49 With the
assumptions of a BA calculation (including an arbitrarily large
energy cutoff D), it is found that M = Mimp. To study the
influence of the cutoff scheme, a comparison with perturbation
theory is carried out showing that M has leading corrections
of order 1/ ln(D), whereas the corrections of Mimp vanish like
1/D and thus much faster.49 The regime in which all relevant
energy scales are negligibly small compared to the cutoff
in a logarithmic sense, e.g., ln(D/gSμBB) 	 1, is termed
“extreme scaling limit.”49 We find these conclusions to be
compatible with our NRG results for M(B) and Mimp(B),
which demonstrate the following: (1) For ρJ = J/2W � 1,
there is nice agreement with the universal BA solution
for Mimp(x,T = 0) as long as the Zeeman energy is small
compared to W . (2) According to Eq. (15), M > Mimp for
ρJ > 0. (3) M approaches Mimp if the coupling strength
ρJ is reduced. These observations might also bear some
importance for experimental situations: While experimental
parameters are certainly suitable to consider the scaling regime
(in case the system exhibits universal behavior), it is less clear
whether an experimental system can be placed in the extreme
scaling regime. The difference between Mimp and M is further
investigated in Appendix B by studying the coupling-strength
dependence of both quantities.

V. IMPURITIES WITH EASY-AXIS ANISOTROPY

We now deal with the case of an impurity with additional
easy-axis anisotropy [i.e., with anisotropy parameter D < 0
in Eq. (6)]. In this section, emphasis is placed on the field
dependence of the impurity magnetization M, again for the
case of equal g factors.

Let us begin by briefly recapitulating the magnetic proper-
ties of a free spin with easy-axis anisotropy that is described
by Hamiltonian (6). For negative anisotropy parameter D and
vanishing magnetic field, the ground state of a spin S � 1
is a doublet composed of the states with magnetic quantum
number M = ±S. In the special case S = 1

2 , the anisotropy
term D(S∼

z)2 evaluates to a constant and is thus insignificant

for the thermodynamics. The first excited state is a singlet
with M = 0 for S = 1 and a doublet with M = ±(S − 1)
for all larger spins. It follows that the energy gap between
ground state and first excited state is given by |D|(2S − 1).
For thermal energies that are small compared to this gap, the
zero-field magnetic susceptibility approximately obeys a Curie

law with Curie constant 〈(S∼
z)2〉 = S2 [instead of S(S + 1)/3

for an isotropic spin].
What do we expect for the full impurity model given by

Eq. (1) if there is an additional easy-axis anisotropy? Since the
ground-state doublet of the free spin with easy-axis anisotropy
has |�M| = 2S > 1, the two states it is comprised of are
not connected by a single spin flip, which changes M by 1.
Furthermore, for increasing values of |D|, the gap in the energy
spectrum of the free spin with easy-axis anisotropy progres-
sively suppresses scattering processes connecting ground state
and first excited state. With this scattering picture in mind,
one would thus assume that the complete formation of the
Kondo effect is prevented on energy scales smaller than |D|.
With respect to the impurity magnetization M, there appears
to be an even simpler argument: A larger absolute value of the
anisotropy parameter D energetically lifts all excited states
of the impurity, which have reduced magnetic moment in
comparison to the ground-state doublet. At large |D|, one
would thus expect that the excited states have less weight in
the many-body ground state of the full impurity model leading
to an increased value of M at zero temperature for positive
magnetic field.

A. Field dependence of the impurity magnetization

In Fig. 2, low-temperature NRG results for the impu-
rity magnetization M(B) for impurity spin S = 1, 3

2 , 2 are
presented. We start the discussion of the results at high
magnetic fields and move from there to lower fields. If the
Zeeman energy is much larger than the anisotropy parameter,
i.e., if gSμBB 	 |D|, nearly isotropic behavior of M(B)
is observed. At smaller fields gSμBB ≈ |D|, the impurity
magnetization for D < 0 begins to deviate from the curve for
D = 0 and, for gSμBB � |D|, converges to a D-dependent
value larger than gSμB(S − 1

2 ). In the limit of low fields, the
impurity magnetization curves for D < 0 shown in Fig. 2 are
well described by a linear field dependence:

M(B,T ≈ 0) ≈ M0(D) + γ (D)gSμBB/W. (16)

M0(D) thus corresponds to the impurity magnetization in the
ground state of Hamiltonian (1) for infinitesimal magnetic
field. The low-field behavior for D < 0 as described by
Eq. (16) is different from that displayed by an isotropic
impurity: For D = 0 and S � 1, the impurity contribution to
the magnetization Mimp(B), which is proportional to M(B)
according to Eq. (15), approaches the limit of zero magnetic
field with slowly decaying logarithmic corrections.46,47,72

From the results presented in Fig. 2 we conclude that for
nonzero field and D < 0 a larger value of |D| leads to a
larger impurity magnetization M, with the upper bound for
|D| → ∞ given by the free saturation value gSμBS. One
might therefore say that an easy-axis anisotropy stabilizes the
impurity spin.

Taking another look at Fig. 2 and focusing on the regime of
small magnetic fields with gSμBB � |D|, one could be misled
to think that there is a saturation of the impurity magnetization
M (this impression would not occur for an impurity with
D = 0). This raises the question as to whether it is possible
to approximately describe the field dependence of M for
gSμBB � |D| and nonzero temperature kBT � |D| using a

184408-6



NUMERICAL RENORMALIZATION GROUP CALCULATIONS . . . PHYSICAL REVIEW B 87, 184408 (2013)

(a)

S = 1
(−5)

(−6)

(−7)

(−8)

M
/g

S
μ

B

0.5

0.6

0.7

0.8

0.9

1.0

−10−2

−10−3

−10−4

−10−5

D/W = −10−6

(b)

S = 3/2(−5)

(−6)

(−7)

(−8)

M
/g

S
μ

B

1.0

1.1

1.2

1.3

1.4

1.5

−10−7

−10−8

−10−9

−10−10

0

(c)

S = 2(−5)

(−6)

(−7)

(−8)

(log10 (−D/W ))

log10 (gSμBB/W )
-12 -10 -8 -6 -4 -2

M
/g

S
μ

B

1.5

1.6

1.7

1.8

1.9

2.0

FIG. 2. (Color online) Impurity magnetization M for different
anisotropy parameters D < 0 (easy-axis anisotropy) as a function
of magnetic field for kBT /W ≈ 1.54 × 10−15 ≈ 0, coupling strength
ρJ = 0.07, and impurity spin (a) S = 1, (b) S = 3

2 , and (c) S = 2.
We compare with the magnetization of an impurity with D = 0
(solid line). As before, equal g factors of electrons and impurity
are assumed. Vertical lines mark the respective value of kBTH /W ,
which is determined by fitting the universal Bethe ansatz solution for
Mimp(T = 0) in case of D = 0. For ρJ = 0.07 and S = 2, we find
kBTH /W ≈ 6.8 × 10−7.

model for a free spin. In the simplest case, such a description
could be provided by a Brillouin function BS(x), which gives
the temperature and field dependencies of the magnetization
of a free and isotropic spin S. As demonstrated in Fig. 3 for
one value of D, it is in fact possible to adequately fit the
magnetization M(B,T > 0) for an impurity with easy-axis
anisotropy using a rescaled and shifted Brillouin function
B̃S(x) = γBS(ηx) with free parameters γ and η, as long as
kBT � |D| and gSμBB � |D|. However, larger fields than
those considered in Fig. 3 would reveal that M is actually not

D/W = −10−3

kBT
W

≈ 10−10 →

≈ 10−8 →

≈ 10−6 →

log10 (gSμBB/W )
−12 −10 −8 −6 −4

M
/g

S
μ

B

0.0

0.5

1.0

1.5

2.0

S = 1

S = 3/2
S = 2

FIG. 3. (Color online) Impurity magnetization M as a function
of magnetic field for anisotropy D/W = −10−3 and nonzero tem-
perature kBT /W ≈ 1.03 × 10−6 for S = 1, kBT /W ≈ 1.28 × 10−8

for S = 3
2 , and kBT /W ≈ 1.58 × 10−10 for S = 2. Note that M

is not saturated for any field in the plot range (cf. Fig. 2). Open
symbols represent fits using a rescaled and shifted Brillouin function
B̃S(x) = γBS(ηx), and solid (green) lines fits using a rescaled and
shifted Langevin function L̃(x) = γL(ηx).

yet saturated (cf. Fig. 2). The ratio of |D| and kBTH determines
the “apparent saturation value” of M and thus the parameter
γ . In contrast to a fit with a modified Brillouin function, a
classical description using a rescaled and shifted Langevin
function L̃(x) = γL(ηx) with L(x) = limS→∞ BS(x) does not
work well for magnetic fields close to the “saturation field”
(cf. the solid lines in Fig. 3), as expected for a quantum
mechanical system with low spin. Nevertheless, a fit using
L̃(x) can produce reasonable results for fields that are small
compared to the “saturation field”.

The results depicted in Fig. 3 might be of importance for
an experimental study of a system that is (approximately) de-
scribed by Hamiltonian (1) with a strong easy-axis anisotropy.
It is then conceivable that a measurement of the magnetization
for magnetic fields that can be realistically produced in
an experiment (depending on the value of D, fields with
gSμBB ≈ |D| might not be obtainable) does not allow us
to distinguish between the magnetic response of an impurity
spin with easy-axis anisotropy and that of a free spin. Such
a scenario seems more likely if the experimental control over
the g factor and the absolute magnitude of the magnetization
is limited, and if |D| is large compared to kBTH so that the
“apparent saturation value” of the impurity magnetization lies
close to the free saturation value gSμBS.

B. Impurity contribution to the magnetization
and the susceptibility

We have furthermore investigated the relationship between
Mimp for nonzero magnetic field and the impurity contribution
to the susceptibility χimp at zero field. At low temperature
kBT � |D|, χimp obeys a Curie law with a Curie constant that
is indicative of a so-called “fractional spin” and interpolates
between the free isotropic value of S(S + 1)/3 for |D| → 0
and the free anisotropic low-temperature value of S2 for |D| →
∞.63 It turns out that there is a simple relation between the
Curie constant and the low-temperature magnetization Mimp
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for small magnetic fields gSμBB � |D|:
kBT χimp

(gSμB)2

∣∣∣∣
B=0, kBT �|D|

�

(
Mimp

gSμB

)2 ∣∣∣∣
h̃�|D|, kBT �h̃

, (17)

with h̃ = gSμBB. The relative deviation between the left- and
right-hand sides of Eq. (17), as determined by NRG calcula-
tions for all parameter combinations used in Fig. 2, is less than
1‰. The relationship between zero-field susceptibility and
magnetization expressed by Eq. (17) shows that the magnetic
response of the fractional spin at low temperature and field
corresponds to that of an ordinary doublet composed of states
with magnetic quantum numbers ±M (in particular, a free spin
with easy-axis anisotropy effectively reduces to such a doublet
at low temperature kBT � |D|, as discussed at the beginning
of this section). This conclusion is in line with the temperature
dependence of the impurity contribution to the entropy at
zero field, which approaches the value Simp = kB ln 2 for
kBT � |D|.63

VI. IMPURITIES WITH HARD-AXIS ANISOTROPY

We now investigate how an additional hard-axis anisotropy
(D > 0) affects the magnetic properties of the impurity spin.
To lay the foundations for a study of the full impurity
problem, we first discuss the magnetic field dependence of
the magnetization for a free spin with hard-axis anisotropy
that is described by Hamiltonian (6) with D > 0.

For positive D and B = 0, the eigenvalues of Hamiltonian
(6) are energetically ordered according to the absolute value of
their magnetic quantum number M . Depending on the spin S,
the ground state is thus either a singlet with M = 0 (for integer
S) or a doublet with M = ± 1

2 (for half-integer S). In either
case, the rest of the energy spectrum consists of doublets with
magnetic quantum numbers ±M and 1

2 < M � S. The energy
gap �|M| between a level with quantum number M and the
next higher-lying doublet is given by �|M| = (2|M| + 1)D.
As a consequence of the magnetic field dependence of the
energy levels due to the Zeeman term in Eq. (6), n ground-state
level crossings occur for positive magnetic fields, with n = S

for integer spin and n = S − 1
2 for half-integer spin. At the

field BM = �|M|/gSμB , the magnetic quantum number of the
ground state abruptly changes from −M to −(M + 1) and
hence the zero-temperature magnetization curve displays a
discontinuous step. This connection is illustrated in Fig. 4
for spin S = 1, 3

2 , and 2. Nonzero temperature smears out
the magnetization steps and renders them continuous. As the
low-energy situation is the same in the vicinity of each ground-
state level crossing, so is the effect of moderate temperature
[cf. Fig. 4(c)].

Since the ground state of a free spin with hard-axis
anisotropy in zero magnetic field differs for integer and
half-integer spins, the properties of the full impurity model (1)
with D > 0 and B = 0 also depend on the impurity spin S.63 A
simplified picture applies for large ratios D/kBTH 	 1. In this
case, little Kondo screening can occur for decreasing temper-
ature before the anisotropy becomes effective on the energy
scale kBT ≈ D and higher-lying impurity states are frozen
out.63 The impurity spin is then approximately reduced to the
ground state of the corresponding free spin with D > 0.63 For
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FIG. 4. (Color online) Energy levels with magnetic quantum
numbers M (upper panels) and magnetization (lower panels) as
a function of magnetic field for an anisotropic spin, described by
Hamiltonian (6) with D > 0 (hard-axis anisotropy), with (a) S = 1,
(b) S = 3

2 , and (c) S = 2. For the magnetization curves and fields
larger than the respective saturation field, temperature increases from
top to bottom.

integer S, this is a nonmagnetic singlet. In contrast, a doublet
with M � ± 1

2 is effectively formed for half-integer impurity
spin. In Ref. 63, it is shown that this doublet undergoes
pseudo-spin- 1

2 Kondo screening at low temperature kBT � D.
The observed Kondo effect is described by an anisotropic
exchange interaction which reflects that the effective doublet
emerges from the original impurity spin multiplet.63

For a free spin with hard-axis anisotropy in nonzero
magnetic field, Fig. 4 demonstrates that the two energy levels
which form the degenerate ground state at a level crossing field
have magnetic quantum numbers differing by |�M| = 1. This
means that the two levels are connected by a single spin flip. For
the full impurity model (1) with D/kBTH 	 1, we therefore
expect that at certain magnetic fields and for low temperature
kBT � D the impurity spin is effectively reduced to a doublet
with |�M| � 1 so that a “field-induced” pseudo-spin- 1

2 Kondo
effect can arise. In particular, the screening should be exchange
anisotropic as the impurity spin is again restricted to a subset of
all its states for kBT � D. Since all free spins with hard-axis
anisotropy display ground-state level crossings, these field-
induced Kondo effects ought to be observable for arbitrary
impurity spin S � 1 at D/kBTH 	 1. Furthermore, for large
D the number of field-induced Kondo effects is expected to
match the number of ground-state level crossings that occur
for the corresponding free spin with D > 0.

A. Magnetic field dependence of the impurity magnetization

We begin with a discussion of the magnetic field
dependence of the impurity magnetization M(B) for equal g

factors and quasivanishing temperature T ≈ 0. Magnetization
curves for impurity spin S = 1, 3

2 , and 2 and several values
of the anisotropy parameter D > 0 are shown in Fig. 5. Since
the coupling strength ρJ , and thus the energy scale kBTH

according to Table I, is kept constant, the ratio D/kBTH is
varied. It turns out that this ratio determines the qualitative
behavior of the impurity magnetization curves. Note that a
linear magnetic field scale is used in Fig. 5 to allow for an
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FIG. 5. (Color online) Impurity magnetization M for varying
hard-axis anisotropy D > 0 as a function of magnetic field for tem-
perature kBT /W ≈ 1.54 × 10−15 ≈ 0, coupling strength ρJ = 0.07,
equal g factors, and impurity spin (a) S = 1, (b) S = 3

2 , and
(c) S = 2. The value of D increases from bottom to top or from
left to right, respectively. Note the rescaling of the Zeeman energy
gSμBB by D. Circles indicate those magnetization curves for which
|(D − kBTH )/W | is minimal.

easy comparison with the results for a free spin with hard-axis
anisotropy from Fig. 4.

For an interpretation of the results for M(B,T ≈ 0), let us
first consider the two limiting cases in which D is either small
or large compared to kBTH . In the following, imagine that we
move from large magnetic fields to lower fields. If D is large,
then little Kondo screening can occur before the anisotropy be-
comes effective. As a guideline, we might thus think of the en-

ergy spectrum of a free spin S with hard-axis anisotropy. On the
other hand, for small D significant Kondo screening can take
place before the magnetic field reaches the energy scale defined
by the anisotropy, so that it eventually becomes more appro-
priate to think of the energy levels of a free spin S − 1

2 with
hard-axis anisotropy. As illustrated in Fig. 4, ground-state level
crossings occur for a spin with hard-axis anisotropy at certain
fields and give rise to steps in the zero-temperature magnetiza-
tion curve. For small and large anisotropy D, the impurity mag-
netization M(B,T ≈ 0) also displays sharp, steplike features
that are surrounded by magnetic field domains in which M
only slowly increases with B (“pseudoplateaux”). However,
due to the energy continuum of electronic states, these sharp
features remain continuous even in the limit of zero tempera-
ture. The number of steps and their position relative to the field
D/gSμB depend on the impurity spin S for large D and on the
residual spin S − 1

2 for small D, respectively. The case S = 1
is special because the residual spin- 1

2 can not have uniaxial
anisotropy. The single step which exists for S = 1 at large D

therefore disappears for smaller values of D. With respect to
the energy scale imposed by the anisotropy, the steps in the
impurity magnetization curves become well defined for small
and large D [cf. Figs. 5(b) and 5(c)]. In addition, the pseudo-
plateaux become flatter. Figure 5(c) furthermore suggests that
the two steps appearing in M(B,T ≈ 0) for S = 2 and large
D have different width. We are going to discuss the aspect of
step width in more detail in Sec. VI B. In particular, it will be
shown that an impurity magnetization step is steeper if it occurs
at larger field. It turns out that a standard z averaging of the
NRG results introduces artifacts into the magnetization steps
for large anisotropy D. This problem is investigated in more
detail in the context of an effective model in Appendix D. The
plots shown in Fig. 5 are not visibly affected by this numerical
shortcoming.

The position of the steps in the impurity magnetization
curves for both small and large anisotropy D compared to
kBTH seems interesting. Figures 5(b) and 5(c) show that for
small D and impurity spin S = 3

2 and S = 2, a step occurs at
a magnetic field which is smaller than the corresponding level
crossing field for a free spin S − 1

2 with hard-axis anisotropy
(cf. Fig. 4). In contrast, for large D and all three impurity
spins considered in Fig. 5, each impurity magnetization
step is found at a field exceeding the corresponding level
crossing field for a free spin S with D > 0. One might
wonder whether the half-bandwidth W of the electrons has
an impact on these two effects. To investigate this question for
the case of small anisotropy, we have calculated additional
magnetization curves for impurity spin S = 3

2 and 2 with
decreasing coupling strength ρJ (0.09, 0.07, and 0.05). Since
ρ = 1/2W , a reduction of ρJ can be interpreted as an increase
of the half-bandwidth W for constant J . For each value of
the coupling strength, the anisotropy parameter was chosen
so as to give a constant ratio D/kBTH = 10−3 according to
Table I. With this choice of D, a reduction of ρJ leads to a
shift of the step in the impurity magnetization curve towards
smaller fields relative to D/gSμB . This suggests that the effect
observed for small D is not bandwidth related. The question
at which fields impurity magnetization steps occur for large
anisotropy is investigated in Sec. VI B.
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The limiting cases of small and large anisotropy D

compared to kBTH are connected by a regime with partial
Kondo screening in which it is not possible to exclusively
think in terms of the impurity spin S or a residual spin S − 1

2 .
Impurity magnetization steps are broadened in this regime with
respect to the energy scale D and, upon reducing the anisotropy
parameter, move towards lower fields relative to D/gSμB [see
Fig. 5(b)]. In addition, one step disappears for D ≈ kBTH in
case of integer impurity spin [cf. Fig. 5(c)]. Kondo screening
effectively changes the impurity spin S from integer to half-
integer and vice versa. Depending on the ratio D/kBTH and the
resulting degree of Kondo screening, different behavior of the
impurity magnetization is therefore observed, in particular for
fields gSμBB � D: While there is little magnetic response for
an effective integer spin (at zero temperature, there is none at
all for a free integer spin with hard-axis anisotropy as shown in
Fig. 4), we have larger impurity magnetization M ≈ gSμB/2
for effective half-integer spin. However, in the latter case, an
additional pseudo-spin- 1

2 Kondo effect occurs63 which leads
to a suppression of the impurity magnetization for magnetic
fields gSμBB � D.

In order to study the three different anisotropy regimes
(D/kBTH � 1, D/kBTH ≈ 1, and D/kBTH 	 1) in more
detail, selected impurity magnetization curves from Fig. 5
are replotted using a logarithmic magnetic field scale
(see Figs. 6–8). This brings out pseudo-spin- 1

2 Kondo effects
more clearly and allows for a better comparison with the
magnetization of an impurity with D = 0. Figures 6–8
furthermore demonstrate the effect of nonzero temperature
on the impurity magnetization in case of hard-axis anisotropy.

At large magnetic field gSμBB 	 D, the magnetization
curve M(B,T ≈ 0) for an impurity with hard-axis anisotropy
closely resembles the result for D = 0. For lower fields
gSμBB � D, the anisotropy eventually becomes effective
and the impurity magnetization begins to deviate from the
curve for D = 0. In this sense, an additional hard-axis
anisotropy prevents the Kondo screening, which would reduce
the impurity spin S to an residual spin S − 1

2 in the limit
gSμBB/kBTH → 0 for D = 0, from completing. The ratio
D/kBTH controls the extent of Kondo screening on the energy
scale D. In particular, it determines whether the number and
approximate position of the steps in the zero-temperature
impurity magnetization curve correspond to the magnetic
response of a free spin S with D > 0 (for D/kBTH 	 1
and little Kondo screening, cf. Fig. 4) or a free spin S − 1

2
with D > 0 (for D/kBTH � 1 and considerable Kondo
screening).

M(B,T ≈ 0) displays a linear dependence on B for
Zeeman energies that are small compared to all relevant
energy scales. If temperature is high so that kBT 	 D, then
M(T ,B) is suppressed for magnetic fields of the order of
and smaller than kBT /gSμB . On the other hand, judging by
the relative deviation from the zero-temperature curve, finite
temperature has a negligible effect on the impurity magne-
tization if the thermal energy falls into the energy regime in
whichM(B,T ≈ 0) ∝ B (such a temperature independence is
known for an impurity with S = 1

2 , as discussed in Sec. IV A).
In this regard, M differs from the magnetization of a free spin
with hard-axis anisotropy for which nonzero temperature is
always relevant. If the impurity magnetization curve features
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FIG. 6. (Color online) Impurity magnetization M as a function
of magnetic field for impurity spin S = 1 and anisotropy parameter
(a) D/W = 10−2, (b) D/W = 10−6, and (c) D/W = 10−7 (solid
lines, cf. Fig. 5). Dashed lines show M(B) for D = 0 and kBT /W ≈
1.54 × 10−15 ≈ 0. For the light gray lines, the approximate value
of kBT /W increases from left to right from (a) 4.35 × 10−4 to
6.10 × 10−2, (b) 1.99 × 10−7 to 6.79 × 10−3, and (c) 4.73 × 10−10

to 6.79 × 10−3. Adjacent finite-temperature curves in plots (b) and
(c) are calculated using truncated Wilson chains whose lengths differ
by either four or five lattice sites. Thin vertical lines indicate the
respective Zeeman energy gSμBB = D. For the chosen coupling
strength ρJ = 0.07 and D = 0, we have kBTH /W ≈ 3.39 × 10−7

according to Table I.

steps, they are smeared out for sufficiently high tempera-
ture. In case there is more than one step in M(B,T ≈ 0)
[cf. Fig. 8(a)], then, as a further difference compared to a free
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FIG. 7. (Color online) Impurity magnetization M as a function
of magnetic field for impurity spin S = 3

2 and anisotropy parameter
(a) D/W = 10−2, (b) D/W = 10−6, and (c) D/W = 10−10 (solid
lines, cf. Fig. 5). As before, dashed lines show M(B) for D = 0
and kBT /W ≈ 0. For the light gray lines, the approximate value of
kBT /W increases from left to right from (a) 1.61 × 10−5 to 1.05 ×
10−1, (b) 3.45 × 10−7 to 6.79 × 10−3, and (c) 1.01 × 10−11 to 6.79 ×
10−3. Adjacent finite-temperature curves in plots (b) and (c) are again
calculated using truncated Wilson chains whose lengths differ by
either four or five lattice sites. Magnetic fields satisfying gSμBB =
nD with n = 1,2 are highlighted by thin vertical lines. According to
Table I, kBTH /W ≈ 4.55 × 10−7 for ρJ = 0.07 and D = 0.

spin with hard-axis anisotropy, nonzero temperature has an
unequal effect on the different steps. We come back to the last
two observations in Sec. VI B.
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FIG. 8. (Color online) Impurity magnetization M as a function
of magnetic field for impurity spin S = 2 and anisotropy parameter
(a) D/W = 10−2, (b) D/W = 10−6, and (c) D/W = 10−8 (solid
lines, cf. Fig. 5). Dashed lines again show M(B) for D = 0
and kBT /W ≈ 0. For the light gray lines, the approximate value
of kBT /W increases from left to right from (a) 7.54 × 10−4 to
1.05 × 10−1, (b) 3.45 × 10−7 to 6.79 × 10−3, and (c) 5.26 × 10−11

to 6.79 × 10−3. Adjacent finite-temperature curves in plots (b) and
(c) are calculated using truncated Wilson chains whose lengths differ
by four to six lattice sites. Thin vertical lines indicate magnetic fields
satisfying gSμBB = nD, with n = 1,2,3. For ρJ = 0.07 and D = 0,
we obtain kBTH /W ≈ 6.8 × 10−7.

The results in the regime of small magnetic fields gSμBB �
D can be related to the zero-field study of Ref. 63. According
to the physical picture of the case B = 0 summarized at
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the beginning of Sec. VI, the low-temperature impurity
magnetization is either suppressed if the impurity spin is
effectively reduced to a singlet [see Figs. 6(a), 7(c), and 8(a)],
or it reflects the magnetic response of a Kondo screened
pseudo-spin- 1

2 doublet [cf. Figs. 6(c), 7(a), and 8(c)]. For
small D and integer impurity spin, the corresponding Kondo
temperature decreases faster than linear in D upon reducing
the anisotropy (it even drops exponentially fast in the special
case S = 1).63 As a result, the pseudoplateau that appears
for S = 2 at magnetic fields gSμBB � 2D [see Figs. 5(c)
and 8(c)] becomes flatter and broader when decreasing D,
whereas a reduction of D eventually leads to quasi-isotropic
behavior over the whole considered magnetic field range for
S = 1 [see Figs. 5(a) and 6(c)]. On the other hand, for large
and increasing anisotropy D and half-integer impurity spin,
the observed screening effect is increasingly well described by
an exchange-anisotropic S = 1

2 Kondo model, whose Kondo
temperature has a value much smaller than W/kB .63 This
means that the pseudoplateau occurring for impurity spin
S = 3

2 and fields gSμBB � 2D [see Figs. 5(b) and 7(a)]
becomes more pronounced for larger anisotropy D. As a final
remark, Fig. 8(a) once again shows the different width of the
two impurity magnetization steps for S = 2 and large D.

In Appendix C, we investigate how the magnetization
curvesM(B,T ≈ 0) are affected by the ratio ge/gS of electron
and impurity g factor. It turns out that the difference between
the impurity magnetization for a local and a bulk magnetic field
can be related to the connection betweenM and Mimp for equal
g factors. In case of the single-impurity Anderson model, the
impurity contribution to the zero-field susceptibility for ge = 0
and gS has been recently studied in Ref. 78. In accordance with
the Clogston-Anderson compensation theorem (see Ref. 72),
it is found that the two susceptibilities are nearly identical for
all considered temperatures.

B. Field-induced Kondo effects

In order to better understand the steps in the low-
temperature magnetization curves for large anisotropy D > 0
[cf. Figs. 5 and 9(a)], we now derive effective models near
ground-state level crossings (LCs) of the corresponding free
spin with hard-axis anisotropy (see Fig. 4). These models are
approximations to the full Hamiltonian in the limit of large D.

1. Effective models near ground-state level crossings
in the limit of arbitrarily large anisotropy

For given impurity spin S � 1 let us consider one of
the ground-state level crossings of the corresponding free
spin with hard-axis anisotropy (cf. Fig. 4). If D is large,
then the two levels which cross in the ground state are
energetically well separated from the rest of the spectrum in
the vicinity of the LC field. As an approximation for the full
impurity model near this free LC field, we therefore project
the impurity degrees of freedom in Hamiltonian (1)
onto the two impurity states involved in the free LC.
This way, the impurity Hilbert space is reduced to two states
and the impurity spin S can thus be mapped to an effective
spin- 1

2 . While the projection becomes exact only in the limit
D → ∞, we expect it to be a quantitative approximation for
D 	 W and D 	 kBT .
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FIG. 9. (Color online) Impurity contribution to (a) the magneti-
zation Mimp, (b) the entropy Simp, and (c) the effective moment T χimp

as a function of magnetic field for impurity spin S = 3, hard-axis
anisotropy D/W = 10−3, and several temperature values. In plot
(a), the dashed curve shows Mimp(B) for kBT /W ≈ 0, and for the
curves in plots (b) and (c) temperature increases from bottom to top.
Thin vertical lines indicate the (equal) peak positions for Simp(B) and
T χimp(B). As before, the coupling strength is chosen as ρJ = 0.07
and equal g factors are used.

The mapping of the impurity spin to a pseudo-spin- 1
2 is an

extension of the ideas from Refs. 63 and 68. In contrast to
the case of zero magnetic field that has been studied there,
we do not project onto impurity doublets with M = ± 1

2 (see
following). Furthermore, at each LC, i.e., for each step in the
magnetization curve, the impurity is reduced to a different
pair of states. As a consequence, different parameters of the
effective model are obtained at each LC.

We intend to use the effective models to determine the mag-
netic fields at which steps appear in the impurity magnetization
curves for large anisotropy D (cf. Fig. 5), and to investigate
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how the properties of the full impurity model differ near the
various free LCs [as indicated, e.g., by Fig. 9(a)]. Compared
to the full model, the effective models are numerically less
demanding as they feature a spin- 1

2 impurity independent of
the value of S, and they allow us to study the effect of the
different terms appearing in the effective Hamiltonian.

To be specific, we consider the two impurity states with
magnetic quantum numbers −M and −(M + 1) (assuming
M � 0), which cross at the free LC field BM = (2M +
1)D/gSμB , and project the impurity and interaction part of
Hamiltonian (1) onto them. The effective model is determined
by requiring that its matrix representation be equal to that of
the full model in the chosen subspace. Note that we have
to introduce new impurity states by shifting the magnetic
quantum number in order to map the impurity spin to a
pseudo-spin- 1

2 . This mapping then corresponds to the follow-
ing replacements for the impurity spin operators:

S
∼

x →
√

(S − M)(S + M + 1) s
∼

x, (18)

S
∼

y →
√

(S − M)(S + M + 1) s
∼

y, (19)

S
∼

z → s
∼

z − (M + 1/2) 1∼s . (20)

The impurity formally has spin s = 1
2 now and the re-

placement for (S∼
z)2 directly follows from that for S∼

z. In the

parameter regime in which the projection is valid, the mapping
for S∼

z leads to the following connection between the impurity

magnetization of the full and effective model:

M/gSμB = −〈S
∼

z〉 ≈ −〈s
∼

z〉 + (M + 1/2). (21)

There is an analogous relationship for the impurity contri-
bution to the magnetization Mimp, as seen from Eq. (11).
According to its definition, the impurity contribution to the
magnetic susceptibility χimp is not affected by the shift of the
magnetic quantum numbers.

Applying mappings (18) to (20) to the full impurity
model (1) and dropping all constant terms, the following
Hamiltonian is obtained:

H∼ s(S,M) =
∑
k,σ

εkσ c
∼
†
kσ c

∼kσ − κs
∼

z
0

+ J⊥
(
s
∼

x
0 s
∼

x + s
∼

y

0 s
∼

y
) + J‖s∼

z
0s∼

z

+ gSμB(B − BM )s
∼

z, (22)

with the set of parameters

εkσ = εk + σgeμBB (σ = ±1/2), (23)

κ = (M + 1/2) J, (24)

J⊥ =
√

(S − M)(S + M + 1) J, (25)

J‖ = J, (26)

BM = (2M + 1)D/gSμB. (27)

In contrast to the full Hamiltonian, H∼ s(S,M) is exchange

anisotropic with J⊥ > J‖: J⊥/J‖ grows with S and decreases
with increasing M (while always present, the exchange
anisotropy thus becomes weaker with every further LC). The
Zeeman term for the impurity is now expressed relative to the

free LC field BM . H∼ s(S,M) furthermore contains the new term

−κs
∼

z
0 representing an effective magnetic field, which couples

to the electron spin at the origin and points in the opposite
direction of the external field B. With respect to NRG, this term
can be regarded as spin-dependent scattering at the zeroth site
of the Wilson chain. It breaks the invariance under a spin-flip
transformation [c

∼kσ → c
∼k−σ and s∼ → (s

∼
x,−s

∼
y,−s

∼
z)], which

H∼ s(S,M) would otherwise possess for B = BM . While the

scattering parameter κ grows with M , the ratio κ/BM is inde-
pendent of M . Starting with the second LC, κ is larger than J‖.
The ratio κ/J⊥, which at first is smaller than 1, also grows with
M and eventually becomes greater than 1 if S is large enough.

As an analog to the free LC field BM , we call the magnetic
field BELC for which the impurity magnetization vanishes at
zero temperature (i.e., the two impurity levels are effectively
degenerate) “effective level crossing (ELC) field”:

〈s
∼

z〉(BELC,T = 0) = 0. (28)

In the parameter regime in which the mapping to a pseudo-
spin- 1

2 is valid, there is a step in the impurity magnetization
curve of the full model at the ELC and, according to Eq. (21),
the value of M at the ELC field is M(BELC,T = 0) ≈
gSμB(M + 1

2 ). In the following, we discuss the properties of
Hamiltonian (22) in more detail for the two different cases
ge > 0 and ge = 0.

Let us begin with the case ge > 0. As the free LC field BM

is proportional to D, the limit D → ∞ also corresponds to the
limit B → ∞. A nonzero Zeeman coupling of the electrons
therefore leads to their complete polarization so that formally
they may be replaced with spinless fermions (corresponding
to spin-down electrons). Since the remaining fermion band
is then completely filled, all interaction terms vanish and the
electrons can be completely eliminated from the problem. For
ge > 0 and arbitrarily large D, Hamiltonian (22) thus reduces
to a pure spin model

H∼
(ge>0)
eff (B̃) = gSμB

(
B̃ − J/2

gSμB

)
s
∼

z. (29)

Here, we have introduced a relative magnetic field B̃ =
B − BM . As the only remnant of the interaction between
impurity and electrons, a shift of the free LC field remains.
This shift is positive for antiferromagnetic coupling J > 0
and only depends on the coupling strength, but not on S or M .
It is thus the same for all LCs. From the effective model (29)
we learn that the ELC fields eventually exceed the free LC
fields for ge > 0 and large anisotropy D (cf. Fig. 5).

We now turn to the case of a local magnetic field. Setting
ge = 0 and using the relative field B̃, Hamiltonian (22)
becomes the effective model for arbitrarily large D:

H∼
(ge=0)
eff (B̃; S,M) = H∼ s(S,M)|ge=0. (30)

We are particularly interested in the properties of
H˜ (ge=0)

eff (B̃; S,M) at the ELC field B̃ELC = BELC − BM . Due

to the scattering term, the effective model does not exhibit
a spin-flip invariance at the ELC. It therefore seems that the
ELC is not characterized by special symmetry properties. A
spin-independent (potential) scattering term can be treated
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by transforming to scattering states which diagonalize the
electronic part of the Hamiltonian (cf. Appendix C of Ref. 79).
Although such a transformation can be easily adapted to
the case of spin-dependent scattering, it does not seem
to yield the intended results. The approximation which is
used in the spin-independent case (a modification of the
density of states at the Fermi level expressed by an effective
coupling parameter)79 would restore spin-flip invariance for
B̃ = 0 in the spin-dependent case and would thus erroneously
imply 〈s

∼
z〉(B̃ = 0,T ) = 0. Instead, we are going to use NRG

to determine the ELC field B̃ELC and to study the properties of
H˜ (ge=0)

eff (B̃ELC; S,M).

For the interpretation of the properties of the full Hamil-
tonian (1) near the ELCs, we are going to use the main
results for the effective model H∼

(ge=0)
eff (B̃ELC; S,M). These are

explicitly demonstrated in Sec. VI B4 and are summarized in
the following. At an ELC, the spin- 1

2 impurity of the effec-
tive model is Kondo screened for T → 0. The temperature
dependence of the impurity contribution to the entropy at an
ELC is described by the corresponding universal function for
the exchange-isotropic S = 1

2 Kondo model without scattering
term and Zeeman term. Since the parameters of the effective
model are different near each free LC [see Eqs. (24) and (25)],
there is also a different Kondo temperature T ELC

K at each ELC.
It turns out that T ELC

K decreases with increasing M , i.e., T ELC
K

becomes smaller with every further ELC.

2. Magnetic field dependence of impurity contributions
near effective level crossing fields

Armed with the effective model H∼
(ge=0)
eff (B̃; S,M) for a local

magnetic field, we now study in detail the field dependence
of typical impurity contributions of the full impurity model
for moderately large anisotropy D > 0. In Fig. 9, results for
Mimp(B), Simp(B), and T χimp(B) are shown for impurity spin
S = 3 and anisotropy D/W = 10−3. As before, equal g factors
have been assumed.80

Let us start with a discussion of the magnetization curves
depicted in Fig. 9(a). According to the previously considered
behavior of the impurity magnetization M and its connection
with Mimp, there are also steps in Mimp(B) at low temperature.
These steps have finite widths for T → 0 and are smeared out
for sufficiently high temperature. It is noticeable that the steps
have different widths: a step occurring at larger magnetic field
is steeper. Figure 9(a) furthermore indicates that the effect
of nonzero temperature is different for the different steps.
In contrast, for a free spin with hard-axis anisotropy, the
steps in the magnetization become discontinuous for T → 0
and the effect of nonzero (small) temperature is the same
for all of them (see Fig. 4). In the chosen representation of
Fig. 9(a), the pseudoplateaux between the steps become flatter
in the direction of increasing magnetic field and approach the
true zero-temperature plateaux of the free spin with hard-axis
anisotropy from below for growing D (cf. Fig. 5).

The behavior of Mimp(B) as shown in Fig. 9(a) can be
understood by considering the magnetic field dependence of
Mimp for the S = 1

2 Kondo model with ge = gS . As discussed
in Sec. IV A, Mimp(x,T = 0) is described by a universal

function f1/2(x) with the variable x = gSμBB/kBTH and
TH ∝ TK according to Eq. (13).46 f1/2(x) is linear in x for
x � 1 and thus the slope of Mimp(B) for small fields is
higher if the Kondo temperature is smaller.46,47 This relation
is also expressed by the definition of the Kondo temperature
from Eq. (12). Combined with the prediction of the effective
model with ge = 0 for the Kondo temperatures at the different
ELCs, this observation explains why different steps in a single
magnetization curve of the full model have different widths at
zero temperature. In case of the S = 1

2 Kondo model, temper-
ature has to reach the scale of TK to become relevant for the
zero-field susceptibility.16 For this reason, thermal broadening
of a step in Mimp(B) begins at lower temperature if the step
occurs at a later ELC with smaller T ELC

K . Furthermore, away
from an ELC, the magnetization reaches values of the order
of the respective saturation value for smaller magnetic fields
(relative to the ELC field) if the Kondo temperature at the ELC
is lower. It subsequently enters the regime of very slow growth
towards saturation, which shows up in Fig. 9(a) in the form
of a pseudoplateau. This also explains why pseudoplateaux
between later ELCs with smaller T ELC

K are flatter.
Results for the impurity contribution to the entropy Simp(B)

and the effective moment T χimp(B) at low temperature kBT <

D are shown in Figs. 9(b) and 9(c), respectively. In both cases,
we observe peaks of varying height and width whose positions
coincide with those of the steps in Mimp(B). We find that the
peaks become both higher and narrower with every further
ELC. If the temperature is reduced, the peak heights decline
and at the same time, if T is not too low, the peaks become
sharper. It is noticeable that there is a temperature below which
the width of the first peak in both Simp and T χimp varies only
little as a function of T .

At zero temperature, both Simp and T χimp vanish for all
magnetic fields. In case of the entropy, the reason is that the
magnetic field either leads to a nondegenerate ground state or
it creates an effective impurity doublet which is then Kondo
screened. The effective moment, on the other hand, has to go
to zero since the slope of Mimp(B) at zero temperature, i.e.,
χimp(B,T = 0), is finite for all fields. For large anisotropy D,
the temperature dependence of the peak heights is determined
by the pseudo-spin- 1

2 Kondo effects that take place at the ELCs
(see the next section and Fig. 10 for details). By recollecting
results for the S = 1

2 Kondo model,51 we can furthermore
understand the different peak widths and their temperature
dependence. In case of the S = 1

2 Kondo effect, the Zeeman en-
ergy gSμBB has to reach the energy scale of max (kBT ,kBTH )
in order to considerably suppress Simp and T χimp.51 In
particular, since the lowest temperatures considered in Fig. 9
are smaller than T ELC

K at the first ELC [cf. the indicated
temperature range in Fig. 10(a)], temperatures are reached
for which the thermal broadening of the first peak is small.

3. Temperature dependence of impurity contributions
at effective level crossing fields

Figure 10 shows the temperature dependence of Simp,
T χimp, and χimp at the three ELCs that occur for the example
considered in Fig. 9. In case of entropy and effective moment,
it is thus demonstrated how the peak heights in Figs. 9(b)
and 9(c) decrease when the temperature is lowered. Note
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FIG. 10. (Color online) Main plots: Impurity contribution to
(a) the entropy Simp, (b) the effective moment T χimp, and (c)
the magnetic susceptibility χimp as a function of temperature for
impurity spin S = 3 and hard-axis anisotropy D/W = 10−3. The
chosen nonzero magnetic fields correspond to the peak positions for
Simp(B) and T χimp(B) according to Fig. 9. Also shown are NRG
results for vanishing coupling strength (dashed lines) and for D = 0
(dashed-dotted lines). Solid vertical lines delimit the temperature
range considered in Fig. 9, whereas dashed vertical lines indicate the
thermal energy for which kBT = D. In the insets, data from the main
plots are presented for a reduced temperature range.

that in this section “anisotropic impurity” always means
“exchange-isotropic impurity in the presence of hard-axis
anisotropy.”

Simp(T ,B = 0) for an impurity with S = 3 and D =
0 interpolates between the limiting values of kB ln 7
(for T → ∞) and kB ln 6 (for T = 0), according to the screen-
ing of half a magnetic moment [cf. Fig. 10(a)]. In contrast, for
the anisotropic impurity in zero field, all higher-lying impurity
levels are frozen out on the energy scale kBT ≈ D so that

Simp(T ,B = 0) quickly drops to zero.63 At high temperatures
kBT 	 D, on the other hand, the anisotropic impurity behaves
more and more like an impurity with D = 0. For the three
ELC fields, we observe qualitatively different behavior at
low temperature kBT < D compared to the case of zero
field: Starting with Simp ≈ kB ln 2 for kBT � D, the effective
impurity doublet, which is formed due to the magnetic field,
undergoes Kondo screening with a value of T ELC

K that decreases
with every further ELC. While there is fair agreement with the
results for a decoupled impurity at kBT > D, low temperature
kBT � D reveals that the ELC fields are not equal to the free
LC fields. For this reason, all states except the respective non-
degenerate ground state are ultimately frozen out for T → 0.

For an impurity with S = 3 and D = 0, kBT χimp(T ,B = 0)/
(gSμB)2 obeys a Curie law at both high and low temperatures
[see Fig. 10(b)] and goes from S(S + 1)/3 = 4 (for T → ∞)
to (S − 1

2 )(S + 1
2 )/3 = 35/12 (for T = 0). For the anisotropic

impurity in zero magnetic field, on the other hand, the
increasing thermal reduction to a nonmagnetic ground state
for kBT < D leads to a vanishing effective moment at
zero temperature.63 At very high temperature kBT � W

(not shown), we find the expected agreement between
T χimp(B = 0) for D = 0 and for D > 0. The effective
moment of the decoupled anisotropic impurity first goes
to about 1

4 at kBT � D (according to the susceptibility
of a doublet with |�M| = 1), but then quickly drops to
zero because of the nondegenerate ground state with good
magnetic quantum number. For the anisotropic impurity at
the ELC fields, we again observe Kondo screening for T → 0
with different T ELC

K , starting with an effective moment of
kBT χimp/(gSμB)2 ≈ 1

4 at kBT � D.
According to its definition, the impurity contribution to

the susceptibility χimp, for which results are presented in
Fig. 10(c), is the slope of Mimp(B) and thus directly yields
information about the width of the steps in the magnetization
curve shown in Fig. 9(a). For an impurity with D = 0 and
S � 1, the zero-field susceptibility at low temperature is
described by a Curie law and thus diverges for T → 0. In
contrast, χimp(T ,B = 0) for the anisotropic impurity has a
maximum at kBT ≈ D and vanishes for zero temperature.
Since the ELCs lie close to the free LCs in this example, the
susceptibility for the decoupled anisotropic impurity displays a
maximum at a thermal energy of the order of the level splitting,
but then falls off at low temperature. At the ELCs, χimp(T ) for
the anisotropic impurity saturates at a finite value for T → 0
that increases with decreasing Kondo temperature. Recently, it
has been demonstrated that a field-induced Kondo effect also
occurs for Hamiltonian (1) with easy-axis anisotropy D < 0,
additional transverse anisotropy E, and a local magnetic field
aligned along the x axis.65

4. Properties of the effective model for vanishing electron g factor

We now return to the effective model for ge = 0 given by
Hamiltonian (30) in order to study its properties in greater
detail. The ELC field B̃ELC and the Kondo temperature T ELC

K

at the ELC field are determined as a function of the parameters
J‖, J⊥, and κ of the effective model or, respectively, as a
function of the parameters J , S, and M of the full Hamiltonian
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J /W = 0.14

kBTK/W ≈
1.80 · 10−7

(102 · gSμBBELC/W )
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FIG. 11. (Color online) Kondo temperature at the ELC field (cf.
Appendix D) for the effective Hamiltonian with ge = 0 as a function
of the scattering parameter κ (corresponding to a pair of onsite
energies ε0↓ = −ε0↑ > 0 for the zeroth site of the Wilson chain) for
fixed J‖ and three values of the coupling parameter J⊥ > J‖. Numbers
in parentheses denote the respective ELC field and lines are intended
as a guide to the eye. Pessimistic error bars would be smaller than the
symbol size. Additional crosses indicate the Kondo temperature for
parameters which, according to Eqs. (24) and (25), correspond to the
given values of the quantum numbers S and M . Small dots mark TK

for the case of potential scattering, i.e., for spin-independent onsite
energies and zero magnetic field. The Kondo temperature given in
the upper right corner refers to the exchange-isotropic case without
scattering term.

[according to Eqs. (24) to (26)]. In Appendix D, it is described
how to reliably extract these quantities from the NRG results.

We first investigate how the parameter κ , which corresponds
to spin-dependent scattering at the zeroth site of the Wilson
chain with onsite energies ε0↓ = −ε0↑ > 0 as seen from
Eqs. (22) and (24), affects the values of B̃ELC and T ELC

K .
To this end, we interpret κ as a free parameter of the
effective model. For the exchange-isotropic S = 1

2 Kondo
model in zero magnetic field, it is known that ordinary
(spin-independent) potential scattering can be approximately
mapped to a modified electron DOS at the Fermi level or,
equivalently, to an effective coupling parameter Jeff.79 This
approximation predicts that an increase of the scattering
parameter reduces Jeff and thus also the Kondo temperature.

In the example shown in Fig. 11, spin quantum number
S = 3 (as in Fig. 9) is considered and those coupling
parameters J⊥ are chosen which, as per Eq. (25), are assigned
to the three magnetic quantum numbers allowed for this value
of S (i.e., M = 0,1,2). Without scattering term, the Kondo
temperature decreases when J⊥ is reduced.10,63 Additional
spin-dependent scattering further lowers T ELC

K just as standard
potential scattering with ε0↓ = ε0↑ at zero magnetic field
does, but in comparison leads to smaller values of the Kondo
temperature. In accordance with the expression for Jeff from
Ref. 79, the sign of the spin-independent onsite energies does
not affect TK . Figure 11 reveals that the decrease of T ELC

K

accelerates with growing scattering strength. Furthermore,
we observe that the spin-dependent scattering has a larger
influence on the Kondo temperature at the ELC field when the
coupling parameter J⊥ is smaller.

Let us now turn to the effect of κ on the position of the ELC
field. An additional spin-dependent scattering term breaks the
spin-flip invariance and is therefore the very reason for a
nonzero value of B̃ELC. It thus seems plausible that a larger
value of κ also leads to a larger absolute value of the ELC field
(cf. the numbers in parentheses in Fig. 11). This increase of
|B̃ELC| decelerates with growing scattering strength. A closer
look at the data reveals that κ again has a stronger effect when
the coupling parameter J⊥ is smaller.

Additional crosses in Fig. 11 mark the Kondo temperature
for those values of the scattering parameter κ that follow from
Eq. (24) for the three considered M quantum numbers. We
observe that the effective model predicts a decrease of T ELC

K

with growing M , i.e., with every further ELC. As the example
demonstrates, this decline of the Kondo temperature is due
to three cooperating effects: (1) According to Eq. (25), J⊥
becomes smaller when M is increased. (2) Simultaneously,
κ becomes larger. (3) Because of the decreasing value of J⊥,
the scattering parameter additionally gains in importance.
For the ELC fields gSμBB̃ELC/W that belong to the three
special values of T ELC

K , we obtain the following results
(the error estimates indicate the variance with respect
to z, see Appendix D): −6.59+0.19

−0.25 × 10−3(S = 3,M = 0),
−1.78+0.06

−0.07 × 10−2 (M = 1), and −2.36+0.06
−0.09 × 10−2 (M = 2).

Finally, we investigate how the ELC field and the Kondo
temperature at the ELC field depend on the parameters
of the full Hamiltonian (1), i.e., on J , S, and M , with
the parameters of the effective model given by Eqs. (24)
to (26). First of all, we note that all obtained (relative)
ELC fields are negative. This supports the conclusion that,
in the impurity magnetization curves for equal g factors
and large hard-axis anisotropy presented in Fig. 5, the
free LC fields are only exceeded because of the electrons’
nonzero magnetic coupling. For S = 1, 3

2 , 2 and J/W =
0.14 (as in Fig. 5), the following values for gSμBB̃ELC/W

are obtained: −3.90+0.10
−0.14 × 10−3 (S = 1,M = 0), −8.27+0.22

−0.30 ×
10−3 (S = 3

2 ,M = 1
2 ), −4.95+0.14

−0.18 × 10−3 (S = 2,M = 0),
and −1.31+0.04

−0.05 × 10−2 (S = 2,M = 1).
In contrast to the prediction of the effective model with

ge > 0 from Eq. (29), the ELC fields depend on the quantum
numbers S and M for vanishing electron g factor (see Fig. 12).
With increasing value of S, i.e., with increasing coupling
parameter J⊥, the absolute value of the ELC field grows as
already seen in Fig. 11. A larger coupling J increases all
parameters of the effective model (J‖,J⊥, and κ) and, as
demonstrated by Fig. 12, thereby leads to a larger value of
|B̃ELC|. It is furthermore evident that, with growing J , the
quantum number S gains in importance: Fig. 12 shows that
the “curves” for fixed coupling strength “fan out” for larger
values of J . The dependence of the ELC field on the magnetic
quantum number is the result of two counteracting effects:
(1) A larger value of M leads to smaller coupling strength
J⊥ which, on its own, would lower |B̃ELC|. (2) On the other
hand, the scattering term becomes stronger with increasing
M and would, on its own, enlarge |B̃ELC|. For the parameters
considered in Fig. 12, there is a growth of |B̃ELC| with M

for S � 7
2 that decelerates with increasing M . In the case of

S = 4 and both J/W = 0.16 and J/W = 0.18, we observe
a decrease of the absolute value of the ELC field in the
last step.
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FIG. 12. (Color online) Negative value of the ELC field for a set
of parameter combinations of the effective Hamiltonian with ge = 0
which, according to Eqs. (24) to (26), correspond to the indicated
spin quantum numbers S, magnetic quantum numbers 0 � M < S,
and coupling parameters J . Projections of the data points onto two
planes are shown as small dots and lines connect points belonging to
the same values of S and J . Pessimistic error bars would be smaller
than the symbol size.

To conclude this section, the Kondo temperatures belonging
to the ELC fields shown in Fig. 12 are presented in Fig. 13.
As the main result, we find that, according to the above
explanation, the value of T ELC

K increasingly drops with growing
M . On the other hand, a larger value of S increases the
coupling strength J⊥ and thus also T ELC

K . It turns out that
the influence of S on T ELC

K is reduced for larger coupling J .
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FIG. 13. (Color online) Kondo temperature at the respective ELC
field for the same set of parameter combinations of the effective
Hamiltonian with ge = 0 as in Fig. 12. Again, pessimistic error bars
would be smaller than the symbol size. Three small crosses in the
plane spanned by kBT ELC

K /W and J/W indicate the value of the
Kondo temperature for the exchange-isotropic case without scattering
term [as inferred from Table I using Eq. (13)].

As a consequence, the “curves” for fixed J are “focused” in
the direction of increasing coupling strength. We find that the
dependence of the Kondo temperature on J is the result of
two counteracting effects: (1) Both coupling parameters J‖
and J⊥ grow with J and would, on their own, lead to a larger
value of T ELC

K . (2) However, the scattering parameter κ is also
increased and would, on its own, lower the Kondo temperature.
For all parameter combinations considered in Fig. 13, T ELC

K is
a monotonously increasing function of the coupling strength
J . As a final observation, the relative decrease of the Kondo
temperature between two consecutive values of M (for
fixed J ) becomes smaller for larger quantum number S.

5. Comparison of anisotropy- and field-induced pseudo-spin- 1
2

Kondo effect for half-integer impurity spin

In the case of half-integer impurity spin S � 3
2 , two

different pseudo-spin- 1
2 Kondo effects occur for large hard-

axis anisotropy D. At zero magnetic field, the anisotropy splits
up the impurity multiplet and a doublet with magnetic quantum
numbers M = ± 1

2 becomes the lowest-lying impurity level
[cf. Fig. 4(b)]. If the energy gap to the impurity states with
M = ± 3

2 , which is equal to 2D, is sufficiently large, this dou-
blet undergoes pseudo-spin- 1

2 Kondo screening (let us call this
Kondo effect “anisotropy induced”).63 At nonzero magnetic
field, on the other hand, ELCs with associated field-induced
Kondo effects occur, as discussed in the previous section. Both
types of Kondo effect show up in the corresponding impurity
magnetization curves. In Fig. 7(a), for example, we observe
the magnetic response of the effective impurity doublet at low
magnetic fields gSμBB/D � 1, which is then followed by a
step at gSμBB/D ≈ 2 due to the ELC.

One might wonder how the Kondo temperatures of the
anisotropy- and field-induced Kondo effects compare. It has
been shown in Ref. 63 that the anisotropy-induced Kondo
screening in the limit D/W → ∞ is explained by Hamilto-
nian (30) with B̃ = 0 and parameters J‖ = J , JD

⊥ = (S + 1
2 )J ,

and κ = 0. On the other hand, for ge = 0 the pseudo-spin- 1
2

Kondo effect at the first ELC (i.e., for M = 1
2 ) is described

by the same Hamiltonian with B̃ = B̃ELC and parameters
J‖ = J , J ELC

⊥ =
√

(S − 1
2 )(S + 3

2 ) J , and κ = J . In particular,
we thus have J ELC

⊥ < JD
⊥ for S � 3

2 . Since Fig. 11 shows that
additional scattering κ reduces the Kondo temperature, we can
conclude that T D

K for the anisotropy-induced Kondo effect is
always larger than T ELC

K at the first ELC and, according to
Fig. 13, at all following ELCs, too.

VII. SUMMARY

In this paper, we have reported on numerical renormal-
ization group (NRG) calculations for a Kondo model with
additional uniaxial anisotropy D. Results have been presented
for nonzero magnetic field B and different ratios ge/gS of
electron and impurity g factor.

For a bulk field (i.e., for equal g factors), a comparison
of NRG results for the impurity magnetization M and the
impurity contribution to the magnetization Mimp reveals that
M(T ,B) = αMimp(T ,B) as long as all relevant energy scales
(i.e., thermal energy, Zeeman energy, and uniaxial anisotropy
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according to Appendix C) are small compared to the half-
bandwidth W . The proportionality factor α > 1 depends on
the coupling strength and decreases for smaller couplings
ρJ‖ and ρJ⊥ as shown in Appendix C. Calculations for
isotropic exchange interaction (i.e., J‖ = J⊥ = J ) discussed
in Appendix C demonstrate that, compared to the case
of a local field (i.e., ge = 0), a nonzero electron g factor
effectively rescales the magnetic field argument of the impurity
magnetization M(B) at low temperature. They furthermore
suggest that the corresponding values of the rescaling factor
η(ge/gS = 1) and the proportionality factor α coincide. The
results for M and Mimp mean that for a bulk field the
magnetization of the conduction electrons is reduced due to
the presence of the impurity spin and that a nonzero magnetic
coupling of the electrons causes the impurity to effectively
“feel” a reduced magnetic field strength. In particular, for an
isotropic impurity (D = 0) in a bulk field, the calculations thus
explicitly demonstrate that M(B,T ≈ 0), unlike Mimp, does
not display universal behavior in the usual sense as already
noted in Ref. 49 (see also Appendix B).

With additional easy-axis anisotropy (D < 0),
Mimp(B,T ≈ 0) starts to deviate from the curve for
D = 0 at gSμBB ≈ |D| and stabilizes at a D-dependent value
for small, but nonzero, magnetic field gSμBB � |D|. This
ground-state magnetization matches the effective moment of
the respective “fractional spin”63 as given by kBT χimp(B = 0)
for kBT � |D|. The magnetic response at small fields and
low temperature (compared to |D|) is thus shown to resemble
that of an ordinary magnetic doublet. Appropriately, the
impurity magnetization M(B,T > 0) is well described by a
rescaled and shifted Brillouin function in this regime.

In the case of hard-axis anisotropy (D > 0), a nonzero
magnetic field can lead to “effective level crossings” (ELCs),
at which pseudo-spin- 1

2 Kondo screening occurs. For ge =
0 and D/W → ∞, these field-induced Kondo effects are
described by an exchange-anisotropic spin- 1

2 Kondo model
with additional spin-dependent scattering at the zeroth site of
the Wilson chain. At the respective ELC field, this scattering
leads to a reduction of the Kondo temperature T ELC

K in a
similar way as ordinary potential scattering does for zero
magnetic field. In particular, the effective model predicts that
T ELC

K decreases with every further ELC. This agrees with the
observation that the steps in the magnetization curves for
large D, which are due to the field-induced Kondo effects,
become steeper in the direction of increasing magnetic field.
We furthermore find that the step positions are shifted relative
to the level crossing fields of the corresponding free spin with
hard-axis anisotropy (this is either a spin S if D is much larger
than the energy scale kBTH or a spin S − 1

2 if D/kBTH � 1)
and, in particular, that they are also influenced by a nonzero
magnetic coupling of the conduction electrons.
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APPENDIX A: NUMERICAL RENORMALIZATION GROUP
CALCULATIONS WITH CONDUCTION ELECTRON

ZEEMAN TERM

In this first Appendix, we briefly describe the changes to
the standard NRG procedure18 which are necessary in order to
carry out calculations with an additional Zeeman term for the
conduction electrons.

1. Logarithmic discretization

The starting point is the continuous energy representation of
the Hamiltonian from Eq. (8) with a restriction to the physically
reasonable case h < W . In the following, it is assumed that the
magnetic field, which appears in h = geμBB, is nonzero and
fixed and, to simplify the notation, that the chemical potential
is zero. We introduce abbreviations for the absolute value of
the integration boundaries in Eq. (8),

B±
μ = |±W + μh|, (A1)

rescale the integration variable ε, and change to rescaled
electron operators (cf. Ref. 17)

ξ+
μ = ε

B+
μ

for ε > 0, (A2)

ξ−
μ = ε

B−
μ

for ε < 0, (A3)

a
∼

+
ξμ =

√
B+

μ a
∼εμ for ε > 0, (A4)

a
∼

−
ξμ =

√
B−

μ a
∼εμ for ε < 0. (A5)

Using
∫ W

−W
dε ρ(ε) = 1 and defining the normalized zeroth

state of the Wilson chain as

f
∼

0μ =
∫ 1

0
dξ+

μ

√
ρ(ξ+

μ B+
μ − μh)B+

μ a
∼

+
ξμ

+
∫ 0

−1
dξ−

μ

√
ρ(ξ−

μ B−
μ − μh)B−

μ a
∼

−
ξμ, (A6)

we obtain an equivalent expression for the electronic and
interaction term in Eq. (8):

H∼ cb+int = W
∑

μ

(B+
μ

W

∫ 1

0
dξ+

μ ξ+
μ a

∼
+†
ξμa

∼
+
ξμ

+ B−
μ

W

∫ 0

−1
dξ−

μ ξ−
μ a

∼
−†
ξμa

∼
−
ξμ

)
+ J S

∼
·
∑
μ,ν

f
∼
†
0μ

σμν

2
f
∼

0ν . (A7)

Next, the logarithmic discretization of the conduction band
is carried out according to one of the available discretization
schemes70,71,81–84 by dividing the integration range [−1,1] into
standard intervals I±

m and using the following weight function
on the mth positive and negative intervals, respectively:

ϕ±
mμ(ξ±

μ ) =
√

ρ(ξ±
μ B±

μ − μh)∫
I±
m

dξ
′±
μ ρ(ξ ′±

μ B±
μ − μh)

. (A8)
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With s = ±,

γ s
mμ =

√
Bs

μ

W

∫
I s
m

dξ s
μ ρ

(
ξ s
μBs

μ − μh
)
W, (A9)

and new operators a
∼

s
mμ corresponding to the weight functions

ϕs
mμ(ξ s

μ) on the intervals I s
m, we have the following exact

representation for the zeroth state of the Wilson chain:

f
∼

0μ =
∑
s,m

γ s
mμ a

∼
s
mμ. (A10)

In addition, a “dimensionless energy” E s
mμ has to be

assigned to each interval I s
m for each spin projection μ. This is

done according to the chosen discretization scheme by using
the weight function (A8) with the shifted DOS, leading to a
discrete approximation to Hamiltonian (A7):

H∼ cb+int → W
∑
s,m,μ

Bs
μ

W
E s

mμ a
∼

s†
mμ a

∼
s
mμ

+ J S
∼

·
∑
μ,ν

f
∼
†
0μ

σμν

2
f
∼

0ν . (A11)

At this point, the substitution (A11) is still valid for arbitrary
ρ(ε). The above expressions simplify in the case of a constant
density of states, ρ(ε) = 1/2W , as a shifted constant DOS is,
of course, still a constant DOS:

H∼ cb+int → W
∑
s,m,μ

Bs
μ

W
E s

mμ(h = 0)︸ ︷︷ ︸
= E s

m

a
∼

s†
mμ a

∼
s
mμ

+ J S
∼

·
∑
μ,ν

f
∼
†
0μ

σμν

2
f
∼

0ν, (A12)

f
∼

0μ =
∑
s,m

√
Bs

μ

W
γ s

mμ(h = 0)︸ ︷︷ ︸
= γm

a
∼

s
mμ. (A13)

Here, E s
m and γm are the “energies” and expansion coefficients,

respectively, for the system with a local magnetic field (i.e.,
with ge = 0).

2. Tridiagonalization

Since the rescaling factors

Bs
μ

W
=

∣∣∣∣s + μ
ge

gS

gSμBB

W

∣∣∣∣ (A14)

depend on spin projection μ and magnetic field B, the
tridiagonalization of Hamiltonian (A12), which leads to the
Wilson chain with hopping parameters tiμ(B) and onsite
energies εiμ(B), has to be done separately for spin up and
spin down and for each value of B. In case of a constant
DOS, Eqs. (A12) and (A13) show that the only necessary
modification of an existing code solving the recursion relations
given in Ref. 18 is to multiply all “energies” E s

m and coefficients
γ 2

m with the appropriate factor (A14).
For a particle-hole symmetric DOS, we have E s

mμ = −E−s
m−μ

and γ s
mμ = γ −s

m−μ. Using the ansatz unmμ = (−1)nvnm−μ and
vnmμ = (−1)nunm−μ for the coefficients of the orthogonal
transformation (following the notation of Ref. 18), it can then
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FIG. 14. (Color online) Limiting value for T → 0 of (a) the
impurity contribution to the magnetization Mimp and (b) the impurity
magnetization M as a function of the coupling strength ρJ for
impurity spin S = 1, ge = gS , and several magnetic field values. The
vertical lines mark a coupling strength of ρJ ′ ≈ 0.276 for which we
have checked by comparing with the respective Bethe ansatz solution
shown in Fig. 1 that Mimp(B,T ≈ 0) still exhibits universal behavior
(a fit of the BA curve gives kBTH /W ≈ 8.85 × 10−2). Remaining
lines are intended as a guide to the eye.

be shown that ti↑(B) = ti↓(B) and εi↑(B) = −εi↓(B) for all
sites i of the Wilson chain.

APPENDIX B: DEPENDENCE OF
THE ZERO-TEMPERATURE MAGNETIZATION

ON THE COUPLING STRENGTH FOR D = 0

To further illustrate the difference between the impurity
contribution to the magnetization Mimp and the impurity mag-
netization M for vanishing anisotropy D = 0, we examine
how both quantities depend on the coupling strength ρJ for
nonzero magnetic field at zero temperature. As in Sec. IV, the
case of equal g factors for impurity and electrons is considered.
NRG results for impurity spin S = 1 and 3

2 are shown in
Figs. 14 and 15, respectively.

Let us begin the interpretation of the plots by considering
the limiting cases J → 0 and J → ∞. For vanishing coupling
strength, impurity and electrons are decoupled and thus both
Mimp and M correspond to the magnetization of the respective
free spin [cf. Eqs. (9) and (11)] which takes the value gSμBS

for any positive magnetic field at T = 0. However, the behavior
in the limit J → ∞ differs for the two quantities, again
demonstrating that in general Mimp �= M. The values of Mimp
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FIG. 15. (Color online) Limiting value for T → 0 of (a) the
impurity contribution to the magnetization and (b) the impurity
magnetization as a function of the coupling strength ρJ as in
Fig. 14, but here for impurity spin S = 3

2 . Mimp(B,T ≈ 0) again shows
universal behavior for ρJ ′ ≈ 0.276 and a fit of the corresponding
universal BA curve gives kBTH /W ≈ 3.05 × 10−1.

and M in this limit can be understood by considering a
simplified model: For very large values of J , it is energetically
favorable that the lattice site the spin operator s

∼0 in Eq. (5) is

associated with is singly occupied with a probability near one.
We can then replace s∼0 by a spin- 1

2 operator s∼. Furthermore,

all other terms in Hamiltonian (1) that involve degrees of
freedom different from the impurity and the lattice site to
which it couples can be neglected. We are thus left with a
strongly coupled antiferromagnetic dimer in a magnetic field
with Hamiltonian

H∼ J→∞ = J S
∼

· s∼ + gSμBB(S
∼

z + s
∼

z). (B1)

To determine the limiting value of M(T = 0)/gSμB for
J → ∞ and any positive magnetic field, we have to calculate
the expectation value of −S∼

z with respect to that eigenstate

of total spin which has the lowest value of Stotal and corre-
sponding z projection Mtotal = −Stotal. Denoting eigenstates
of Hamiltonian (B1) as |Stotal,Mtotal〉, we find

−〈0,0|S
∼

z|0,0〉 = 0 for S = 1/2, (B2)

−〈
1
2 ,− 1

2

∣∣S
∼

z
∣∣ 1

2 ,− 1
2

〉 = 2
3 for S = 1, (B3)

−〈1,−1|S
∼

z|1,−1〉 = 5
4 for S = 3/2. (B4)

In contrast, in the limit J → ∞ the impurity contribution
to the magnetization Mimp(T = 0)/gSμB for positive field
reduces to −〈S∼

z + s
∼

z〉 with respect to the above eigenstates

of Hamiltonian (B1). This expectation value gives S − 1
2 . The

case S = 1
2 is therefore special since both Mimp and M go

to zero for J → ∞. Figures 14 and 15 show that NRG, as a
method that is nonperturbative in J , can in fact reproduce the
limiting values for large coupling strength.85

Let us now consider the magnetization for intermediate
values of ρJ . In the special case S = 1

2 , both Mimp and M are
monotonically decreasing functions of the coupling strength
for constant magnetic field B that show similar behavior. On
the other hand, Mimp and M show a qualitatively different
dependence on ρJ for impurity spin S � 1. While Mimp is
again a monotonically decreasing function of the coupling
strength for given magnetic field [see Figs. 14(a) and 15(a)],
M(ρJ ) displays a minimum for all considered values of B

[cf. Figs. 14(b) and 15(b)].
It is instructive to compare the NRG results with the Bethe

ansatz solution46,47 for the field dependence of Mimp(T = 0),
given by the monotonically increasing universal function fS (x)
(cf. Sec. IV A). According to the values reported in Table I and
the standard estimate for the Kondo temperature from Eq. (14)
for S = 1

2 , an increase of the coupling strength for constant
magnetic field ought to lead to a larger scale kBTH and hence
to a lower rescaled field x = gSμBB/kBTH and a smaller
value of Mimp. The impurity contribution to the magnetization
for fixed positive field should therefore be a monotonically
decreasing function of the coupling strength in the scaling
regime. This conclusion is in line with the NRG results for
Mimp(ρJ ) shown in Figs. 14(a) and 15(a). The vertical lines in
the plots mark a coupling strength ρJ ′ ≈ 0.276, for which we
have checked via a fit to the BA solution that Mimp(B,T ≈ 0)
still displays universal behavior. The scaling regime therefore
extends at least up to coupling strengths as large as ρJ ′ (apart
from establishing this bound, the value of ρJ ′ is arbitrary).
In contrast, for low field the impurity magnetization M(ρJ )
has a minimum for coupling strengths smaller than ρJ ′ [cf.
Figs. 14(b) and 15(b)]. We conclude that this behavior of
M(ρJ ) is not compatible with the standard scaling picture
as described above for Mimp(ρJ ).

APPENDIX C: EFFECT OF THE ELECTRON g FACTOR ON
M AND THE CONNECTION BETWEEN M AND Mimp

We now investigate how the impurity magnetization
M(B,T ≈ 0) is affected by a nonzero electron g factor
corresponding to a positive ratio ge/gS > 0. Because of the
sharp features that are found in the magnetization curves for
D > 0 (see Fig. 5), the case of hard-axis anisotropy seems
well suited to study the influence of nonzero ge [alternatively,
one could examine the effect of the electron g factor on the
basis of the linear magnetic field dependence of M(B) for
small B]. As an example, Fig. 16 shows magnetization curves
M(B,T ≈ 0) for impurity spin S = 1, moderately large D,
and several g-factor ratios interpolating between a local field
(ge = 0) and a bulk field (ge = gS).

The results presented in Fig. 16 demonstrate that a positive
electron g factor effectively causes a rescaling of the magnetic
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FIG. 16. (Color online) Impurity magnetization M as a function
of magnetic field for impurity spin S = 1, hard-axis anisotropy
D/W = 10−4, coupling strength ρJ = 0.07, and several values of the
g-factor ratio ge/gS [cf. Fig. 5(a) for ge = gS]. For equal g factors,
the impurity contribution to the magnetization Mimp(B) is shown, too.
The temperature is kBT /W ≈ 1.54 × 10−15 ≈ 0 in all cases.

field argument of the impurity magnetization: A ratio ge/gS >

0 shifts the impurity magnetization curve for ge = 0 towards
larger fields and thus reduces M(B,T ≈ 0), which is a
monotonically increasing function of B, for a fixed magnetic
field value. Using the notation M(B,T ,gS,ge), this statement
can be expressed in the following way:

M(B,T ≈ 0,gS,0) = M(B ′,T ≈ 0,gS,ge), (C1)

B ′ = η(ρJ,ge/gS)B, (C2)

with a rescaling factor η(ρJ,ge/gS) � 1 for ge/gS � 0 that
depends on the coupling strength ρJ . Taking the magnetization
curve for a local field as reference, we may therefore state
that the impurity effectively “feels” a smaller magnetic
field if there is also a Zeeman term for the electrons in
Hamiltonian (1).

For a bulk field, Fig. 16 additionally shows the impurity
contribution to the magnetization Mimp(B,T ≈ 0) [according
to Eq. (11), M and Mimp are equal for a local field].
We find that Eq. (15), which was obtained for D = 0, is
also suitable to describe the relation between M(B,T ≈ 0)
and Mimp(B,T ≈ 0) in the case of easy-axis and hard-axis
anisotropy for magnetic fields gSμBB � W . A study of the
connection between M and Mimp for D < 0 and D > 0 with
|D| � W reveals for impurity spin S = 1 and 3

2 that the
magnetic field averaged values for α(ρJ = 0.07) are nearly
identical to the results for D = 0 reported in Table I, and that
the standard deviations have the same order of magnitude.
For S = 2, the obtained value of the proportionality factor
is α(0.07) = 1.0370(1). We conclude that the effect of the
uniaxial anisotropy on the value of α must be very small as
long as |D| � W .

An analysis of the impurity magnetization curves for
hard-axis anisotropy furthermore shows that the values of the
rescaling factor η(0.07,1) (approximately 1.038 for S = 1,
1.0375 for S = 3

2 , and 1.037 for S = 2) and the corresponding
proportionality factor α(0.07) are remarkably similar. In the
case of S = 1 and D > 0, we have also studied the difference

between M(B,T ≈ 0) for a local and bulk magnetic field for
the two other coupling strengths previously considered (i.e.,
for ρJ = 0.05 and ρJ = 0.09). The rescaling factors obtained
for D � W [η(0.05,1) ≈ 1.0265 and η(0.09,1) ≈ 1.0497] are
again in remarkable agreement with the corresponding values
of α(ρJ ). Moreover, we find that Eqs. (C1) and (C2), with the
values of η(ρJ,1) as determined for D > 0, are also suitable
to describe the relation between the impurity magnetization
curves for a local and bulk magnetic field for anisotropy
D � 0. As M(B,T ≈ 0) lacks sharp features in the D = 0
and easy-axis case, the effect of a nonzero electron g factor is
more subtle, though.

The numerical results thus strongly suggest that the rescal-
ing factor η(ρJ,1) and the proportionality factor α(ρJ ) take the
same value. Furthermore, we find our results for the rescaling
factor to be compatible with the conclusion of Ref. 49 that, in
the case of the Kondo model with S = 1

2 , the g factor of the
electrons (or equivalently their magnetic moment) is irrelevant
for impurity properties in the limit of infinite bandwidth,
corresponding to ρJ → 0.

In the case of impurity spin S = 1
2 , it is possible to compare

the obtained values for η(ρJ,1) and α(ρJ ) with previously
published results. For the exchange-anisotropic multichan-
nel S = 1

2 Kondo model with transverse coupling strength
ρJ⊥ � 1 [see Eq. (22) for the meaning of the symbols J⊥
and J‖], it is known that the impurity contributions to the free
energy Fimp(B,T ,gS,ge) for local and bulk magnetic fields
have the following relation:86

Fimp(B,T ,gS,gS) = Fimp(B̄,T ,gS,0), (C3)

B̄ = (1 − 2f δ/π )B. (C4)

Here, f is the number of electron channels and δ is the
phase shift generated by the longitudinal coupling J‖. This
result for Fimp is a generalization of the conclusion that the
impurity contribution to the susceptibility χimp(gS,ge) at zero
magnetic field satisfies χimp(gS,ge) = λ(ge/gS,δ) χimp(gS,gS),
with a certain factor λ, for the single-channel exchange-
anisotropic S = 1

2 Kondo model with ρJ⊥ � 1.87 Using
the definition for the impurity contribution to the magne-
tization Mimp = −∂Fimp/∂B and the equivalence of Mimp

and the impurity magnetization M for ge = 0 according to
Eq. (11), the following relation is obtained from Eqs. (C3)
and (C4):

Mimp(B,T ,gS,gS)

= (1 − 2f δ/π ) M((1 − 2f δ/π )B,T ,gS,0). (C5)

On the other hand, the proportionality M(B,T ≈
0,gS,gS) = α(ρJ )Mimp(B,T ≈ 0,gS,gS) from Eq. (15) that is
implied by the NRG results can be combined with Eqs. (C1)
and (C2) to give

Mimp(B,T ≈ 0,gS,gS)

= 1

α(ρJ )
M

(
B

η(ρJ,1)
,T ≈ 0,gS,0

)
. (C6)

With f = 1 and the phase shift for the case of an electron
band of width 2W with constant DOS ρ = 1/2W ,88 δ(ρJ‖) =
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MARTIN HÖCK AND JÜRGEN SCHNACK PHYSICAL REVIEW B 87, 184408 (2013)

S = 1/2

D = 0

(1.04704)

(1.03623)

(1.02563)

J = J⊥

ρJ⊥
0 0.05 0.10 0.15 0.20

α

1.02

1.03

1.04

1.05

1.06

1.07
ρJ = 0.09

ρJ = 0.07

ρJ = 0.05

FIG. 17. (Color online) Proportionality factor α appearing in
Eq. (15) as a function of the transverse coupling strength ρJ⊥ for
impurity spin S = 1

2 and three values of the longitudinal coupling
ρJ‖. Dashed horizontal lines mark the values of α, given by the
numbers in parentheses, that are predicted by Eq. (C7) for ρJ⊥ � 1.
Open symbols indicate the proportionality factors for the exchange-
isotropic case (i.e., J‖ = J⊥), which are also found in Table I. As
before, α has been averaged over magnetic fields gSμBB/W ∈
[10−13,10−1] for kBT /W ≈ 1.54 × 10−15 ≈ 0. The corresponding
standard deviations would amount to error bars smaller than the
symbol size.

arctan (πρJ‖/4) (note the sign change with respect to Ref. 88),
we compare Eqs. (C5) and (C6) and deduce for ρJ⊥ � 1

α(ρJ‖) = η(ρJ‖,1) = 1

1 − 2
π

arctan (πρJ‖/4)
. (C7)

This equation predicts, in particular, that both the propor-
tionality factor and the rescaling factor tend to 1 in the limit
ρJ‖ → 0. From Eq. (C7), the following values for α(ρJ‖)
are obtained: α = 1.02563 (ρJ‖ = 0.05), 1.03623 (0.07),
and 1.04704 (0.09). In Fig. 17, we present NRG results
for α(ρJ‖,ρJ⊥) for an impurity spin S = 1

2 with exchange
anisotropy. It is seen that the calculated proportionality factors
indeed approach the predictions of Eq. (C7) for decreasing
transverse coupling strength ρJ⊥. For ρJ⊥ = 0.01 and all
three considered values of ρJ‖, the relative deviation is about
4 × 10−5. In the exchange-isotropic case (i.e., J‖ = J⊥ = J ),
the relative deviation is less than half a percent, with better
agreement for smaller coupling J .

Since Eqs. (C3) and (C4) also hold for nonzero temperature,
the connection betweenM(B,T > 0) and Mimp(B,T > 0) has
been studied for impurity spin S = 1

2 , 1, and 3
2 in the case

of D = 0 and isotropic coupling ρJ = 0.05,0.07, and 0.09.
Keeping the coupling strength fixed, M(B,T ) and Mimp(B,T )
are still proportional for nonzero temperature and it is found
that, for gSμBB/W ∈ [10−13,10−1], the relative deviation
between the proportionality factor and the corresponding
value α(ρJ,T ≈ 0) is less than 1‰ for thermal energies
kBT /W � 10−2.

APPENDIX D: TECHNICAL DETAILS REGARDING
THE STUDY OF THE EFFECTIVE MODEL
FOR VANISHING ELECTRON g FACTOR

In this last Appendix, we describe how to reliably
extract the ELC field B̃ELC and the Kondo temperature T ELC

K at
the ELC field from the NRG results for the effective model (30)
with ge = 0.

To determine B̃ELC as defined in Eq. (28), the impurity
magnetization in units of gSμB for the effective model
−〈s

∼
z〉(B̃) is calculated for low temperature kBT � W . In

the vicinity of an ELC, i.e., near its root, the impurity
magnetization depends linearly on the (relative) magnetic field
B̃. The root, which corresponds to B̃ELC at T = 0, can therefore
be determined by performing a linear fit to the numerical data.
However, the following complication arises: The position of
the root of 〈s

∼
z〉(B̃) depends on the value of the twist parameter

z and thereby on the discretization of the electron band. On
the contrary, a physically meaningful result for the ELC field
should display only a weak dependence on the numerical
parameters of a NRG calculation in order to accurately reflect
the continuum limit � → 1. It turns out that a standard z

averaging, i.e., an averaging of the impurity magnetization
curves for different values of z at fixed temperature, is not
reasonable at this point. Near an ELC, such an averaging in
general introduces artifacts into the averaged curve because
of nonlinear components which some of the z-dependent
curves might already comprise. Similar numerical artifacts
are found in the z-averaged magnetization curves of the full
impurity model for large hard-axis anisotropy. Upon closer
inspection, one discovers that z averaging divides the total
height of a magnetization step into smaller “substeps” of
equal height whose number corresponds to the number of z

values used.
For the effective model with one set of parameters,

the dependence of the impurity magnetization root on the
discretization of the electron band is demonstrated in Fig. 18.
There, the three common discretization schemes are compared
for three different values of the discretization parameter �

and, only in this example, for 16 values of the twist parameter
z. In all cases, we observe a spread of the position of the
impurity magnetization root with respect to z. This variation
decreases for smaller values of � and is always largest when
using the discretization scheme by Žitko and Pruschke (ŽP).
The spread due to z defines a magnetic field interval which,
in the case of the discretization by Yoshida et al. (Y) and
Campo and Oliveira (CO), moves towards larger fields when
� is reduced. In contrast, the ŽP discretization leads to
nested intervals so that an interval for smaller � is wholly
contained in an interval for larger �. In the special case
z = 1 (which corresponds to the smallest root), the CO and
ŽP discretizations give the same result.70 Note that the �

dependence of the data shown in Fig. 18 is consistent with
an agreement of the results of all three discretization schemes
in the continuum limit � → 1. However, in order to obtain
reliable information about the continuum limit, it would be
necessary to perform an impractical extrapolation in � when
using the Y or CO discretizations. On the contrary, the ŽP
discretization apparently allows us to make a dependable
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FIG. 18. (Color online) Impurity magnetization (in units of gSμB )
for the effective Hamiltonian with ge = 0 and parameters according
to Eqs. (24) to (26) versus the relative magnetic field for kBT /W ≈
10−15 ≈ 0. The results have been calculated using the discretization
schemes by (a) Yoshida et al. [with correction factor (Refs. 17,18,
and 84) A�] (Refs. 81–83), (b) Campo and Oliveira (Ref. 84), and
(c) Žitko and Pruschke (Refs. 70 and 71). For each discretization
scheme, results are presented for three values of the discretization
parameter � and 16 values of the twist parameter z (i.e., zi = i/16
with i ∈ {1,2, . . . ,16}). In plot (c), data points are vertically offset
to enhance legibility. Numbers in parentheses denote the ELC field
B̃ELC and the Kondo temperature T ELC

K at the ELC field, respectively
(cf. main text).

statement about the limit � → 1 on the basis of results for
only a single value of the discretization parameter: Figure 18
suggests that the continuum value of B̃ELC lies in the magnetic
field interval that is spanned by the z-dependent roots for
� > 1. It turns out that, using the ŽP discretization, one can
obtain a better approximation for the ELC field by averaging
over the z-dependent impurity magnetization roots since the
resulting mean value displays only a weak dependence on �

(cf. the numbers in parentheses in Fig. 18). The spread of the

roots with respect to z then provides a safe error estimate for
the mean value (amounting to a relative deviation of about 3%
to 4% for � = 3). However, the dependence of the mean value
on � indicates that such an error estimate is far too pessimistic.
For the ŽP discretization with � = 3 and four z values, we
expect that the relative error of the obtained ELC field B̃ELC

is about one order of magnitude smaller than suggested by the
roots’ dependency on z.

Having determined B̃z
ELC for all values of z, we can study the

thermodynamic properties of the effective model at the ELC
field by calculating the impurity contribution to the entropy
Sz

imp(T ,B̃z
ELC) for each z at the respective ELC field. For

thermal energies that are small compared to the bandwidth,
the NRG results for Sz

imp(T ,B̃z
ELC) can be aligned with the

known universal temperature dependence of the entropy for
the Kondo model with S = 1

2 . We find, however, that there
is a dip in the entropy for thermal energies close to the band
edge that becomes more pronounced for stronger scattering κ .
The Kondo temperature T

ELC,z
K characterizing the temperature

dependence of Sz
imp(T ,B̃z

ELC) is obtained in the following way
for each value of z: By comparing with the Bethe ansatz
solution for the impurity contribution to the magnetization
in Sec. IV A, the value of TK according to the definition (12)
is known for the NRG results with D = 0 [cf. Table I and
Eq. (13)]. As a first step, the result for Sz

imp(T ,B̃z
ELC) is

restricted to the linear low-temperature regime in which a
continuous curve is produced using a linear fit. This fit then
allows us to determine the value of T

ELC,z
K by comparing with

an NRG result for S = 1
2 with known Kondo temperature.

A better approximation for the Kondo temperature at the ELC
field T ELC

K is again obtained by averaging over the z-dependent
values. Regarding the variation with respect to z and the error
estimate for the mean value, comparable statements hold true
as in the case of the ELC field.

We observe that the root of the impurity magnetization
depends on temperature. This is possible since its value is
apparently not determined by symmetry properties of the
effective model. When the temperature exceeds the Kondo
temperature at the ELC field, two effects eventually occur:
The slope of the magnetization curve decreases and the root
moves towards larger relative magnetic fields.
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