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Multiparticle spectral properties in the transverse field Ising model by continuous
unitary transformations
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The one-dimensional transverse field Ising model is solved by continuous unitary transformations in the
high-field limit. A high accuracy is reached due to the closure of the relevant algebra of operators, which we
call string operators. The closure is related to the possibility to map the model by Jordan-Wigner transformation
to noninteracting fermions, but it is proven without referring to this mapping. The effective model derived by
the continuous unitary transformations is used to compute the contributions of one, two, and three elementary
excitations to the diagonal dynamic structure factors. The three-particle contributions have, so far, not been
addressed analytically, except close to the quantum critical point.
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I. INTRODUCTION

Understanding strong quantum fluctuations continues to be
a formidable challenge. Where two (or more) phases compete
and are separated by a continuous quantum phase transition,1

i.e., at zero temperature, such fluctuations are particularly
strong. Generically, such a quantum phase transition is
signaled by the decay of elementary excitations. Far away
from the phase transition, spectroscopic probes show dominant
sharp δ peaks at low energies that result from stable elementary
excitations, so-called quasiparticles. On the other hand, on
approaching the phase transition, the spectral weight in the
dominant quasiparticle peak is reduced further and further and
shifted to contributions of more quasiparticles. Multiparticle
spectra with considerable weight are an important signature of
dominant quantum fluctuations in general. The vanishing of
the single quasiparticle peaks at zero temperature is a smoking
gun for a quantum phase transition in particular.

In this context, the transverse field Ising model (TFIM)2 is
a popular generic model describing magnetic excitations and
displaying a quantum phase transition between the disordered
phase in the limit of dominating transverse field and the ordered
phase in the limit of dominating longitudinal Ising coupling.
Due to its relative simplicity, the TFIM provides a convenient
test case in the development of theoretical approaches.3,4 This
is particularly true for the one-dimensional case for which
fermionization by a Jordan-Wigner transformation5 yields an
exact solution.6–8

The calculation of dynamical correlations in the TFIM is
an active field of research. While transverse correlations can
be treated in terms of fermions,8,9 longitudinal correlations
require different approaches, because of their nonlocality in
the fermionic picture. Based on an equation of motion for the
longitudinal correlations,10 there has been a series of papers
investigating the scaling region around the critical point, see
Refs. 11–16. In 2009, Perk and Au-Yang computed results
for the time-dependent longitudinal correlation functions by
solving the coupled differential equations and complementing
them with long-time asymptotics,17 but so far, no momentum-
and frequency-resolved analyses have been performed, which
also applies away from the scaling regime.

Quantum magnets in the vicinity of quantum phase transi-
tions are dominated by strong quantum fluctuations. Quantum

fluctuations are strongly favored by low dimensionality and
by frustration. Theoretically, a particularly clear sign of
dominant quantum fluctuations is the fractionalization of
elementary excitations. For instance, conventional spin waves
(magnons) split into two spinons in antiferromagnetic Heisen-
berg chains.18–21 Before complete fractionalization occurs, the
spectral weight, as observed in inelastic neutron scattering,
shifts from the channel of a single elementary excitation to
the channel where two and more elementary excitations are
created.22,23 Thus also the experimental focus is directed more
and more to continua formed by more than one excitation, see,
for instance, Refs. 19, 20, 24, and 25.

In view of the above considerations, the present article
pursues two goals in a study of the one-dimensional (1D)
TFIM. First, we show how the special algebraic structure
(“string algebra”) of the operators occurring in the 1D TFIM
enables its solution by a continuous unitary transformation
(CUT) in the high-field phase to very high accuracy. Upon
completion of our calculations, we learned that this algebra
was introduced and used before in an algebraic solution of the
TFIM.26

This algebra paves the way to treat a larger class of models
of which the Hamilton operators can be expressed by operators
belonging to the string algebra, for instance, XY models in
transverse fields. Second, we compute the three-particle con-
tributions to the diagonal dynamic structure factors (DSF) in
the CUT framework in the high-field phase. In this work, these
subdominant contributions are computed, except in the scaling
region around the quantum phase transition. Thereby, interest-
ing predictions for future experimental studies are provided.

In Sec. II, the model and known exact results are recalled. In
the following section, the continuous unitary transformations
(CUTs) are briefly reviewed. Section IV is devoted to the
algebra of string operators, which are subsequently employed.
Sections V and VI comprise our static and dynamic results,
respectively, while the conclusions are drawn in Sec. VII.

II. MODEL AND EXACT RESULTS

The Hamiltonian for the TFIM reads

HTFIM = �

2

∑
i

σ z
i + J

4

∑
i

σ x
i σ x

i+1, (1)
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where σα are the Pauli matrices and the sum i runs over all
lattice sites. We normalized the distance between two sites to
one. The transverse field strength is given by the parameter �,
while J denotes the strength of the antiferromagnetic coupling
between two adjacent sites. The antiferromagnetic exchange
can be converted to a ferromagnetic exchange J → −J by a
π rotation around Sz

i for every second site i. This translates to
a shift of π in momentum space.

The model has a quantum phase transition at J = 2� and
it is self-dual.1 Similar to Ref. 1, we introduce the parameter
x = J/2�. The starting point for the CUT calculations is J =
0. Hence an elementary excitation is given by a single spin
flip. For finite J , the energy of these excitations becomes
momentum dependent. We will refer to these excitations as
quasiparticles. We expect that the perturbative ansatz breaks
down once we reach the critical value J = 2�. Hence we focus
on the static and dynamic properties for J < 2�.

The model was solved exactly by Pfeuty in 1970,7 based on
the work by Lieb et al.27 and Niemeijer.6 Pfeuty’s solution uses
the Jordan-Wigner transformation5 to map the Hamiltonian
(1) to a chain of free fermions, which is diagonalized by a
Bogoliubov transformation.28 This approach yields the exact
expression for the ground-state energy per site:

E0

N�
= − 1

2π

∫ π

0
ω(q)dq, (2)

where ω(q) denotes the dimensionless dispersion

ω(q) =
√

1 + x2 − 2x cos(q). (3)

The dispersion with dimension is given by �ω(q).
From the dispersion, we can easily extract the energy gap

of the lowest lying excitations:

�

�
= |1 − x|. (4)

Another interesting quantity worked out by Pfeuty is the
transverse magnetization,

Mz = 1

N

∑
i

〈g|σ z
i |g〉 = 1

π

∫ π

0

1 + x cos(q)

ω(q)
dq, (5)

where |g〉 denotes the ground state of the TFIM. In the
following sections, we will compare our results with these
exact expressions in order to validate the CUT approach.

Beside the static properties stated above, dynamic prop-
erties are important in order to explain experimental results.
Although the TFIM is analytically integrable, the evaluation
of longitudinal dynamic correlations remains a very difficult
task which requires considerable numerics, see, for instance,
Refs. 17 or 29. In the fermionic picture, this is due to the
nonlocality of the Jordan-Wigner transformation.

One important quantity in the study of spin systems is the
dynamic structure factor (DSF):

Sαβ (ω,Q) = 1

N

∫ ∞

−∞

dt

2π

∑
l,l′

eiωt e−iQ(l−l′)〈σα
l (t)σβ

l′
〉
, (6)

where α,β ∈ {x,y,z}. Here, Q denotes the total momentum
and ω the frequency. The DSF is directly linked to the
differential cross section in inelastic scattering experiments,
see, for instance, Ref. 30. Due to the symmetry σx

i → −σx
i of

HTFIM, no correlations occur for α = x,β = z, α = y,β = z,
and vice versa, but for α = x,β = y and for α = β, the DSF
may and will obtain finite values.

In the following, we focus on the diagonal part of the
DSF, i.e., α = β. For α = z, exact expressions are known8,9,31

because the observable σ z remains local in the Jordan-Wigner
representation of the TFIM. At zero temperature case, this
expression reads

Szz(Q,ω) =
∫ π

−π

dk1[1 − f (Q,k1)]

× δ[ω − ω(k1 − Q/2) − ω(k1 + Q/2)], (7a)

with

f (Q,k1) =
[
� + J

2 cos(k1 − Q/2)
][

� + J
2 cos(k1 + Q/2)

]
ω(k1 − Q/2)ω(k1 + Q/2)

.

(7b)

It consists of a spectral density of scattering states of
two elementary excitations with total momentum Q. For
α = x and α = y, only the one-particle contributions have
been calculated by Hamer et al. in 2006.32 They used series
expansion techniques to propose the expressions

Sxx
1 (Q) = (1 − x2)

1
4

ω(Q)
, (8a)

S
yy

1 (Q) = (1 − x2)
1
4 ω(Q) (8b)

for the one-particle contribution to the equal-time structure
factor. By comparing their results to correlation functions in
the two-dimensional classical Ising model, see Refs. 33 and 34,
they could show that the expressions above are indeed exact.
Hence the full one-particle structure factor is given by

Sαα
1 (Q,ω) = Sαα

1 (Q)δ[ω − ω(Q)]. (9)

For higher-particle contributions to the longitudinal DSF,
much less is known. In 1978, Vaidya and Tracy computed
exact expressions for the longitudinal correlation functions
in the anisotropic XY model in the time domain.35 They
evaluated the resulting expression in frequency space up to
the three-particle contributions, but their results are limited
to the scaling region at low energies, very close to the
critical point. Furthermore, Müller and Shrock calculated
frequency-integrated wave number dependent susceptibilities
for the TFIM at the critical point in Refs. 15 and 16. Our results
will be complementary to theirs.

III. CONTINUOUS UNITARY TRANSFORMATIONS

We use the method of continuous unitary transformations
(CUT) to derive effective models, which allow for an easier
evaluation of static ground-state properties and dynamic
correlation functions. The idea of CUT was introduced by
Wegner36 and independently by Głazek and Wilson.37,38

The concept of CUT is to systematically find a unitary
transformation that maps the Hamiltonian to a diagonal repre-
sentation. One introduces a family of unitary transformations
U (l) depending differentiably on a parameter l ∈ R+. The
unitary transformation is characterized by its anti-Hermitian
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generator η(l) = [∂lU (l)]U †(l)= −η†(l). Then, a short calcu-
lation yields the flow equation

∂lH (l) = [η(l),H (l)] (10)

for the l-dependent Hamiltonian H (l). In general, it represents
a system of coupled differential equations for the prefactors of
all operators appearing in H (l). We refer to it as the differential
equation system (DES). Without further truncation, the DES
generically comprises an infinite number of variables. In
practice, various truncation schemes help to keep the DES
finite. For l → ∞, the Hamiltonian acquires its final form,
and it is denoted as the effective Hamiltonian

Heff = H (l)|l=∞ = U (∞)HU †(∞). (11)

The convergence for � → ∞ is assumed; it cannot be proven
generally for infinite dimensional quantum systems because it
depends on the specific form of the generator as well as on the
employed truncation scheme.

Note that observables O also need to be transformed to
effective observables by the same unitary transformation. This
results in the flow equation for observables:

∂lO(l) = [η(l),O(l)], (12)

which yields the effective observable Oeff for l → ∞.
The generator characterizes the CUT and the flow of the

Hamiltonian. Thus the choice of the generator is an important
issue and it still represents an active field of research, cf.
Refs. 4, 36, and 39–42. In this paper, we use the (quasi)particle
conserving (pc) generator, which was proposed by Mielke39 in
the context of banded matrices and independently by Knetter
and Uhrig40 for many-body problems. By quasiparticle we
mean the elementary excitation. The pc generator directly aims
at these quasiparticles. The goal is to eliminate terms that do
not conserve the number Q̂ of quasiparticles:

[Heff,Q̂] = 0. (13)

The pc generator is given in matrix representation in the
eigenbasis of Q̂ by

ηpc,ij (l) = sgn(qi − qj )hij (l), (14)

where qi denotes the eigenvalues of the operator Q̂.
An equivalent description of the pc generator can be given

by decomposing the Hamiltonian into parts that create, H+(l),
conserve, H 0(l), and annihilate, H−(l), quasiparticles. Then
the Hamilonian reads

H (l) = H+(l) + H 0(l) + H−(l) (15)

and the quasiparticle conserving generator is

ηpc = H+(l) − H−(l). (16)

The convergence of the flow induced by this generator is
proven for finite-dimensional systems; extensions to infinite
systems are also available.43 The pc generator preserves the
blockband diagonal structure, i.e., the maximum number of
particles created or annihilated does not change during the
flow.39,40,44

The CUT method consists of two basic steps. The com-
mutator in Eq. (10) needs to be calculated, followed by the
integration of the resulting flow equation. The latter can easily

be done with standard numerical integration algorithms or even
analytically.

In general, commuting H with η creates new types of
terms that were originally not part of the Hamiltonian. For
systems in the thermodynamic limit, all sorts of new terms
may arise connecting more and more sites over larger and
larger distances. In a numerical calculation, we cannot treat
an infinite number of operators, hence we have to restrict
ourselves to operators that are physically relevant. In this paper,
we use the previously introduced directly evaluated enhanced
perturbative CUT (deepCUT).45 The idea of deepCUT is to
truncate operators and contributions to the DES according
to their effects in powers of a small expansion parameter x.
Roughly speaking, the order n in x is the truncation criterion.
More precisely, a certain contribution to the DES is kept if it
affects the targeted quantities (here, the ground-state energy
and one-particle dispersion) in order m � n in x. Details can
be found in Ref. 45.

Thus we write our initial Hamiltonian in the form

H = H0 + xV, (17)

where H0 describes the unperturbed Hamiltonian and V

represents a perturbation. We expand the operators in the basis
{Ai}, which is chosen such that the effective Hamiltonian can
be computed exactly45 up to order n in the parameter x. Then
the flowing Hamiltonian can be denoted as

H (l) =
∑

i

hi(l)Ai, (18)

where the prefactors hi(l) depend on the flow parameter l. For
the generator, we choose the same operator basis with the same
prefactors:

η(l) =
∑

i

ηi(l)Ai =
∑

i

hi(l)η[Ai], (19)

where η[· · ·] is a superoperator applying the generator scheme.
For the pc generator, η[Ai] = Ai if Ai creates more quasipar-
ticles than it annihilates, η[Ai] = −Ai if Ai annihilates more
quasiparticles than it creates, otherwise η[Ai] = 0, cf. Eq. (16).

With this definitions, we obtain the flow equations:

∂lhi(l) =
∑
j,k

Dijkhj (l)hk(l). (20)

We call the Dijk ∈ C the contributions to the DES. They are
obtained in a perturbative calculation up to order n by calcu-
lating the commutator in Eq. (10) and expanding the results in
the chosen operator basis. Note that the numerically evaluated
DES also comprises powers in x beyond the order n.45

IV. STRING OPERATORS

In the previous section, we explained how continuous
unitary transformations are applied in a general context. Here,
we specify the approach for the transverse field Ising model.
For the TFIM in the high-field limit, we use the state with all
spins down,

|0〉 = | · · · ↓j−1↓j↓j+1 · · ·〉, (21)

as the reference state, i.e., as the vacuum of elementary
excitations. This corresponds to the strong field limit � → ∞
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in the TFIM, which is also the starting point for a perturbative
approach in the parameter x = J/(2�). An elementary exci-
tation, i.e., a quasiparticle, is created by the spin-flip operator
σ+

l . We denote this state by

|l〉 = σ+
l |0〉. (22)

It is obvious that no two excitations can be present at the same
site so that the quasiparticles behave like hardcore bosons,
but multiparticle states can straightforwardly be created by
flipping spins at different sites.

These ideas suggest a basis of operators consisting of
monomials made from the local operators

{σ+
j ,σ−

j ,σ+
j σ−

j ,1}, (23)

where σ+
j stands for particle creation, σ−

j for particle annihi-
lation, and σ+

j σ−
j counts whether a particle is present at site j

(σ+
j σ−

j = 1) or not (σ+
j σ−

j = 0). This approach is in line with
the general structure explained in Ref. 46; we call it henceforth
the multiparticle representation.

The number of such monomials grows exponentially with
the number of sites that are nontrivially involved because at
any site a quasiparticle may be created or annihilated or simply
counted. For each additional site occurring in the course of the
iterated commutations, the number of operators to be tracked
grows roughly by a factor of 4 (neglecting reductions due
to symmetry effects). This is a major drawback if one aims
at higher orders. Therefore we introduce a simpler modified
operator basis, which we call string algebra, which is more
appropriate for the TFIM, see also Ref. 26. We stress that the
possibility to introduce a string algebra is connected to the
Jordan-Wigner representation of the Hamiltonian in terms of
noninteracting fermions.

The string algebra consists of operators that are given by
the following product of Pauli operators:

T φε
n :=

∑
j

σ
φ

j

⎛
⎝j+n−1∏

k=j+1

σ z
k

⎞
⎠ σ ε

j+n (24a)

=
∑

j

σ
φ

j σ z
j+1σ

z
j+2 · · · σ z

j+n−1σ
ε
j+n, (24b)

with {φ,ε} ∈ {+,−} and n ∈ N. Each string operator consists
of a product of adjacent σz operators, framed by spin flip
creation- and/or annihilation operators. The σz operators form
the string between the pair of spin flip operators. We refer to n

as the spatial range of an operator. In contrast to the local set
of operators used in the multiparticle representation (23), the
string algebra is more transparently expressed by the set{

σ+
j ,σ−

j ,σ z
j ,1

}
. (25)

The key point of the string algebra is that excitations or
annihilations of quasiparticles occur only at the end points of
the string. Thus, for given end points, there are only four string
operators to be considered. If excitations or annihilation could
occur anywhere along the string, one would have exponential
growth of the number of operators.

In Eq. (24), we defined the translationally invariant form
of string operators. When dealing with local observables, it is

also useful to introduce local string operators

O
φε

j,n := σ
φ

j

⎛
⎝j+n−1∏

k=j+1

σ z
k

⎞
⎠ σ ε

j+n (26a)

= σ
φ

j σ z
j+1σ

z
j+2 · · · σ ε

j+n, (26b)

with {φ,ε} ∈ {+,−} and n ∈ N. Note that a translationally
invariant string operator is given by the sum of local string
operators.

It is also useful to define a string operator of range 0
consisting of a single σ z matrix:

T0 :=
∑

j

σ z
j , (27a)

Oj,0 := σ z
j . (27b)

For n = 1, the definitions (24) and (26) correspond to a
normal hopping term or pair creation or annihilation operator.
These operators cannot be distinguished from operators in the
multiparticle representation.46

For n > 1, the situation is different. For example, in the case
n = 2, φ = +, and ε = − can be re-expressed in multiparticle
representation by

T +−
2 =

∑
j

σ+
j σ z

j+1σ
−
j+2 (28a)

=
∑

j

σ+
j (2σ+

j+1σ
−
j+1 − 1)σ−

j+2 (28b)

=
∑

j

(2σ+
j σ+

j+1σ
−
j+1σ

−
j+2 − σ+

j σ−
j+2), (28c)

which is the sum of a quartic interaction term and a hopping
term, because we re-expressed σ z

j+1 = 2σ+
j+1σ

−
j+1 − 1.

This simple example illustrates the computational advan-
tage of the string algebra. If we tracked all operators in
multiparticle representation, a single string operator of range
n would require 2n−1 multiparticle operators, clarifying the
previous statement on the exponential growth of the number
of such monomials. Therefore, if a model can be diagonalized
within the string algebra, it is highly advantageous to describe
all operators in terms of string operators.

With the above definitions, the Hamiltonian of the trans-
verse field Ising model is formulated in terms of string
operators:

HTFIM = �

2

∑
j

σ z
j + J

4

∑
j

(σ+
j σ−

j+1 + σ+
j σ+

j+1 + H.c.)

(29a)

= �

2
T0 + J

4
(T +−

1 + T −+
1 + T ++

1 + T −−
1 ). (29b)

Next, we study the action of hopping terms on single
particle-states:

T −+
n |l〉 =

∑
j

σ−
j σ z

j+1σ
z
j+2 · · · σ+

j+n|l〉 (30a)

=
∑

j

δl,j σ
z
j+1σ

z
j+2 · · · σ+

j+n|0〉 (30b)

= (−1)n−1|l + n〉. (30c)
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In the second line, we used the property σ−
j |l〉 = δl,j |0〉 and

we know that σ z
j |0〉 = −|0〉, which yields the final result. If

there is only one quasiparticle in the system, the only difference
to conventional hopping is the factor (−1)n−1. For subspaces
with more quasiparticles, we have to take into account that
there may be particles on the sites l + 1,l + 2, . . . ,l + n − 1.
They modify the exponent of (−1) and can thus change the
sign of the resulting state.

In order to apply the deepCUT to the TFIM, we have
to calculate the contributions to the DES in Eq. (20). Thus
we calculate the commutator between two operators of the
Hamiltonian H and the generator η. In Appendix A, we show
that the string algebra is closed under such commutations.
This means that the commutator of two string operators can
again be written as a linear combination of string operators.
The closure of the string algebra allows us to set up the flow
equation in very high order because the number of operators to
be tracked grows only linearly for the Hamiltonian. For local
observables within the string algebra, it grows quadratically,
which is still a moderate growth. This is the key observation
of the present article.

Explicitly calculating all distinct commutators of string
operators, see Appendix A, allows us to determine all con-
tributions to the DES analytically. In this way, we calculate
the flow equation up to infinite order in x. We parameterize
the Hamiltonian

HTFIM(l) = t0(l)T0 +
∞∑

n=1

t+−
n (l)(T +−

n + H.c.)

+
∞∑

n=1

t++
n (l)(T ++

n + H.c.), (31)

and the generator for the CUT

η(l) =
∞∑

n=1

t++
n (l)(T ++

n − H.c.). (32)

In Appendix B, we derive the flow equation for the prefactors
t0,t

+−
n ,t++

n . It reads

∂lt0 = 2
∞∑

n=1

(t++
n )2, (33a)

∂lt
+−
m = 2

k+l=m∑
k,l=1

t++
k t++

l − 2
|k−l|=m∑
k,l=1

t++
k t++

l , (33b)

∂lt
++
m = −4t++

m t0 + 2
|k−l|=m∑
k,l=1

sgn(k − l)t++
k t+−

l

+ 2
k+l=m∑
k,l=1

t++
k t+−

l , (33c)

with m ∈ N. Note that this is a differential equation with an
infinite number of variables that grows, however, only linearly
in the spatial range. This result is remarkable considering the
fact that it would require tremendously more flow parameters
if we formulated the problem in multiparticle representation.
Thus the string algebra allows us to evaluate the Hamiltonian

transformation up to very high orders, which is especially
important on approaching the quantum critical point x =
J/2� = 1.

V. STATIC RESULTS

In this section, we evaluate and present static results for the
transverse field Ising model. The expression “static” refers to
time-independent properties. We treat the ground-state energy
per site in Sec. V A, the magnetization in Sec. V B, and the
momentum-integrated spectral weight in Sec. V C and the
momentum-resolved static structure factor in Sec. V D.

A. Ground-state energy

Due to the only linearly growing number of string op-
erators, we are able to obtain the ground-state energy per
site up to order 256. Higher orders do not improve the
results significantly so that we restrict ourselves to orders up
to 256.

Figure 1 compares the exact result for the ground-state
energy per site to CUT results in various orders in x. As
expected, the accuracy increases for increasing order. Even
close to the critical point the CUT result of order 128 and
the exact results can barely be separated. The inset shows the
deviations from the exact results. On the logarithmic scale,
straight lines indicate power laws for these deviations as
expected in a perturbatively controlled approach. We checked
that the slopes of the lines correspond to the order of calculation
by fitting the deviations to power laws, see Table I.

From the inset, we also read off that the deepCUT in order
128 calculates the ground-state energy per site correctly to
the fifth digit, even at the critical point. The calculation in
order 256 is not shown in the graphs because it would be
indistinguishable from the other curves. It improves the result
in order 128 at the critical point by about one digit.
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FIG. 1. (Color online) Ground-state energy per site as function
of J . Comparison of the exact result to CUT results in various orders
of x = J/(2�). The inset shows the absolute difference between the
exact result and the CUT calculation on a logarithmic scale. The
critical point is located at log10( J

2�
) = 0.
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TABLE I. Exponents of the power laws for the deviation of the
ground-state energy obtained by numerical fits.

Order Exponent Fitting error

9 10 ±3
16 21 ±4
32 33 ±3
64 72 ±6
128 132 ±5

B. Transverse magnetization

Next, we examine the transverse magnetization

Mz = − 1

N

∑
j

〈g|σ z
j |g〉. (34)

Here, |g〉 denotes the ground state of the Hamiltonian, which
is mapped to the zero-particle state by the CUT. Note that the
expression “transverse” refers to the direction of the external
field, which is the z axis in our model. In the limit J → 0,
all spins are aligned along the external field, so that Mz = 1
holds.

For J > 0, the spins are perturbed by the antiferromagnetic
interaction, which reduces the transverse magnetization. To
obtain Mz, we transform the observable σ z

j by the continuous
unitary transformation to an effective observable. The operator
of the transverse magnetization can be expressed by a string
operator ∑

j

σ z
j (l = 0) = T0. (35)

Due to this identity and the fact that the string algebra is
closed under commutation, we know that the final effective
observable can be written as a linear combination of string
operators:

σ z(l) = o0(l)T0 +
∑

n

[o+−
n (l)(T +−

n + H.c.)

+ o++
n (l)(T ++

n + H.c.)]. (36a)

None of the coefficients o+−
n and o++

n contribute to the
vacuum expectation value, but they can not be omitted during
the flow of the observable. The transverse magnetization after
the CUT reads

Mz = o0(∞). (37)

Due to this simple form of the observable, very high orders can
be reached again. The transverse magnetization calculated by
the CUT is compared to the exact result in Fig. 2. As expected,
the results improve upon increasing order. The largest error
occurs at the critical point where the transverse magnetization
displays a singularity.

C. Spectral weight

In this section, we discuss the CUT results for the
momentum-integrated quasiparticle weight in the two diagonal
channels Sxx and Syy . We use the CUT framework to calculate
effective observables, which renders an easy evaluation for the
spectral weight possible in various quasiparticle channels, see
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FIG. 2. (Color online) Transverse magnetization as a function of
J . Comparison of the exact result with the CUT calculation. The inset
shows a close view on the critical point J = 2�.

also Ref. 47. The total spectral weight can be split according
to

Iαα = 1

N

∑
l

〈
σα

l σ α
l

〉 = I1 + I2 + I3 + · · · , (38)

where In denotes the weight in the channel with n quasiparti-
cles in the system. Introducing the CUT framework results in

Iαα
n = 〈0|σα

n,effσ
α,†
n,eff|0〉, (39)

where σα
n,eff denotes the part of the effective observable which

annihilates n quasiparticles. Since σx and σy create an odd
number of spin flips, i.e., quasiparticles, and since the generator
of the CUT preserves the parity of an observable, Sxx and Syy

consist of 1,3,5, . . . quasiparticle contributions. With the help
of the sum rule Iαα = 1, we can also check if our results are
still valid for large values of x.

We emphasize that the local observables σx
l and σ

y

l

transform into nonlocal operators under the Jordan-Wigner
transformation that act on an infinite number of sites. Therefore
no easy analysis of these observables is possible in fermionic
terms. An explicit evaluation requires either analytical map-
pings that enable an evaluation in the scaling region35 or
extensive numerics in terms of Pfaffians whose dimensions
grow linearly with the spatial range of the correlation.29

The problem of an infinite number of operators is avoided
in the string operator basis (25). But the calculation remains
cumbersome because the observables are not part of the string
algebra and thus the structure of the effective observables
is more complicated. This complicated structure prevents
us from achieving very high orders because the number
of representatives to be tracked grows exponentially on
increasing order. We are able to obtain results up to order 38.
Then the computational effort reaches its limit in the present
implementation because the contributions to the differential
equation system take more than 8 GB of memory and the
number of operators to track is larger than 7 million.

First, we address Sxx as a function of J for which results are
depicted in Fig. 3. The CUT results are compared to the exact
results from Ref. 32. The one-particle contribution shows a
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FIG. 3. (Color online) One-particle and three-particle spectral
weights as functions of the parameter J . Comparison of the exact
expression for the one-particle weight (8a) with the CUT results.

very sharp drop for J → 2� with a singularity at the critical
point. The CUT agrees very well with the exact results as
long as the order of calculation is below the correlation length.
Recall that the order is proportional to the range of the physical
processes included in the calculation. For the calculation of
effective observables within the string algebra, this was no
problem because large orders >100 could be achieved, but for
the longitudinal correlations, we obtain only order 38 so that
particularly sharp edges such as the one in the one-particle
spectral weight are not captured. The agreement improves on
increasing order.

The spectral weight of the three-particle channel increases
on approaching the critical point. Hence, a spectral weight
is transferred from the one-particle channel to higher quasi-
particle channels. The one- and three-particle terms are the
dominant contributions to the total spectral weight for the
parameters investigated. However, for J > 1.9, the sum rule
starts being violated in the CUT calculation. We attribute this
violation to the calculation in finite order. It appears that the
CUT calculation overestimates the one-particle contributions
close to the critical point.

Next, we investigate Syy . This correlation is depicted in
Fig. 4 in comparison to the exact result. Again, the one-particle
contributions also vanish for J → 2�, but the edge at the
critical point is by far not as sharp as in Sxx because more
spectral weight is transferred to higher quasiparticle spaces
for lower parameters J . The sum rule is again violated for
J > 1.9� due to finite order errors.

D. Equal-time structure factor

The momentum-resolved equal-time structure factor con-
tains more information so that it is another interesting quantity:

Sαα(Q) = 1

N

∑
l,l′

e−iQ(l−l′)〈σα
l σ α

l′
〉
. (40)

For a single quasiparticle, it is directly connected to the full
DSF by Eq. (9) because there is no mixing between different
quasiparticle spaces.22 Our first focus is Sxx

1 (Q). Within the
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FIG. 4. (Color online) One-particle and three-particle spectral
weights as functions of the parameter J . Comparison of the exact
expression for the one-particle weight (8b) with the CUT results.

CUT framework, this quantity can be computed from the
effective observable σx

j,eff by Fourier transformation of the
terms that exactly create one particle:

Sαα
n (Q) = 〈0|σα

n,eff(−Q)σα,†
n,eff(Q)|0〉, (41)

where n stands for the number of quasiparticles involved and
α may take the values x or y. In Fig. 5, we compare the CUT
results to the exact expression (8a) for the parameters J = �,
1.5�, and 1.9�. The agreement is very impressive though it
worsens upon approaching the critical point. For J = �, the
DSF is essentially converged and the absolute errors are below
10−10�−1. For J = 1.9�, the error is below 10−3�−1 for Q <

π/2. For Q > π/2, the absolute error rises up to 10−1�−1.
A closer analysis reveals that the largest absolute error

occurs for all parameters at the wave vector Q = π . The
DSF diverges at this point for J → 2�. The relative error (not
shown in the graphs) remains fairly constant over the whole
Brillouin zone. Consequently, our results differ from the exact
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FIG. 5. (Color online) One-particle equal time structure factor
Sxx

1 (Q) for the parameters J = �, 1.5�, and 1.9�. Comparison of
the exact expression (8a) for the one-particle weight with the CUT
results.
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FIG. 6. (Color online) One-particle equal-time structure factor
S

yy

1 (Q) for the parameters J = �, 1.5�, and 1.9�. Comparison of
the exact expression (8b) with the CUT results.

ones found by Hamer et al.32 by only about 1% even close to
the critical point at J = 1.9�.

Finally, we consider S
yy

1 (Q). In Fig. 6, we compare the
CUT results to the exact expression for the parameters J = �,
1.5�, and 1.9�. For J = �, the DSF is essentially converged
and the absolute errors are below 10−10�−1. This changes for
rising parameter J . For J = 1.9�, the error is below 10−2�−1

for Q < π/2. For Q > π/2, the absolute error remains below
10−3�−1. In contrast to the Sxx channel, the lowest absolute
error is located in the Syy channel at Q ≈ π . This can be easily
understood because S

yy

1 (Q = π ) constitutes a local minimum
for all parameters J . Again, the relative error (not shown)
remains essentially constant over the whole Brillouin zone.

VI. DYNAMIC PROPERTIES

In this section, we evaluate and present the dynamic results
for the transverse field Ising model. Here, “dynamic” refers to
frequency dependent quantities. We deal with the dispersion
in Sec. VI A, with the DSF in general in Sec. VI B, and its dif-
ferent channels in Secs. VI C (Szz), VI D (Sxx), and VI E (Syy).

The general DSF is an important quantity because it is
directly measurable in scattering experiments. Furthermore,
dynamic correlations strongly depend on the model under
study and often exhibit features that reveal the microscopic
interactions in the Hamiltonian. Despite the fact that the TFIM
is integrable, the calculation of dynamic correlations remains
a difficult and complex problem.

A. Dispersion

As before, we were able to reach order 256 for the CUT
calculation of the Hamiltonian. In particular, we obtain the
hopping matrix elements up to a range of 256. For small
parameters J , a low-order calculation is sufficient to achieve
a good agreement with the exact result. Closer to the critical
point, this changes distinctly, see Fig. 7, which makes higher
order calculations necessary. For J = 1.9�, the absolute error
of the result in order 6 is below 0.01� for q < π/2 and below
0.1� for q > π/2. For the order 32 result, it is below 10−4�
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FIG. 7. (Color online) Energy dispersion for J = 2.0� (top) and
J = 1.9� (bottom). Comparison of the CUT calculations to the exact
results.

for q < π/2 and below 10−3� for q > π/2. For J = 2�, the
error of the order 32 result is below 10−3� for q < π/2 and
below 10−1� for q > π/2. For the order 256 result, it is below
10−5� for q < π/2 and below 10−3� for q > π/2.

This behavior is expected because the excitations become
more and more dispersive on increasing J . Consequently,
hopping processes over larger and larger distances become
more important. To include these physical processes we
need higher orders because the maximum range we can
describe directly corresponds to the order of calculation (for
lattice constant equal to unity). Directly at the critical point,
the energy gap closes and the correlation length diverges
concomitantly.

The calculation of the dispersion is worst in the vicinity of
the critical wave vector q = π . We stress, however, that the
value directly at q = π , the energy gap of the TFIM, is calcu-
lated exactly up to numerical errors below 10−10�. This is an
accidental result because the energy gap happens to be a linear
function of J so that it is captured correctly by any perturbative
approach in linear order and beyond, compare Eq. (4).

B. Dynamic structure factor

The DSF at T = 0 is linked to the imaginary part of the
retarded Green function by the fluctuation-dissipation theorem
at zero temperature:48

Sαα(ω,Q) = − 1

π
ImGαα(ω,Q). (42)

At T = 0, it is useful to write this Green function for ω > 0
as a resolvent:

Gαα(ω,Q) = 〈g|σα(−Q)
1

ω − [H (Q) − E0] + i0+ σα(Q)|g〉,
(43)

where E0 is the ground-state energy and

σα(Q) = 1√
N

∑
l

eiQlσ α
l (44)

is the Fourier transformed spin operator σα
l .
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FIG. 8. Qualitative sketch of the band-edge singularities in the
DSF.

In the CUT framework, we replace all operators by the
effective operators and the ground state by the zero-particle
state, i.e., the vacuum of quasiparticles:

Gαα(ω,Q)

= 〈0|Sα
eff(−Q)

1

ω − [Heff(Q) − E0] + i0+ Sα
eff(Q)|0〉. (45)

We evaluate the resolvent in Eq. (45) by means of a Lanczos
tridiagonalization yielding a continued fraction representation
of the resolvent:49,50

Gαα(ω,Q) = b2
0

ω − a0 − b2
1

ω−a1− b2
2

...

, (46)

where the coefficients an and bn are the matrix elements of the
tridiagonal matrix of the effective Hamiltonian. We refer the
reader to Appendixes C and D where we explicitly calculate
Sα

eff(Q)|0〉 as well as the action of the effective Hamiltonian
for the Lanczos tridiagonalization. The continued fraction
is terminated by a standard square-root terminator. This is
appropriate for square root singularities at the band edges.

Another piece of information that can be obtained from
the sequences {an} and {bn} are the exponents α and β of the
band-edge singularities, see Fig. 8. They are directly connected
to the asymptotics:49

an = a∞ + b∞
β2 − α2

2n2
+ O

(
1

n3

)
, (47a)

bn = b∞ + b∞
1 − 2α2 − 2β2

8n2
+ O

(
1

n3

)
. (47b)

These relations allow us to obtain the band-edge singulari-
ties up to their signs by fitting

f (n) = C + D

n2
(48)

to the continued fraction coefficients.
For two massive hardcore particles without interaction and

with finite range hopping in one dimension, the band-edge
singularities are known to be α = β = 1/2, see, for instance,

Refs. 51 and 52. We expect this behavior also to be true in the
case of the TFIM because there is no interaction in the exact
solution. In this case, the relations (47a) and (47b) yield

an = a∞ + O
(

1

n3

)
, (49a)

bn = b∞ + O
(

1

n3

)
. (49b)

We confirm this behavior in the two-particle case of the Szz

channel in Sec. VI C.

C. Szz channel

Because the observable σ z stays local in the Jordan-Wigner
representation of the TFIM, the DSF in the Szz channel can
be obtained analytically, see Eq. (7a). The DSF in the zz

channel results from the two-particle continuum. Even for
large parameters J , no weight is shifted towards four or more
particle spaces. All dynamics induced by this observable is
captured in the two-particle sector.

We emphasize that this fact holds as well in in the CUT
treatment formulated in terms of the string operator algebra.
The corresponding local operator σ z

j = Oj,0 is element of the
string algebra so that its effective observable after the CUT
consists of a linear combination of string operators:

σ z
j,eff =

∑
d

oj+dOj+d,0 +
∑
d,n

[o+−
j+d,n(O+−

j+d,n + H.c.)

+ o++
j+d,n(O++

j+d,n + H.c.)], (50)

where the maximum range n is limited by the order of the cal-
culation. We stress again that the operators Oj+d,0 and O+−

j+d,n

do not create any excitations, while the operators O++
j+d,n create

exactly two excitations. Thus the vector Sα
eff(Q)|0〉 is only

element of the zero- and of the two-particle Hilbert spaces.
The same holds in the fermionic picture where the operator σ z

i

is a local density term, which at most creates, two fermionic
excitations after the Bogoliubov diagonalization.

Concomitantly, very high orders can be reached also in the
transformation of the local observable. Because we transform
a non-translational-invariant operator, we have to consider the
positions j + d and the starting site j so that the number of
terms increases quadratically with the order, but we are still
able to achieve an order of 128.

False color plots of the DSF obtained in this way are shown
in Fig. 9 in order 128. The two-particle continuum is depicted
in a dependence of the total momentum Q and the energy ω.
The overall intensity rises for larger parameters J . This stems
from the decrease of the transverse magnetization that induces
a shift of spectral weight from the zero-particle channel to
the two-particle channel. Furthermore, we see that for small
parameters J/(2�), most of the weight is concentrated in the
region Q < π/2, while the opposite behavior occurs for larger
parameters x. Note the singularity inside the continuum on
the right side of the Brillouin zone that separates two regions
with low and high spectral weights, see the case J = 1.9�.
Knowing the exact expression (7a), we can explain this
singularity as van Hove singularity in the two-particle density
of states. The two-particle energy ω(Q/2 + q) + ω(Q/2 − q)
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FIG. 9. (Color online) The DSF Szz(ω,Q) for the parameters J =
� (top), 1.5� (center), and 1.9� (bottom). The maximum range for
the Lanczos algorithm is dmax = 1000 sites, the continued fraction
was evaluated to a depth of 50 and then terminated by the square root
terminator. The color indicates the spectral density, see legend to the
right. The upper and lower edges of the two-particle continuum are
indicated by white lines.

displays a local maximum besides the global extrema as a
function of q, if Q and J are large enough.

We want to investigate more profoundly how the CUT
calculation differs from the exact calculation by examining
the DSF for fixed parameters J and total momentum Q.
Figure 10 shows Szz(ω,Q) for J = 1.5� and 1.9� and for
the momenta Q = 0, π/2, and π calculated by the CUT in
order 128 in comparison to the exact result. Note the excellent
agreement for all parameters and momenta. The form of
the DSF is very close to a half-ellipse for low values of
J because the continued fraction coefficients converge very
quickly towards their final values a∞ and b∞. For large J ,
more spectral weight is concentrated at the lower band-edge
which we attribute to a complex interplay between momentum
and energy conservation. For the parameters J = 1.9 and
Q = π/2, one clearly sees the singularity inside the continuum

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5

In
te

ns
it
y

Γ
−1

ω [Γ]
0 0.5 1 1.5 2 2.5 3 3.5 4

ω [Γ]

Exact Q = 0
Order 128 Q = 0

Exact Q = π/2
Order 128 Q = π/2

Exact Q = π
Order 128 Q = π

J = 1.5Γ

J = 1.9Γ

FIG. 10. (Color online) DSF Szz(ω,Q) for the parameters J =
1.5� (left) and 1.9� (right) for three total momenta Q. The maximum
range for the Lanczos algorithm is dmax = 4000 sites, the continued
fraction was evaluated to a depth of 100 and then terminated by the
square root terminator.

of the DSF, which is the above mentioned van Hove singularity
from a local maximum.

A detailed analysis shows that the error is lower in the
middle of the continuum than at the band-edge singularities.
This is expected due to the strong change of the DSF at
the edges. On average, the error is below 10−6�−1 even for
large parameters J . At the band edges, the error can rise up
to 10−3�−1. We presume that the errors are mainly due to
inaccuracies in the Lanczos tridiagonalization and due to the
limited maximum range in the transformation of the observable
by the CUT. Nonetheless, the errors are still very small and
justify our approach.

Next, we investigate how the continued fraction coefficients
approach their limiting values. Thereby, we estimate the ex-
ponents of the band-edge singularities according to Eqs. (47a)
and (47b). The continued fraction coefficients for the case
J = 1.5� and total momenta Q = 0 and π/2 are shown in
Fig. 11. The coefficients for the case Q = 0 approach their
limit exponentially. Therefore we know by Eqs. (47a) and
(47b) that both exponents take the value 1/2.
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FIG. 11. (Color online) Absolute difference between the contin-
ued fraction coefficients and their final values for the case J = 1.5�

and total momenta Q = 0 and π/2.
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For the case Q = π/2, the coefficients do not converge so
rapidly. We fit them for this case versus 1/n2 to check if they
display terms in O(1/n2). Both coefficients oscillate around
the final value, which can not be described by Eqs. (47a) and
(47b). This again indicates that the exponents at the band edges
are 1/2. We also checked other momenta and they support the
assumption that all exponents are 1/2 for the two-particle case
as it has to be according to the fermionic analytical results.
Thus these findings corroborate the validity of our approach
and analysis.

D. Sxx channel

In Ref. 32, Hamer et al. derived an analytic expression
for the one-particle contribution for the longitudinal structure
factors. To our knowledge, no data are available in the literature

FIG. 12. (Color online) The DSF Sxx
3 (ω,Q) for the parameters

J = � (top), 1.5� (center), and 1.9� (bottom). The maximum range
for the Lanczos algorithm is dmax = 100 sites, the continued fraction
was evaluated to a depth of 50 and then terminated by the square
root terminator. The color indicates the spectral density, see a legend
to the right. The dispersion is indicated by the white solid line. The
upper and lower edges of the three-particle continuum are indicated
by white dashed lines. All results are computed in order 38.

for higher quasiparticle contributions away from the scaling
region.35 Here, our approach is able to provide complementary
quantitative knowledge.

Similar to the two-particle case Szz(ω,Q), the three-particle
case Sxx

3 (ω,Q) consists of a continuum of states. We are limited
to a maximum order 38 due to the complicated structure
of the local observable σx which is not part of the closed
string algebra. Overview plots for the DSF obtained by the
CUT are found in Fig. 12. In these plots, the three-particle
continuum is depicted in dependence of total momentum Q

and the energy ω.
The total weight rises on increasing J because spectral

weight is transferred from the one-particle sector to the
higher quasiparticle channels. The same qualitative behavior
is observed for dimerized spin chains and spin ladders, and
related systems.53–55 In addition, we notice that most of the
spectral weight is concentrated at momenta Q < π/2 for small
parameters J . The weight slowly shifts for growing J similar
to the Szz case. For J = 1.9�, most of the spectral weight
is concentrated rather strongly at the lower band edge of the
continuum. The same tendency was found in the Szz case as
well. Still the shape of the DSF in the Sxx case differs strongly
from a semiellipse in contrast to the Szz DSF.

A more quantitative investigation is shown in Fig. 13 where
Sxx

3 is plotted for J = 1.9� and momenta Q = 0, π/2, and π .
It is confirmed that most of the spectral weight is concentrated
at the lower band edge for large values of J . For Q = π , a
strong wiggling occurs which is to be attributed to the errors
due to the calculation in finite order.

Next, we investigate the band-edge singularities in the
three-particle case Sxx

3 (ω,Q). As in the two-particle case, we
use the relations (47a) and (47a) by fitting a 1/n2 power law
to the continued fraction coefficients. An example is shown in
Fig. 14.

In contrast to the two-particle case, no exponential approach
towards the limit values occurs. For all momenta, both an and
bn show a behavior proportional to 1/n2. We stress that the
O(1/n3) terms are significant up to 1/n2 ≈ 0.0002 ⇒ n≈ 70.
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FIG. 13. (Color online) DSF Sxx
3 (ω,Q) for the parameter J =

1.9� for three chosen total momenta Q. The maximum range for the
Lanczos algorithm is dmax = 300 sites, the continued fraction was
evaluated to a depth of 100 and then terminated by the square root
terminator.
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FIG. 14. (Color online) Continued fraction coefficients for the
case J = 1.5� and total momentum Q = 0. The upper panel shows
the coefficients an and the lower panel shows the coefficients bn. The
limit values are indicated by horizontal lines. The red/green lines
indicated linear fits in 1/n2; note the scale of the x axis.

The values for the band-edge singularities obtained from the
fits are shown in Table II.

For Q = π and π/2, both exponents are close to 3, while
for Q = 0 the exponents differ and we deduce that α = 2.5 and
β = 1 holds. We stress, however, that the obtained exponents
may still be affected by rather large numerical errors. In
Ref. 58, a general expression for the multiparticle band-edge
singularities is derived for a simple one-dimensional model
of hardcore bosons with nearest-neighbor hopping. The result
reads

Sn ∝ ω
n2−3

2 for n > 1, (51)

but close to the extrema of the dispersion. For the three-particle
case, this yields Sn ∝ ω3, which agrees well with our results
for Q = π and π/2, but differs for Q = 0. The discrepancy in
the latter case may be due to the more complex structure of the
dispersion in the effective Hamiltonian for the TFIM, which
includes longer-range hopping processes.

E. Syy channel

As in the Sxx channel, the Syy channel consists of 1,3,5, . . .

particle contributions. Overview plots for the three-particle
DSF obtained by the CUT in order 38 are found in Fig. 15.
In these plots, the three-particle continuum is plotted in
dependence of the total momentum Q and the energy ω. For
small J , the Syy channel looks similar to the Sxx channel.

TABLE II. Exponents for the band-edge singularities of Sxx
3 (ω,Q)

for J = 1.5�. The errors are determined from the fits using the
Levenberg-Marquardt algorithm (see Refs. 56 and 57).

Q α β

0 2.5 ± 0.3 1.0 ± 0.2
π/2 3.0 ± 0.2 2.7 ± 0.2
π 3.0 ± 0.2 2.8 ± 0.1

FIG. 15. (Color online) DSF S
yy

3 (ω,Q) for the parameters J = �

(top), 1.5� (center), and 1.9� (bottom). The maximum range for the
Lanczos algorithm is dmax = 100 sites, the continued fraction was
evaluated to a depth of 50 and then terminated by the square root
terminator. The color indicates the spectral density, see a legend to
the right. The dispersion is indicated by the white solid line. The
upper and lower edges of the three-particle continuum are indicated
by white dashed lines. All results are computed in order 38.

The only difference is the absolute weight because the three-
particle continuum in the Syy channel gains weight sooner, i.e.,
for smaller J/(2�), than in the Sxx channel.

For higher values of J , there are already qualitative
differences between the Sxx and the Syy channel. Most of
the spectral weight is still concentrated at the lower band-edge
of the continuum. No spectral weight is gained in the region
of the critical wave vector Q = π , which constitutes a major
difference to the Sxx channel, see Fig. 12.

Scans of S
yy

3 at fixed Q are shown in Fig. 16 for J = 1.9�

and momenta Q = 0, π/2, and π . For Q � π/2, most of the
spectral weight is concentrated at the lower band edge. This
changes distinctly for Q � π/2, especially for Q ≈ π . Here, a
spectral weight is spread rather equally over frequency space.
We also observe some wiggling, which is due to finite order
errors.
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FIG. 16. (Color online) DSF S
yy

3 (ω,Q) for the parameter J =
1.9� for three chosen total momenta Q. The maximum range for the
Lanczos algorithm is dmax = 300 sites, the continued fraction was
evaluated to a depth of 100 and then terminated by the square root
terminator.

The values for the band-edge singularities obtained by fits
as described before in the channels Szz and Sxx

3 are given in
Table III. They mostly equal those obtained for in the Sxx

channel within numerical errors. Only the case Q = 0 differs.
We deduce that α = 3 and β = 1 holds for S

yy

3 generally.

VII. CONCLUSION

Summarizing, we showed that the one-dimensional trans-
verse field Ising model (1D TFIM) in the high-field limit
can be expressed in terms of string operators, which form
an algebra that is closed under commutation, which agrees
with the previous finding by Jha and Valatin.26 This property
allowed us to solve the 1D TFIM in the high-field limit to
very high accuracy by continuous unitary transformations
without resorting to the Jordan-Wigner transformation to
noninteracting fermions. Note that the solution provided
formally also covers the low field limit due to the duality
of the model.

The only remaining restriction in the presented solution is
the truncation in a given order n in the ratio x = J/(2�) of the
Ising coupling J to the field strength �. However, due to the
closure of the string algebra, the number of terms to be tracked
grows only linearly in the order n so that very high orders up to
n = 256 can be achieved. Thus accurate results for all practical
purposes could be obtained. The order corresponds directly to
the range of physical processes that are included if the lattice
spacing is set to unity. We employed the recently developed

TABLE III. Exponents for the band edge singularities for
S

yy

3 (ω,Q) for J = 1.5�. The errors are determined from the fits using
the Levenberg-Marquardt algorithm (see Refs. 56 and 57).

Q α β

0 2.9 ± 0.1 1.0 ± 0.1
π/2 2.9 ± 0.2 2.7 ± 0.2
π 2.9 ± 0.1 2.8 ± 0.2

deepCUT approach, which is perturbatively correct in the
targeted order and provides a robust extrapolation beyond this
order.45

High orders are accessible for the Hamiltonian and all
observables that belong to the string algebra. They cannot be
obtained for observables that do not belong to the string algebra
such as the longitudinal spin components. For this reason, the
longitudinal components could be unitarily transformed only
up to order 38.

We gauged the results in computing various static properties
such as the ground-state energy, the transverse magnetization,
and the one-particle contribution to the equal time structure
factors Sαα

1 (Q) for α = x and α = y. The first two quantities
can be compared directly to the analytically accessible results
via Jordan-Wigner transformation. The one-particle contribu-
tion to the equal time structure factors has been conjectured
by Hamer and co-workers by series expansions and strongly
underlined by the mapping to a two-dimensional classical Ising
model for which the exact results are known.32

Similarly, we computed dynamic quantities such as the
one-particle dispersion and the momentum- and frequency-
resolved diagonal dynamic structure factors. The dispersion
and the transverse structure factor can again be gauged
against the analytical result obtained in terms of noninteracting
fermions. The longitudinal structure factors are much more
difficult to address because their excitation operators are
highly nonlocal in terms of the noninteracting fermions. While
the one-particle contribution can be derived from the static
one-particle structure factor and the exactly known dispersion,
there are no results for the next important three-particle
contributions for general coupling x � 1. Only in the scaling
region around the quantum phase transition, results for the
three-particle contributions in frequency domain exist.35 Our
results are reliable further away from the scaling region so
that they are complementary to the existing information. The
equation of motion approach pursued by Perk and Au-Yang17

provides information on the correlations in the time and real
space domain. However, so far, no analysis with frequency and
momentum resolution has been performed.

The presented theoretical three-particle data for the static
and the dynamic structure factor provide predictions where
in momentum and frequency space one can expect significant
three-particle signal. This information may guide future exper-
imental searches for many-particle contributions. Concretely,
our results show that the Syy channel is considerably better
suited for such searches than the Sxx channel. In the Sxx

channel, the single-particle contributions dominates over the
multiparticle contributions except very close to the quantum
phase transition.

Moreover, we found that the spectral weight in the three-
particle dynamic structure factors is concentrated close to the
lower band edge if the parameters are such that the system is
not too far away from criticality. Further away from criticality
the main response is rather featureless and hardly displays
a dependence on the total momentum Q. Then the spectral
weight is still concentrated close to the lower band edge around
Q = 0, while it is spread out in the middle of the band around
Q = π .

Our approach can be pursued further for all one-
dimensional models of which the Hamilton operators can be
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expressed within the string algebra. Further investigations for
other response functions are possible as well.
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APPENDIX A: CLOSURE OF THE STRING ALGEBRA

Here, we show that the string algebra is closed under
commutation. This means that the commutator of two string
operators can again be written as a linear combination of string
operators. First, we show that on a chain, two string operators
commute if neither of their start-/end-operators are on the same
site. Without loss of generality, this means

0 = [
O

φε

j,n,O
χξ

l,m

]
, l > j, l + m < j + n, (A1a)

0 = [
O

φε

j,n,O
χξ

l,m

]
, l > j, l + m > j + n, (A1b)

0 = [
O

φε

j,n,O
χξ

l,m

]
, l > j + n, (A1c)

for φ,ε,χ,ξ ∈ {+,−}. The last commutator (A1c) is zero
because operators acting on completely different sites always
commute in a bosonic algebra. A simple calculation yields for
the first commutator (A1a) :[

O
φε

j,n,O
χξ

l,m

] ∝ [
σ z

l σ z
l+m,σ

χ

l σ
ξ

l+m

]
, (A2a)

= [
σ z

l σ z
l+m,σ

χ

l

]
σ

ξ

l+m + σ
χ

l

[
σ z

l σ z
l+m,σ

ξ

l+m

]
,

(A2b)

= 2
[
(χ )(ξ )σχ

l σ
ξ

l+m − (χ )(ξ )σχ

l σ
ξ

l+m

]
, (A2c)

= 0, (A2d)

using [σ z,σχ ] = χ2σχ , σ zσχ = χσχ , and σχσ z = −χσχ , if
all operators act on the same site. Analogous calculations yield
that (A1b) holds as well.

The remaining contributions consist of commutators where
either the start and/or end operators are on the same site.
The start and/or end operators on the same site of two string
operators need to be different because otherwise the identities
σ+σ+ = σ−σ− = 0 imply a vanishing result. Explicit calcu-
lations yield for the nonvanishing commutators:

[Oφε

j,n,O
−φξ

j,m ] = ξO
ξε

j+m,n−m, (A3)

with m < n and[
O

φε

j,n,O
−εξ

j+n,m

] = εO
φξ

j,n+m, (A4a)[
O

φε

j,n,Oj+n,0
] = −ε2O

φε

j,n, (A4b)[
O

φε

j,n,O
−φ−ε

j,n

] = φ

2
Oj,0 + ε

2
Oj+n,0. (A4c)

Explicit calculations for the translationally invariant string
operators yield the following set of commutator relations for
the case n,m ∈ N+,n < m:

[T ++
n ,T −−

m ] = T +−
n+m + T −+

n+m − T +−
m−n − T −+

m−n, (A5a)

[T ++
n ,T +−

m ] = T ++
n+m − T ++

m−n, (A5b)

[T ++
n ,T −+

m ] = T ++
n+m − T ++

m−n, (A5c)

[T ++
m ,T +−

n ] = T ++
n+m + T ++

m−n, (A5d)

[T ++
m ,T −+

n ] = T ++
n+m + T ++

m−n, (A5e)

[T ++
n ,T0 ] = −4T ++

n , (A5f)

[T ++
n ,T ++

m ] = 0, (A5g)

and for the case n = m,

[T ++
m ,T −−

m ] = T +−
2m + T −+

2m + T0, (A6a)

[T ++
m ,T +−

m ] = T ++
2m , (A6b)

[T ++
m ,T −+

m ] = T ++
2m , (A6c)

[T ++
m ,T ++

m ] = 0, (A6d)

which are all linear combinations of string operators. Con-
tributions with n > m are also included by exchange of the
arguments in the commutators. This concludes the derivation
of the closure of the string algebra.

APPENDIX B: PROOF OF INFINITE-ORDER
FLOW EQUATION

To prove the expression (33), we proceed in two steps.
First, we show that all kinds of string operators of arbitrary
range will be created during the flow. Next, we show which
contributions occur in the DES.

Our starting point for step one is the Hamiltonian of the
TFIM in string operators in Eq. (31). By induction, we show
that once we have a complete set of operators of maximum
range n, T0,T

±±
1 ,T ±±

2 , . . . ,T ±±
n we can create a new complete

set of operators of range n + 1 by commutation with a string
pair-creation operator,

[T ++
n ,T −−

1 ] = T +−
n+1 + T −+

n+1 − T +−
n−1 − T −+

n−1, (B1a)

[T ++
n ,T +−

1 ] = T ++
n+1 − T ++

n−1, (B1b)

[T −−
n ,T −+

1 ] = −T −−
n+1 + T −−

n−1. (B1c)

Thereby, we created the string operators of range n + 1.
Because the Hamiltonian in Eq. (31) already comprises a
complete set of range one, we can deduce that all ranges
n ∈ N+ will be created during the flow. Hence, we can
conclude for the generator of the TFIM,

η =
∞∑

n=1

t++
n (T ++

n − T −−
n ). (B2)

For step two, we consider the relations in Eqs. (A5) and
(A6). We start with the contributions to the operator T0. Such
contributions are created only in the case m = n. For a given
range n, there are two contributions from the commutators:

[T ++
n ,T −−

n ] = T0 + · · · , (B3a)

[T −−
n ,T ++

n ] = −T0 + · · · , (B3b)

both with prefactor one. Note that T ++
n and T −−

n have the
same prefactor up to a sign due to Hermiticity/anti-Hermiticity.
Finally, these considerations yield

∂lt0 = 2
∞∑

n=1

(t++
n )2 (B4)

for the flow equation for the prefactor of T0.
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Next, we consider the operator T +−
m and T −+

m , respectively.
They are created by two different kinds of commutators. For
k + l = m,

[T ++
k ,T −−

l ] = T +−
m + · · · , (B5a)

[T −−
k ,T ++

l ] = −T +−
m + · · · , (B5b)

and for |k − l| = m,

[T ++
k ,T −−

l ] = −T +−
m + · · · , (B6a)

[T −−
k ,T ++

l ] = T +−
m + · · · , (B6b)

with prefactor one. Note that the operator T −+
m have the same

prefactor as T +−
m . These calculations yield

∂lt
+−
m = 2

k+l=m∑
k,l

t++
k t++

l − 2
|k−l|=m∑

k,l

t++
k t++

l . (B7)

Last we consider the operator T ++
m and T −−

m , respectively.
They are created by three different kinds of commutators. For
k + l = m,

[T ++
k ,T +−

l ] = T ++
m + · · · , (B8a)

[T ++
k ,T −+

l ] = T ++
m + · · · , (B8b)

for |k − l| = m,

[T ++
k ,T +−

l ] = sgn(k − l)T ++
m + · · · , (B9a)

[T ++
k ,T −+

l ] = sgn(k − l)T ++
m + · · · , (B9b)

where the sign function stems from the different signs in the
cases [T ++

n ,T +−
m ] and [T ++

m ,T +−
n ] in Eq. (A). Finally, the third

case is given by

[T ++
m ,T0] = −4T ++

m . (B10)

Now we can write down the complete flow equation for the
prefactor t++

m :

∂lt
++
m = −4t++

m t0 + 2
k+l=m∑

k,l

t++
k t+−

l

+ 2
|k−l|=m∑

k,l

sgn(k − l)t++
k t+−

l , (B11a)

which concludes our derivation for the flow equation for
infinite order.

APPENDIX C: CALCULATION OF Sα
eff ( Q)|0〉

We start from Eq. (45). To apply the Lanczos algorithm, we
need to calculate

Sα
eff(Q)|0〉. (C1)

We split the vector into its components of different particle
number. For the two-particle structure factor, the state

Seff|20(Q)|0〉 = 1√
N

∑
r,d0,d1,j

eiQrs
d0,d1
eff,j |r + d0,r + d0 + d1〉,

(C2)

with d1 > 0 must be considered. The sum over j addresses
all operators that create an excitation at r + d0 and another at
r + d0 + d1, which are different in their content of factors σ z

i

at various sites. The index j is used to distinguish them. In
contrast, in a strict multiparticle representation, there would
be only one operator. Shifting the exponent by d0 + d1/2, the
center of mass, results in the expression

Seff|20(Q)|0〉 =
∑

d0,d1,j

e−iQ(d0+d1/2)s
d0,d1
eff,j

1√
N

∑
r

eiQ(r+d0+d1/2)|r + d0,r + d0 + d1〉︸ ︷︷ ︸
:=|Q,d1〉

, (C3a)

=
∑

d0,d1,j

e−iQ(d0+d1/2)s
d0,d1
eff,j︸ ︷︷ ︸

:=s
d0 ,d1
eff,j (Q)

|Q,d1〉, (C3b)

=
∑

d0,d1,j

s
d0,d1
eff,j (Q)|Q,d1〉, (C3c)

where we have introduced |Q,d1〉 which is the Fourier transformation of a two-particle state with distance d1.
For the three-particle structure factor, the state

Seff|30(Q)|0〉 = 1√
N

∑
r,d0,d1,d2,j

eiQrs
d0,d1,d2
eff,j |r + d0,r + d0 + d1,r + d0 + d1 + d2〉, (C4)

with d1 > 0 and d2 > 0 must be considered. Shifting the exponent by d0 + 2d1/3 + d2/3, the center of mass, results in the
expression

Seff|30(Q) |0〉 =
∑

d0,d1,d2,j

e−iQ(d0+2d1/3+d2/3)s
d0,d1,d2
eff,j

1√
N

∑
r

eiQ(r+d0+2d1/3+d2/3) |r + d0,r + d0 + d1,r + d0 + d1 + d2〉︸ ︷︷ ︸
:=|Q,d1,d2〉

, (C5a)

=
∑

d0,d1,d2,j

e−iQ(d0+2d1/3+d2/3)s
d0,d1,d2
eff,j︸ ︷︷ ︸

:=s
d0 ,d1 ,d2
eff,j (Q)

|Q,d1,d2〉 , (C5b)

=
∑

d0,d1,d2,j

s
d0,d1,d2
eff,j (Q) |Q,d1,d2〉 , (C5c)
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where we introduced |Q,d1,d2〉, which is the Fourier transformation of a three-particle state with distance d1 between the first
two particles and distance d2 between the second two particles.

APPENDIX D: ACTION OF THE EFFECTIVE HAMILTONIAN

To apply the Lanczos algorithm, we need to know the action of the effective Hamiltonian on the two- and three-particle states,
calculated in Appendix C. We stress that after the CUT, there are no terms that violate particle-number conservation. We analyze
the action of the operators T0,T

+−
n ,T −+

n separately. Starting with the simple operator T0 yields

t0(∞)T0|Q,d1〉 = t0(∞)T0
1√
N

∑
r

eiQ(r+d0+d1/2)|r + d0,r + d0 + d1〉, (D1a)

= t0(∞)(−N + 4)
1√
N

∑
r

eiQ(r+d0+d1/2)|r + d0,r + d0 + d1〉, (D1b)

= [E0 + 4t0(∞)]|Q,d1〉. (D1c)

Next, we analyze the action of the operator T +−
n ,∑

n

t+−
n (∞)T +−

n |Q,d1〉 =
∑

n

(−1)n−1t+−
n (∞)eiQn/2|Q,d1 + n〉 +

∑
n<d1

(−1)n−1t+−
n (∞)eiQn/2|Q,d1 − n〉

+
∑
n>d1

(−1)nt+−
n (∞)eiQn/2|Q,n − d1〉, (D2a)

and of the operator T −+
n ,∑

n

t+−
n (∞)T −+

n |Q,d1〉 =
∑

n

(−1)n−1t+−
n (∞)e−iQn/2|Q,d1 + n〉 +

∑
n<d1

(−1)n−1t+−
n (∞)e−iQn/2|Q,d1 − n〉

+
∑
n>d1

(−1)nt+−
n (∞)e−iQn/2|Q,n − d1〉. (D3a)

Note the different signs of the second and third terms due to the properties of the string operator.
Similarly to the two-particle state, we examine the action of the effective Hamiltonian on the three-particle state. The simple

operator T0 yields

t0(∞)T0|Q,d1,d2〉 = t0(∞)(−N + 6)|Q,d1,d2〉, (D4a)

= [E0 + 6t0(∞)]|Q,d1,d2〉. (D4b)

Next, we analyze the action of the operator T +−
n ,∑

n

t+−
n (∞)T +−

n |Q,d1,d2〉 =
∑

n

(−1)n−1t+−
n (∞)eiQn/3|Q,d1 + n,d2〉 +

∑
n<d1

(−1)n−1t+−
n (∞)eiQn/3|Q,d1 − n,d2 + n〉

+
∑
n>d1

(−1)nt+−
n (∞)eiQn/3|Q,n − d1,d2 + d1〉 +

∑
n<d2

(−1)n−1t+−
n (∞)eiQn/3|Q,d1,d2 − n〉

+
∑

d1+d2>n>d2

(−1)nt+−
n (∞)eiQn/3|Q,d1 + d2 − n,n − d2〉

+
∑

n>d1+d2

(−1)n−1t+−
n (∞)eiQn/3|Q,n − d1 − d2,d1〉, (D5)

and of the operator T −+
n ,∑

n

t+−
n (∞)T −+

n |Q,d1,d2〉 =
∑

n

(−1)n−1t+−
n (∞)e−iQn/3|Q,d1,d2 + n〉 +

∑
n<d2

(−1)n−1t+−
n (∞)e−iQn/3|Q,d1 + n,d2 − n〉

+
∑
n>d2

(−1)nt+−
n (∞)e−iQn/3|Q,d1 + d2,n − d2〉 +

∑
n<d1

(−1)n−1t+−
n (∞)e−iQn/3|Q,d1 − n,d2〉

+
∑

d1+d2>n>d1

(−1)nt+−
n (∞)e−iQn/3|Q,n − d1,d1 + d2 − n〉

+
∑

n>d1+d2

(−1)n−1t+−
n (∞)e−iQn/3|Q,d2,n − d1 − d2〉. (D6)
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