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Vortex ground state for small arrays of magnetic particles with dipole coupling
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We show that a magnetic vortex is the ground state of an array of magnetic particles shaped as a hexagonal
fragment of a triangular lattice, even for a small number of particles in the array N � 100. The vortex core
appears and the symmetry of the vortex state changes with the increase of the intrinsic magnetic anisotropy of
the particle β; the further increase of β leads to the destruction of the vortex state. Such vortices can be present
in arrays as small in size as a dozen nanometers.
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I. INTRODUCTION

Topological defects of vortex type play a paramount part in
the general physics of ordered media such as superfluidity,
superconductivity, and magnetism. In particular, vortices
and vortex pairs are important in two-dimensional (2D)
magnetism. Recently, the ground state of soft ferromagnetic
particles of micron and submicron size has been shown to
be of the vortex type, which has received much attention
from the research community.1–3 Compared to vortices in
superfluid systems, magnetic vortices in 2D ferromagnets and
antiferromagnets have a richer behavior since they may be
divided into two different classes, in-plane and out-of-plane
vortices.4,5 For in-plane vortices all spins lie in the vortex
plane. Out-of-plane vortices have nonzero spin components
orthogonal to the vortex plane localized within the so-called
vortex core, a small region near the vortex center. Vortices with
a core are described by several different types of topological
charges.6–8 Besides the standard π1 topological charge vortic-
ity q, which is similar to circulation in a supercurrent systems,
one can introduce a π2 topological charge, the polarity or
polarization p = ±1 of the vortex core, which is the spin
direction in the core and is connected to the π2 topological
charge of the magnetization field. In-plane vortices can be
associated with the value p = 0. Further, vortices found in the
ground state of soft magnetic particles should have q = 1 only
(q = −1 corresponds to antivortices that can be connected
to “antidots,” small holes in a patterned magnetic film9), but
they are additionally classified by the discrete number chirality
C = ±1, which is the sense of rotation of magnetization far
from the vortex core. For a single vortex in a bulk 2D magnet
with easy-plane magnetic anisotropy, there is a transition
from coreless in-plane vortex structure to the vortex with a
well-defined core, as the anisotropy strength decreases below
a certain critical value.10 The presence of a core plays a
crucial role in the dynamic properties of magnetic vortices. In
particular, the value of the π2 topological charge determines
special gyroscopic properties of the vortex dynamics and the
presence of low-frequency dynamics, as well as the splitting
of doublets for modes with nonzero azimuthal number, either
for the easy-plane local model4,11 or for the vortex-state
soft magnetic dots where the dipolar interaction prevails.12–16

For the vortex-state magnetic dots, the main features of the
normal modes were experimentally observed by means of

different technique14,17–22 (see also Refs. 2 and 3 for a review.)
The vortex-state dots and their spin dynamics are essential
for possible applications of magnetic vortices in perspective
spintronic23–30 and magnonic31,32 devices.

The presence of vortices in the ground state of soft
ferromagnetic particles is determined by the balance between
magnetostatic and exchange energies. For disk-shaped parti-
cles with negligible magnetocrystalline anisotropy and typical
thicknesses about 20–50 nm, the vortex state is stable if the
disk radius exceeds some critical value Rc ∼ 150–200 nm.
Vortices in the ground state of soft magnetic particles possess
a well-developed core with a size of the order of the exchange
length of the material (about 15 nm in Permalloy). It has been
recently shown that magnetic vortices of different structures
can be the ground state for magnetic particles with comparable
energies of the exchange and dipolar interactions, even for a
small (of the order of 103) number of magnetic moments in
the particle.33 A highly nonuniform ground state is found for
small particles with a sufficiently high surface anisotropy as
well.34,35

From the perspective of a search for vortex states, the
promising magnetic systems are those in which the exchange
interaction is suppressed or nonexistent, and the main source
of interaction among structural elements is the dipole-dipole
interaction of their magnetic moments. These are so-called
dipolar magnets, i.e., such spin systems where a long-range
magnetic dipole interaction prevails. Dipolar magnets have
been attracting persistent interest in recent decades as objects
of the fundamental physics of magnetism possessing some
unusual properties. One may mention the presence of an
ambiguous ground state with nontrivial continuous degeneracy
even for simple cubic36,37 or 2D square lattices38–40 and the
existence of special phase transitions induced by an external
magnetic field.41,42 Magnon spectra of such systems have
nonanalytic behavior at small wave vectors.43–48

The interest in systems with dominant magnetic dipole
interaction has significantly increased in recent years, mainly
in the context of artificial magnetic materials such as arrays
of magnetic nanoparticles.1 Magnetic systems with dominant
dipole interaction possess interesting physical properties im-
portant for applications. Among those properties, one can
highlight the fact that the ground state of an infinite system
of magnetic moments constituting a lattice and coupled by
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the dipole-dipole interaction depends essentially on the lattice
structure,40 and in the presence of the intrinsic (intraparticle)
anisotropy it depends on the orientation of the easy axis of this
anisotropy with respect to the lattice axes as well.

Let us discuss 2D lattices, which will be the object of
our study. For lattices of particles with a high perpendicular
anisotropy, the ground state corresponds to various types of
two-sublattice antiferromagnetic order; particularly, a chess-
board structure is realized for a square lattice,41 and a layered
one is realized for a triangular lattice.49 For finite fragments
of such lattices these structures vary insignificantly compared
to the infinite case. In the case of systems with an in-plane
anisotropy, the role of the boundaries is more essential. For
an infinite square lattice, the ground state has four-sublattice
antiferromagnetic order and has a high (continuous) degener-
acy, while for the triangular lattice a ferromagnetic order is
realized.40 The presence of a boundary, however, may change
significantly the state of such a system. For finite fragments of
the square lattice the aforementioned continuous degeneracy
is removed, but the state remains antiferromagnetic.42,50 For a
triangular lattice of dipoles, the state changes are more radical,
and in finite samples the ground state can be a vortex state
with a closed flux of magnetization formed by the magnetic
moments lying in the plane of the array.51 In general, the reason
for the emergence of vortices is the same as for soft magnetic
dots52 (see also Refs. 1–3), where the vortex state emerges
due to the energy gain of the closure of magnetic flux in the
sample, and the vortices are an alternative to a standard domain
structure. However, for a rectangular-shaped array the vortex
state is advantageous only for large enough arrays.51

In view of the importance of vortices for the fundamental
physics of magnetism as well as for a variety of applications,
searching for physical systems with a vortex-type ground state
is of great interest. In particular, the minimal size of a system
carrying a vortex is interesting, along with whether that size
can be made significantly smaller than the critical size Rc

indicated above.
In this paper, we will demonstrate that for an array of

particles shaped as a fragment of a triangular lattice with high
hexagonal symmetry (see Fig. 1), the ground state is a vortex
state even for a small number of particles in the array. Even for
an extremely small array of this type, which consists of seven
particles, the vortex-state energy is almost two times lower

FIG. 1. The model of a planar array of magnetic nanoparticles.
(a) The shape of a single elongated magnetic particle; the easy axis
is denoted EA, and the orientation of the magnetic moment �μ is
denoted by the arrow. (b) A symmetric plane cluster comprised of
19 particles. (c) The same in a plane view; magnetic moments of
particles in a planar vortex existing at small anisotropy are shown
with arrows.

than that of a quasihomogeneous state. We show further that
such arrays have very interesting behavior: their ground-state
structure is highly sensitive to the change of the anisotropy
of a single particle. In particular, for a particle made of a soft
magnetic material this anisotropy could be varied by changing
the particle shape.

II. MODEL AND RESULTS

Consider an array of particles placed at the sites of a finite
hexagonally shaped fragment of a 2D triangular lattice. The
energy of the this system contains contributions from the
energy of the magnetic dipole interaction and from the energy
of the anisotropy:

W = 1

2

∑
�l �=�l′

�μ�l �μ�l′ − 3( �μ�l�ν)( �μ�l′ �ν)

|�l − �l′|3

+ β

a3

∑
�l

[( �μ�l · �ex)2 + ( �μ�l · �ey)2], (1)

where �μ�l is the magnetic moment of the particle at site �l,
| �μ| = μ0, μ0 is the magnetic moment of a single particle, �ν =
(�l − �l′)/|�l − �l′|, a is the lattice constant (the distance between
closest particles in the array plane), and β is a dimensionless
constant determining the magnetic anisotropy strength of a
particle. This anisotropy is assumed to be uniaxial, of the easy-
axis type (so that β > 0), with the easy axis �ez perpendicular
to the system plane. Here �ex,y,z are unit vectors along the
coordinate axis.

One can expect that the absence or presence of a vortex
core will depend on the effective anisotropy of the system. It
is important to note that the total magnetic anisotropy of the
array results from the uniaxial anisotropy of separate particles
and from the easy-plane anisotropy of the array induced
by the demagnetization field of a planar set of magnetic
moments (similar to the shape anisotropy in the thin films).
The competition of these two contributions determines the
complex character of the distribution of magnetization in the
array.

If the easy-plane anisotropy induced by the demagneti-
zation field is sufficiently large, a suppression of the vortex
core results. One can expect that the effective anisotropy
can be changed by using magnetic particles possessing their
own intrinsic easy-axis anisotropy. For the core to emerge,
the effective anisotropy should be reduced, which takes
place for particles with the easy axis perpendicular to the
array plane. For arrays of particles made of soft magnetic
materials, such a situation is realized in the case of elongated
particles oriented perpendicular to the array plane (see Fig. 1).
Such a geometry of the problem is promising for ultradense
information storage53–55 and is naturally realized, for example,
if the array is created by self-organization of small elongated
particles floating in liquid. The competition of these two
magnetic interactions provides the possibility to change the
effective anisotropy of the system, which, as we will show
below, allows one to impact the structure of the magnetic
macrovortex.

To analyze this problem, we have employed two methods:
numerical minimization of the energy (1) using the standard
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Gauss-Seidel algorithm, as in Ref. 42, and Monte Carlo
analysis using the simulated annealing technique.56 The energy
minimization has been performed as follows: we start with
β = 0, choose a simple in-plane vortex as an initial condition,
and numerically minimize the energy, and then the value of
β is increased step by step. This method works pretty fast
and gives a good description of the structure for continuous
transitions (see below).

On the other hand, the Monte Carlo method with simulated
annealing (MC-SA) is important for the analysis of points
where the magnetic structure of the system changes discon-
tinuously, with the coexistence of (metastable) states close to
the transition point (see Ref. 56). In our case, this corresponds
to the three-domain antiferromagnetic states as in Fig. 2(e).
To find the global minimum of the energy of the system
within this approach, first, the random initial configuration
with all the magnetic moments perpendicular to the array’s
plane was selected. Every iteration of the MC-SA method
consists of N moment reversal attempts on the random site,
where N is the site number in the sample. The main idea of
simulated annealing is that the probability of the reversal is
nonzero even if the energy is increasing after this reversal;
otherwise, the system with a high probability will be “frozen”
in some local minimum. The probability depends not only
on energy gain for reversal but also on a global time-varying
parameter T called the temperature. If the reversal is favorable
in energy, the moment is always reversed, irrespective of
the temperature. But even if the reversal is unfavorable, the
nonzero probability of reversal is chosen as follows: flip-over
takes place if Hm0 < T | log p|, where T is the current value
of the temperature and p is a random value generated in the
range 0 < p � 1. Here the parameter temperature determines
the strategy of the minimization: for large T , the evolution
is sensitive to coarser energy variations, while it is sensitive
to finer energy variations when T is small. Thus the meaning
of the temperature is the same as for annealing in metallurgy
involving initial heating and controlled cooling of a material,
thereby avoiding defect formation.

The temperature changes according to the quantity of
full steps of MC-SA of the sample n as follows: T =
T0 min[κ,(n0/n)α]. Here the parameter T0 was chosen as
(0.2–0.4)m2

0/a
3, and the cutoff parameter κ was equal to

κ = 3.0 such that the initial temperature was high enough
compared with the interaction energy. The optimal values of
other parameter are defined by the trial runs; n0 was equal to
104 to 5 × 104, and the value of the α index was taken as 1/4 or
1/5. The temperature decreases with the process evolution, and
magnetization reversals take place more rarely with decreasing
energy. The process was stopped if the energy did not become
less than the previous minimum during the previous 10n0

iterations. Then the next random configuration was generated,
and the process was repeated. This analysis shows that the
only three-domain antiferromagnetic configuration is present
within all other possible states with perpendicular magnetic
moments.

Numerical calculations have been carried out for compara-
tively small clusters shaped in the form of a regular hexagonal
fragment of the lattice consisting of 19, 37, 61, 91, and 127
nanoparticles. For all studied systems, we have found an
in-plane vortex in the ground state at small enough β. The

(a) β = 0 (b) β = 0.72 (c) β = 0.75

(d) β = 1.102 βt (e) β = 1.105,
antiferromagnetic

state

FIG. 2. Magnetic structure for the cluster of N = 37 particles at
different values of the anisotropy constant β (here β1 = 0.697, β2 =
0.729); see the text. The planar components of the magnetic moments
for each particle are shown with arrows, and vertical moments are
represented by circles. For magnetic moments with positive or zero z

projection, open symbols (arrows with open heads or open circles) are
used, while particles with negative z projection of magnetic moments
are depicted by the solid symbols.

structure of the vortex changes considerably as β increases and
passes through two critical values, β1 and β2; see. Fig. 2 and the
detailed discussion below. Further, we have found a prominent
transition at some value β = βt > β1,2 from the vortex state
to the state with a fragment of the antiferromagnetic structure,
and close to β = βt we have observed a noticeable region of
coexistence of the vortex and antiferromagnetic states (see
Fig. 3). The behavior of the energy as a function of the
anisotropy constant β near this transition is similar to that for

FIG. 3. The dependence of the energy W (in units of μ2
0/a

3)
on the anisotropy constant β for clusters of different sizes (labels
in the legend denote the number of spins in the cluster), found by
numerical minimization of (1). Horizontal lines denote the energy of
three-domain antiferromagnetic state, see Fig. 2(e) while the symbols
correspond to the energy of a vortex state.
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FIG. 4. The in-plane and out-of-plane magnetic moment compo-
nents Mz (solid symbols) and Mpl (open symbols) vs the anisotropy
constant β, in units of μ0, for a cluster with 61 particles. The
details of behavior in the region of vortex core reconstruction,
β1 < β2 < β (here β1 � 0.744, β2 � 0.786), are presented in Fig. 5
on a different scale. Upward triangles label the value Mz = μ0 for
the antiferromagnetic state.

a thermodynamic potential as a function of temperature near
first-order phase transition. On the other hand, the dependence
of the energy on β did not exhibit visible peculiarities at β =
β1,2, where a change of the vortex structure has been detected.

To analyze the structure and symmetry of the vortex core,
after completing the energy minimization for each value of
β, we have been calculating the value of the out-of plane
component Mz of the total magnetic moment, as well as the
length of the planar component Mpl =

√
M2

x + M2
y . It turns

out that just these parameters are most sensitive to the vortex
structure and allow observing peculiarities of the vortex core
behavior (see Fig. 4).

The behavior of the total magnetic moment of a particle
array with a vortex is rather complicated. At small anisotropy,
the picture remains the same as for isotropic particles,51 and
a vortex with purely planar distribution of magnetic moments
is realized. In this case, accordingly, the total z projection of
the magnetic moment vanishes, but the planar component of
the total magnetic moment Mpl is nonzero. With increasing β,
a nonzero value of Mz emerges at some critical anisotropy
β = β1. The fact that Mz �= 0 means that an out-of-plane
core appears. However, with the appearance of nonzero Mz,
the planar component of the total moment does not vanish
immediately; i.e., within some finite interval β1 < β < β2

both in-plane and out-of-plane components of the moment are
nonzero (see Figs. 4 and 5). The planar component vanishes
for β > β2, whereupon the vortex-state structure becomes
more symmetric than that observed at β < β2 (see Fig. 2).
Such a symmetric vortex structure is observed within a wide
range of β, β2 < β < βt , and the magnetic moment Mz

changes considerably while Mpl remains zero. With the further
increase of the anisotropy, the vortex structure becomes an
antiferromagnetic structure similar to that found for strong
perpendicular anisotropy. The presence of boundaries leads to

FIG. 5. The in-plane and out-of-plane magnetic moment compo-
nents Mz (upward triangles) and Mpl (downward triangles) vs the
anisotropy constant β, in units of μ0, for a cluster with 61 particles
in the region of the vortex core reconstruction. Note that the scales
for Mpl and Mz differ by a factor of 100.

the emergence of three different domains of such structure, as
dictated by the system symmetry.

Note that the behavior of Mz and Mpl is similar to that of
order parameters near second-order phase transitions. This
observation can be used to perform a symmetry analysis
of the transitions between the different vortex states. It is
important to obtain analytical results due to the limited
accuracy of numerical data and also because the numerical
analysis is hindered near transition points β = β1,2 because
of the “critical slowing down” of relaxation similar to that
found near a second-order phase transition, which manifests
itself in a substantial increase in the numerical calculation time.
Therefore we should study the possibilities of existence of such
transitions in our system from the viewpoint of symmetry.

III. SYMMETRY ANALYSIS

To describe the complex character of changing the vortex
core structure let us use symmetry arguments in line with
the phase-transition theory of Landau. For both observed
critical values of anisotropy, the symmetry of state changes
significantly. At β � β1, when the out-of-plane core emerges
for the first time, the sign of Mz can be arbitrary; i.e., there
is a spontaneous breaking of Z2 symmetry with respect to
Mz at β = β1. In contrast to that, the symmetry of the
planar distribution of magnetic moments does not change
at this transition point: within the range β1 < β < β2 it
remains the same as for β < β1. At the other transition
point β = β2 the situation is different: the dependence of
the out-of-plane component Mz(β) does not have any visible
peculiarities, while the planar component Mpl vanishes at
β = β2 and remains zero for β2 � β � βt , i.e., up to the point
of destruction of the vortex state at β = βt ; see the detailed
graph in Fig. 5.

For the ground state in the interval β2 � β � βt , we
observe a higher symmetry of the moment distribution than
the vortex states with Mpl �= 0 at β < β2 (specifically, within

184404-4



VORTEX GROUND STATE FOR SMALL ARRAYS OF . . . PHYSICAL REVIEW B 87, 184404 (2013)

FIG. 6. The value of the angle θ0 (normalized by π/2) vs the
anisotropy constant β for a cluster with 61 particles in the region of the
vortex core reconstruction. Symbols present the results of numerical
calculations, while the dashed and solid lines show analytical results
from the phenomenological theory. The dashed line corresponds to
Eq. (3), and the solid line shows the result that follows from including
corrections due to the sixth-order term with β; see the text.

the numerical accuracy of our simulations, we observe the
C6 symmetry; it would be worth finding out whether this
symmetry is exact). Rather low symmetry of the vortex ground
state at β < β2 is caused by the presence of nonzero Mpl, which
can be traced to the presence of a nonzero planar component of
the central magnetic moment �μ0. Obviously, the emergence of
nonzero Mz at β > β1 is caused by �μ0 coming out of the plane.
Writing down �μ0 as �μ0 = μ0(sin θ0�ez + cos θ0�epl), where �epl

lies in the plane of the system, we find that the transition at β1

is connected to the appearance of nonzero θ0, with θ0 = 0 at
β � β1 and θ0 �= 0 at β > β1. As we pointed out, the symmetry
of the state with Mz �= 0 is lower than for a planar vortex;
therefore the value of θ0 serves as the order parameter for
the transition at β = β1. In this case, one can expect that
at β � β1 the behavior of the “order parameter” close to
the transition is given by θ0 ∝ √

β − β1 and is characterized
by singular behavior, dθ0/dβ → ∞ at β → β1 + 0. On the
other hand, the hexagonal symmetry in the spin distribution
may appear only when the central moment is directed strictly
perpendicular to the system plane, i.e., at θ0 = π/2. If at
β = β2 the symmetry increases up to the hexagonal one, the
quantity ϑ0 = π/2 − θ0 should serve as the order parameter
for this transition. We arrive at the conclusion that the behavior
of the out-of-plane component of the central spin �μ0, i.e., the
dependence θ0(β), dictates the change of symmetry of the
vortex state. Information about the full θ0(β) dependence can
be obtained only numerically, but the presence of square-root
singularities at β → β1 + 0 and β → β2 − 0 is rather easily
verified (see Fig. 6).

The detailed analysis of the θ0(β) dependence allows one
to present a closed phenomenological expression for the
“thermodynamic potential” 	 that defines the behavior of
θ0(β) in a wide range of β. Indeed, in line with the Landau
theory, this potential can be constructed in the form of the
expansion in powers of the order parameters, which are θ0

FIG. 7. The dependence of β2 (up triangles) and β1 (down
triangles) on the number of particles in the cluster, lines present
the dependence fitted by the logarithmic function, see the text.

at β � β1 or ϑ0 = π/2 − θ0 at β � β2. Equivalently, sin θ0

and cos θ0 can be used instead of angles θ0 and ϑ0. As odd
degrees of μ0z = sin θ0 are forbidden by the condition of the
time reversal invariance, and the simplest form of this energy
is the following: 	 = A sin2 θ0 + B sin4 θ0. It is easy to see
that, up to an inessential overall factor, the correct behavior is
provided by the expression

	 = 1
2 (β1 − β) sin2 θ0 + 1

4 (β2 − β1) sin4 θ0, (2)

which leads to the simple result:

sin θ0 =
√

β − β1

β2 − β1
, β1 � β � β2, (3)

while θ0 = 0 at β < β1, and θ0 = π/2 at β > β2.
Such simple dependence describes the numerical data fairly

well, see Fig. 6. Deviation from the simple law given by (3)
can be accounted for by adding the term (β/6) sin6 θ0 to the
expansion (2). As seen from Fig. 6, it provides a perfect
description of the numerical data at sufficiently small β , typical
values are β � 0.1(β2 − β1).

The critical values of the anisotropy constant β1 and β2

grow with the increase of the cluster size N , see Fig. 7, though
for the studied values of N this dependence is rather slow. The
numerical data for N � 37 can be well fitted by a logarithmic
dependence of the form β1,2 = A1,2 + B1,2 ln N , where A1 =
0.38397, B1 = 0.08703; A2 = 0.36236, B2 = 0.10222.

The value of θ0 not only dictates the vortex core sym-
metry but it also quantitatively defines the important vortex
characteristic, the total out-of-plane moment of the particle
with the vortex. Singularities in the θ0 behavior at β = β1 are
reflected in the Mz (β) dependence, Mz ∝ sin θ0 near this point.
It is worth noting that Mz plays a special role in the dynamic
properties, namely, Mz serves as a proper collective variable
describing the radial mode (with the azimuthal number m = 0)
of the magnetization oscillations in the particle with a vortex;57

the theory is in agreement with recent experiment.58 Therefore,
the presence of singularities in Mz(β) should manifest itself
in the behavior of an equivalent of this mode for the considered
system.
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In addition, the presence or absence of the vortex core is
also important for the properties of azimuthal modes with
m = ±1.4,11–13,59,60 For a purely planar vortex, the modes with
m = ±1 form degenerate doublets, while the emergence of
the core leads to splitting of these doublets. Thus, one can
expect a crucial impact of the vortex structure modification
on the properties of eigenmodes of the vortex-state particle,
although a detailed discussion of the dynamical properties of
the particle with the vortex is beyond the scope of this work.

IV. SUMMARY AND DISCUSSION

To conclude, we have shown that high-symmetry hexagonal
fragments of a 2D closely-packed triangular lattice of magnetic
particles contain a vortex in the ground state, even for a small
fragment size. The vortex structure is very sensitive to the
intrinsic anisotropy β of the particle. At small anisotropy,
there is a purely planar vortex. With the increase of β, the
symmetry of the vortex ground state lowers initially at some
critical value β = β1, and then increases to a high sixfold
axial symmetry above another critical value β = β2 > β1. It is
worth to note that those two transformations bear a similarity
to second-order phase transitions. Both transitions take place
at sufficiently weak anisotropy, the dimensionless parameters
β1,2 do not exceed one. This value is essentially smaller
than the easy-plane anisotropy of a planar array induced
by the demagnetization field with the characteristic value
βarray ∼ 10, see Ref. 48. Actually, this anisotropy is smaller
than it is necessary to create the perpendicular magnetization
of a cylindrical magnetic dot.

An important challenge in the physics of magnetic vortices
is to find ultra-small (smaller than 100 nm) systems with
vortices in the ground state, this problem is of great interest
for both fundamental physics and applications. In addition
to lithographic magnetic materials, where the particle size is
of the order of tens of nanometers,53–55 the proposed theory
is applicable to other 2D systems with anisotropic particles
having magnetic or electrical dipole moment.40 One could
expect that if an array can be composed from small enough
particles, having finite magnetic or electric dipole moment, the
vortex state will be present for arrays 10-20 times larger than
the particle size. Such systems can be realized for composite
magnetic materials, for example, for granular magnets with the
content of the magnetic component less than the percolation

threshold, where the exchange interaction between nanometer-
sized grains is anomalously small. Another example is the
inhomogeneous state arising in the vicinity of the metal–
insulator transition in doped manganites, which involves small
particles of the ferromagnetic (metallic) phase distributed over
a nonmagnetic host; their physical properties are determined
to a large extent by the dipolar interactions between these
particles.61 The experimental implementation of the artificial
crystals, in which particles with magnetic moments of the
order of 103 Bohr magnetons form an ordered lattices, has been
reported recently.62 As one more example, it is instructive to
mention a new class of materials, namely, molecular crystals
formed by high-spin molecules. The total magnetic moment of
such a molecule can be as high as dozens of Bohr magnetons,
but the exchange interaction between magnetic moments of
different molecules is almost negligible.63 Note also so-called
dense phases formed by nanometer-sized magnetic particles
moving freely in a liquid (that is the standard situation for a
ferrofluids).64 For all these systems with a particle size of the
order of nanometers the vortices described here can be present
for objects as small as dozen of nanometers; those are, to the
best of our knowledge, the smallest vortex-bearing systems
discussed in the literature.

It is worth noting that the presence of a vortex ground
state for such small systems and the transitions with the
vortex core reconstruction is a consequence of the high
(hexagonal) symmetry of the array. For square or rectangular
arrays the vortex state appears for large enough arrays only.51

As we found, for an array shaped as a regular triangle, the
vortex state could be present for small arrays, but with the
increase of the anisotropy the vortex remain coreless all the
way till the transition to antiferromagnetic state. The two-
dimensional nature of an array is also quite important. Thus,
two-dimensional closely-packed arrays of magnetic particles
represent vortex-bearing systems with potentially small sizes
and offer a unique possibility for manipulating the symmetry
and structure of the vortex core.

ACKNOWLEDGMENTS

We thank V. G. Baryakhtar, A. K. Kolezhuk, and V. F.
Kovalenko for useful discussions. This work was partly
supported by the government of Ukraine, state program
“Nanotechnologies and Nanomaterials,” Project No. 1.1.3.27.

*bivanov@i.com.ua
1R. Skomski, J. Phys. Condens. Matter 15, R841 (2003); Advanced
Magnetic Nanostructures, edited by D. J. Sellmyer and R. Skomski,
(Springer, New York, 2006).

2R. Antos, Y. Otani, and J. Shibata, J. Phys. Soc. Jpn. 77, 031004
(2008).

3K. Yu. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008).
4B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M. Wysin,
Phys. Rev. B 58, 8464 (1998).

5F. G. Mertens and A. R. Bishop, in Nonlinear Science at the Dawn
of the 21st Century, edited by P. L. Christiansen and M. P. Soerensen
(Springer, Berlin, 1999), pp. 137–170.

6G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 72, 2256 (1977)
[Sov. Phys. JETP 45, 1186 (1977)].

7N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
8A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194,
117 (1990); Phys. D 3, 363 (1981).

9S. Gliga, M. Yan, R. Hertel, and C. M. Schneider, Phys. Rev. B 77,
060404 (2008).

10G. M. Wysin, Phys. Lett. A 240, 95 (1998); Phys. Rev. B 49, 8780
(1994).

11B. A. Ivanov and G. M. Wysin, Phys. Rev. B 65, 134434 (2002).
12B. A. Ivanov and C. E. Zaspel, Appl. Phys. Lett. 81, 1261 (2002);

J. Appl. Phys. 95, 7444 (2004); Phys. Rev. Lett. 94, 027205 (2005).

184404-6

http://dx.doi.org/10.1088/0953-8984/15/20/202
http://dx.doi.org/10.1143/JPSJ.77.031004
http://dx.doi.org/10.1143/JPSJ.77.031004
http://dx.doi.org/10.1103/PhysRevB.58.8464
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1016/0370-1573(90)90130-T
http://dx.doi.org/10.1016/0370-1573(90)90130-T
http://dx.doi.org/10.1016/0167-2789(81)90140-8
http://dx.doi.org/10.1103/PhysRevB.77.060404
http://dx.doi.org/10.1103/PhysRevB.77.060404
http://dx.doi.org/10.1016/S0375-9601(98)00078-4
http://dx.doi.org/10.1103/PhysRevB.49.8780
http://dx.doi.org/10.1103/PhysRevB.49.8780
http://dx.doi.org/10.1103/PhysRevB.65.134434
http://dx.doi.org/10.1063/1.1499515
http://dx.doi.org/10.1063/1.1652420
http://dx.doi.org/10.1103/PhysRevLett.94.027205


VORTEX GROUND STATE FOR SMALL ARRAYS OF . . . PHYSICAL REVIEW B 87, 184404 (2013)

13F. Boust and N. Vukadinovic, Phys. Rev. B 70, 172408 (2004).
14C. E. Zaspel, B. A. Ivanov, J. P. Park, and P. A. Crowell, Phys. Rev.

B 72, 024427 (2005).
15R. Zivieri and F. Nizzoli, Phys. Rev. B 71, 014411 (2005); 74,

219901(E) (2006).
16R. Zivieri and F. Nizzoli, Phys. Rev. B 78, 064418 (2008).
17X. Zhu, Z. Liu, V. Metlushko, P. Grutter, and M. R. Freeman, Phys.

Rev. B 71, 180408 (2005).
18S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr,
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