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The universal behavior of two-dimensional loop models can change dramatically when loops are allowed to
cross. We study models with crossings both analytically and with extensive Monte Carlo simulations. Our main
focus (the “completely packed loop model with crossings”) is a simple generalization of well-known models that
shows an interesting phase diagram with continuous phase transitions of a new kind. These separate the unusual
“Goldstone” phase observed previously from phases with short loops. Using mappings to Z2 lattice gauge theory,
we show that the continuum description of the model is a replica limit of the σ model on real projective space
(RP n−1). This field theory sustains Z2 point defects, which proliferate at the transition. In addition to studying
the new critical points, we characterize the universal properties of the Goldstone phase in detail, comparing
renormalization group (RG) calculations with numerical data on systems of linear size up to L = 106 at loop
fugacity n = 1. (Very large sizes are necessary because of the logarithmic form of correlation functions and other
observables.) The model is relevant to polymers on the verge of collapse, and a particular point in parameter space
maps to self-avoiding trails at their � point; we use the RG treatment of a perturbed σ model to resolve some
perplexing features in the previous literature on trails. Finally, one of the phase transitions considered here is a
close analog of those in disordered electronic systems—specifically, Anderson metal-insulator transitions—and
provides a simpler context in which to study the properties of these poorly understood (central-charge-zero)
critical points.
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I. INTRODUCTION

It is tempting to think that two-dimensional critical phe-
nomena are completely classified and understood, thanks to
conformal field theory and other exact techniques, but this is
far from true. One class of problems which remains mysterious
is that containing classical loop models and models for
polymers, together with models for noninteracting fermions
subject to disorder. These systems are tied together by field
theory descriptions with continuous replica-like symmetries
(or alternatively global supersymmetries). Examples include
de Gennes’ mapping of polymers to the O(N ) model in the
limit N → 0, the various replica σ models for the integer
quantum Hall transition and other localization problems, and
the σ models describing cluster boundaries in percolation and
similar soups of loops.1–13

Classical loop models yield the simplest examples of
this class of problems, but even they are not yet fully
understood. The best-studied examples are those in which the
loops are forbidden from crossing; for these, a great deal is
known from conformal field theory, height model mappings,
exact solutions, Schramm-Loewner evolution, and numerical
simulations.14,15 But when we move away from these models
the analytical techniques often cease to apply, and we may
encounter new types of critical phenomena requiring new
theoretical tools.

This paper considers some of the simplest two-dimensional
loop models with crossings. These reveal new universality
classes of, and new mechanisms for, classical critical behavior.
They also provide natural models for polymers and for
deterministic motion in a random environment,16–18 which
have been intensely studied but whose phase diagrams and
continuum descriptions have in general not been understood.
Finally, they shed light on phenomena that are important

more generally for criticality in replica or supersymmetric
σ models—in particular, the role of gauge symmetries and
topological point defects. The latter have recently been shown
also to be important for two-dimensional Anderson metal-
insulator transitions.19,20 We will return to the analogy between
loop models and localization at the end of this introduction.

A key result of previous work on loops with crossings is
the existence of an unusual critical phase which is absent for
noncrossing loops.10,11,16,17,21–23 It was argued by Jacobsen,
Read, and Saleur10,11 that this corresponds to the Goldstone
phase of the O(n) σ model, where n is the fugacity for
loops. The phase exists for n < 2; to make sense of this
regime requires a replica-like limit or a supersymmetric
formulation of the field theory. Characteristic features of the
Goldstone phase had previously been found in computational
studies of polymers and deterministic walks in a random
environment,16,17 as well as in an integrable loop model.21–23

The phase appears quite generically when noncrossing loop
models in the so-called “dense” regime are perturbed by the
addition of crossings, which in an appropriate field theory
corresponds to a breaking of symmetry.10–12

Here, we examine a more general class of loop models
with crossings. These show new continuous phase transitions
separating the Goldstone phase from noncritical phases with
short loops. We construct field theories for the models and pin
down the universal behavior (both in the Goldstone phase
and at the new critical points) using analytic calculations
and extensive Monte Carlo simulations. Finally, we give a
field theoretic treatment of the closely related problem of the
interacting self-avoiding trail model for a polymer.

The models we study are a “completely-packed loop
model with crossings” (CPLC) on the square lattice—Fig. 1
shows a configuration—and an “incompletely packed loop
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FIG. 1. (Color online) A configuration of the completely packed
loop model with crossings (CPLC) on a 10 × 10 lattice with periodic
boundary conditions. Each loop has been given a different color: these
colors are merely a guide to the eye and not a part of the configuration.

model with crossings” (IPLC) in which loops are related
to cluster boundaries. The parameter space for the CPLC
contains various previously-studied models as special cases; in
particular, the standard completely packed loop model without
crossings and models with crossings encountered in various
contexts (including those mentioned above). The CPLC and
IPLC are expected to show the same universal behavior—our
numerics are restricted to the CPLC, but the IPLC provides
a simpler context in which to describe the main theoretical
ideas.

It is easy to argue that the phase transitions in the CPLC
and IPLC cannot be described by the O(n) model. Instead, the
general description of the models requires coupling the O(n)
spin �S to a Z2 gauge field, or equivalently identifying �S with
−�S to obtain a nematic order parameter. This leads to a σ

model on a real projective space, RP n−1, in which Z2 point
vortices play an important role. Vortices are suppressed in the
Goldstone phase—meaning that the O(n) model is a viable
description there—but proliferate at the phase transition into
the short loop phase. (This picture is appropriate for the regime
0 < n < 2.)

In general, the introduction of crossings leads the standard
exact techniques used for noncrossing loop models to fail,
so for the critical points we are restricted to numerics and
approximate RG treatments.20 However, the Goldstone phase
can be fully understood analytically, since it is characterized
by marginal flow to a weak-coupling fixed point.10,11 This
leads to logarithms—e.g., correlation functions decaying with
a universal power of the logarithm of distance—so very
large system sizes are required in order to confirm our
analytical predictions numerically (comparable to the largest
sizes simulated in any statistical mechanics problem). These

are possible at fugacity n = 1 thanks to special features of the
problem there, and our simulations are restricted to this value.

Another feature of the CPLC at n = 1 is that, while each
configuration is a soup of many loops, the model permits a
mapping to a model for a single loop with local interactions.
At a certain point in parameter space, this is the well-studied
“interacting self-avoiding trail” (ISAT) model for a polymer at
its collapse, or �, point.16,24 Collapse transitions for polymers
in two dimensions are a mysterious subject, which deserves
clarification (see for instance the case of the missing Flory
exponents.25) Here, we show that the ISAT can be understood
completely from field theory, explaining for example the
interesting phase diagram found numerically in Ref. 18. To
do with we perturb the σ model that describes the Goldstone
phase. Surprisingly, the � point of the ISAT turns out to be an
infinite order multicritical point: despite the simplicity and
naturalness of this model, it is highly fine-tuned from the
point of view of general polymer models. This implies that
the critical exponents for the generic � point polymer (with
crossings) are still unknown.

There is a close relationship between loop models at
loop fugacity n = 1 and disordered fermion problems.26–32

Supersymmetry and replica-like limits, crucial in the latter for
averaging over disorder, appear in the former as tools allowing
geometrical correlation functions (such as the probability that
two points lie on the same loop) to be expressed in field theory.
Both types of problem exhibit critical points of central charge
zero, described by logarithmic CFTs.33,34 The loop models
are a good place to study such critical points since they are
more tractable, both analytically and computationally, than
disordered fermion problems.

For completely-packed loops without crossings, there is in
fact an exact mapping26,27 to a network model for Anderson
localization in symmetry class C.7,35,36 However, the analogy
is more general. Recent work by Fu and Kane20 demonstrates
that the metal-insulator transition in the symplectic symmetry
class is driven by proliferation of Z2 vortices; this transition is
thus in remarkably close analogy with those in the loop models
discussed here, though the appropriate σ model is different.
In the localization language, the Goldstone phase corresponds
to a metallic phase, and the two short loop phases—which
are distinguished from each other by the presence or absence
of a loop encircling the boundary—to topological and trivial
insulating phases.

The CPLC at n = 1 can in fact be obtained as a “classical”
limit of a network model in which a Kramers doublet
propagates on every edge: the above similarities show that this
classical limit captures a surprising number of the qualitative
features of the phase diagram for the symplectic class.

In both the loop model and the localization problem, the
vortex fugacity (including its sign) plays an important role.
Reference 20 introduced an approximate RG treatment of this
fugacity, and in Sec. V C, we apply this to the loop models.
We note that vortices—this time Z vortices—have also been
shown to be responsible for Anderson localization in the chiral
symmetry classes, and a detailed treatment has been given by
König et al. in Ref. 19.

The organization of the paper is as follows. In the next
section, we introduce the models we will study and their
phase diagrams. In Sec. III, we map them to lattice gauge
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FIG. 2. (Color online) The three configurations of a node and
associated Boltzmann weights. (In the leftmost configuration, the
upper and lower links lie on the same loop.) The weights q and 1 − q

are exchanged on the two sublattices of the square lattice.

theories and RP n−1 σ models, paying attention to the role of
topological defects and the relation to the field theory for loops
without crossings. We also discuss the different (CP n−1) σ

model which applies on the boundaries of the phase diagram
for the CPLC. Sections IV and V apply Monte Carlo and
RG calculations in the field theory to the Goldstone phase
and the critical points, respectively. Our numerical methods
are described in more detail in Sec. VI. Section VII tackles
the polymer collapse problem. Finally, Sec. VIII discusses
directions for future work.

II. DEFINITIONS OF MODELS

A. Completely packed loops with crossings

Configurations of the completely packed loop model with
crossings (CPLC) are generated by resolving each node of
the square lattice in one of the three possible ways shown in
Fig. 2. Figure 1 shows an example on a small lattice. Note that
overcrossings are not distinguished from undercrossings—the
configuration at a node is defined solely by the way its four
links are paired up.

Each of the three possible pairings at a node is assigned a
weight, as shown in Fig. 2, with the weight of a crossing being
p. The factors q and 1 − q are staggered (swapped) on the
two sublattices of the square lattice, so that the states of the
system for extreme values of the parameters are as shown in
Fig. 3. The Boltzmann weight for a configuration is given by
the product of the node factors, together with a fugacity n for
the loops. Let Np, Nq , and N1−q denote the numbers of nodes
where the pairing with weight p, (1 − p)q or (1 − p)(1 − q)
is chosen. Then the product of node weights in a configuration
C is

WC = pNp [(1 − p)q]Nq [(1 − p)(1 − q)]N1−q , (1)

and the partition function is

Z =
∑
C

nno. loops WC . (2)

The parameter space of this model includes various pre-
viously investigated models. On the line p = 0, we have
the completely packed loop model without crossings, which
has been intensely studied and which may be mapped to the
n2-state Potts model via the Fortuin-Kasteleyn representation
of the latter. The model on the line q = 1/2 was related to the
Goldstone phase of the O(n) σ model in Ref. 10, and points
on this line have been studied in various contexts. For a given
value of n, the point q = 1/2, p = (2 − n)/(10 − n) is known
as the Brauer loop model21–23 and is integrable; this model was
related to a supersymmetric spin chain in Ref. 21. When the

FIG. 3. (Color online) Phase diagram obtained numerically for
the CPLC at n = 1. The horizontal axis is labeled by q̃, defined by
(̃q − 1/2) = (q − 1/2)(1 − p). The larger (red) dots on the critical
line indicate the values of p at which we have analysed the critical
behavior in detail. Also shown are the configurations obtaining on a
small finite lattice at p = 1, at p = 0, q = 0, and at p = 0, q = 1.
(The point p = 0, q = 1/2 is the percolation critical point.)

parameters in the CPLC are such that all configurations given
equal weight—i.e., when n = 1, q = 1/2, and p = 1/3—it is
equivalent to a standard model for polymers at their � (col-
lapse) point,16,18,24 which we will discuss further in Sec. VII.
On the lines q = 0 or q = 1—the left and right boundaries
of the phase diagram in Fig. 3—the CPLC reduces to the
“Manhattan” lattice loop model discussed in Refs. 27,37. Loop
models with crossings at n = 1 have also appeared in the study
of Lorentz lattice gases, i.e., deterministic motion in a random
environment.17,38 Finally, Ref. 39 discusses a model similar to
the CPLC in which q and 1 − q are not staggered, and uses it
(at n = 2) to analyze the phase diagrams of vertex models.

A trivial but important fact about the CPLC is that the
nodes become completely independent of each other when
n = 1. The weights p, (1 − p)q, and (1 − p)(1 − q) are then
the probabilities of the various node configurations, and the
partition function Z is equal to unity—from which it follows,
by the finite size scaling of the free energy, that any critical
points must have central charge c = 0. The model with n = 1
is thus analogous to percolation, which can also be formulated
in terms of uncorrelated random variables. In the absence
of crossings, the n = 1 model is in fact equivalent to bond
percolation on a dual lattice, with loops surrounding cluster
boundaries; however when crossings are allowed the universal
behavior is no longer that of percolation.
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Our simulations will be restricted to the case n = 1, which
is the most interesting and the best suited to Monte Carlo,
but most analytic results will apply to 0 � n < 2. (We will
discuss the case n = 2, which shows more conventional critical
behavior, elsewhere.) The phase diagram obtained numerically
at n = 1 is shown in Fig. 3. We expect it to be qualitatively
similar for 0 < n < 2, with the Goldstone phase swallowing
up more and more of the parameter space as n → 0. We now
summarize its main features.

(1) Short loop phases: the configurations at p = 0, q = 0
and at p = 0, q = 1 provide caricatures of the two “short loop”
phases. For given boundary conditions, these are distinguished
from each other by the presence or absence of a long loop
running along the boundary, as shown in Fig. 3. In a σ model
description, the short loop phases are massive (disordered)
phases. In the analogy with Anderson localization mentioned
in the Introduction, they correspond to insulating phases, and
the boundary loops correspond to the edge states present in a
topological insulator.

(2) Goldstone phase: in the Goldstone phase, so-called
because the continuum description is a σ model which flows
to weak coupling in the infra-red,10 the loops are “almost”
Brownian. However, interactions between Goldstone modes in
the σ model are only marginally irrelevant, leading to universal
logarithmic forms for correlators and other observables which
we calculate in Sec. IV. In the Anderson localization analogy,
this would be a metallic phase.

(3) Critical lines: the lines separating the Goldstone phase
from the short loop phases show a new universality class of
critical behavior. This is associated with the order-disorder
transition of the RP n−1 σ model, which exists only in the
replica limit n < 2 and is driven by proliferation of Z2 vortex
defects associated with π1(RP n−1) (see Secs. III and V C).
Numerically, the critical loops have df = 1.909(1) at n = 1,
i.e., they are slightly less compact than Brownian paths,
and the transition has a large correlation length exponent
ν = 2.745(19) (see Sec. V).

(4) Critical point at p = 0: the critical point of the loop
model without crossings (at p = 0, q = 1/2) is well studied
and corresponds to the so-called dense phase of the O(n)
loop model, or to SLEκ with κ > 4. [Note that the standard
terminology “O(n) loop model” is potentially misleading,
as when crossings are forbidden the O(n) model is not the
appropriate field theory for the dense phase.9,10] At n = 1,
this point maps to critical percolation; the loops have the
statistics of percolation cluster boundaries, with a fractal
dimension d

perc
f = 7/4, and the correlation length exponent

of the transition is νperc = 4/3. These critical exponents also
yield exponents in an Anderson transition (the spin quantum
Hall transition) via an exact mapping.26–28,40

(5) Phase diagram boundaries: everywhere on the boundary
of the phase diagram in Fig. 3—i.e., whenever one of the
node weights vanishes—loops can be consistently oriented by
assigning a fixed (configuration independent) orientation to
each link of the lattice. The necessary choice of orientations
differs on each of the three pieces of boundary. They are those
of the “L” lattice on the line p = 0, and of the Manhattan
lattice on the lines q = 0 and 1. (These lattices are depicted
in Ref. 27.) The fact that the loops automatically come with
an orientation means that the continuum descriptions have

a higher symmetry,9,41 as will be discussed in Sec. III F,
and the appropriate field theory is a σ model on complex
projective space, CP n−1, rather than on RP n−1. The CP n−1

description implies that the lines q = 0 and 1 (the Manhattan
lattice loop model) are always in the short loop phase, but
with a typical loop length that diverges exponentially as
p → 1 (see Sec. III F). This is in agreement with previous
expectations,27,37 but is not obvious from the numerical phase
diagram since the critical lines closely approach the lines
q = 0,1 for p close to one.

(6) Relation to polymers: configurations in the CPLC are
soups of many loops. However, when n = 1, the CPLC has a
simple relation with the self-avoiding trail model for a single
polymer.16,18 The polymer corresponds to a single marked
loop in the soup of loops; so long as n = 1, integrating out the
configurations of the other loops leads to a local Boltzmann
weight for the marked one. Adding the interactions that are
natural in the polymer language takes us out of the parameter
space of Fig. 3, but the σ model description can be extended to
cover this case by including appropriate symmetry-breaking
terms (see Sec. VII).

B. Incompletely packed loops with crossings

For pedagogical reasons, it will be useful to introduce and
discuss a second loop model before returning to the CPLC.
Loops in the new model will no longer be completely packed,
but nevertheless the universal properties will be the same. We
refer to this model as the incompletely packed loop model with
crossings, or IPLC.

To generate a configuration in the IPLC, we first color the
plaquettes of the square lattice black or white, giving a site
percolation configuration on the square lattice formed by the
plaquettes. The loops in the IPLC are then cluster boundaries,
as shown in Fig. 4. However, the loop configuration is not
uniquely determined by the cluster configuration: for each
“doubly visited” node, where two cluster boundaries meet, we
must choose how to connect them up. Allowing crossings, the
three possible pairings are again those of Fig. 2 (but unlike in
the CPLC we do not assign different weights to the different
pairings).

FIG. 4. (Color online) Part of a configuration in the IPLC. In this
model, the loops (thick red lines) are cluster boundaries. Universal
behavior in the IPLC is expected to coincide with that in the CPLC.
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The simplest choice for the Boltzmann weight is to
give each percolation configuration the standard percolation
probability qB(1 − q)W , where B and W are the numbers
of black and white faces. A given percolation configuration
corresponds to 3N loop configurations, where N is the number
of doubly visited nodes. Assigning them equal probability, the
partition function for the IPLC is

Z =
∑

configs

αNqB (1 − q)W, (3)

with α = 1/3. The parameter q here will play a similar role to
the parameter q in the CPLC.

The above partition function corresponds to a loop fugacity
n = 1. We will wish to generalize it to arbitrary n. We may
also vary α, and introduce a fugacity x for the total length of
loops:

Z =
∑
C

αNqB (1 − q)Wx lengthnno. loops. (4)

The precise values of α and x will not be important in what
follows. When n = 1, a length fugacity x distinct from one
corresponds to an Ising interaction of strength J between
colours of adjacent squares, with x = e−2J , and varying α

introduces a four-site interaction. These interactions have no
effect on the universal behavior so long as they are weak.

Note that if we take our lattice to have the topology of the
disk, regarding the region outside the boundary as white for
the purposes of drawing cluster boundaries, the IPLC shares
with the CPLC the feature of having an edge loop at q = 1
but not at q = 0. There are clearly stable short-loop phases
at small q and at q close to one, and field theory arguments
lead us to expect a stable Goldstone phase near q = 1/2. The
conjectured phase diagram, shown in Fig. 5, is similar to a slice
through the phase diagram of the CPLC at some nonzero value
of p. (If we had forbidden crossings, we would have obtained
a phase diagram similar to the line p = 0 in the CPLC.)

III. LATTICE FIELD THEORIES

A. Lattice field theory for IPLC

We begin with the IPLC, which permits a simple mapping
to a Z2 lattice gauge theory coupled to matter fields. We will
first write down this theory and then show that a graphical
expansion similar to the high temperature expansion of the
Ising model or the Nienhuis O(n) model42,43 provides the
connection to the loop model.

The required lattice field theory includes matter fields,
which are real n-component vectors living on the sites i of
the square lattice,

�Si = (
S1

i , . . . ,S
n
i

)
, �S2

i = n, (5)

Goldstone Short loops 2Short loops 1

q

FIG. 5. (Color online) Schematic phase diagram for the incom-
pletely packed loop model with crossings as a function of q (for fixed
n ∼ 1, α ∼ 1/3, x ∼ 1).

and gauge fields σij = ±1 living on the links. The partition
function is

Z = Tr
∏
F

⎡⎣(1 − q) + q
∏

〈ij〉∈F

σij

⎤⎦∏
〈ij〉

(1 + xσij
�Si · �Sj ).

(6)

Tr denotes sums and integrals over all degrees of freedom (σ
and �S), normalized so Tr 1 = 1, and F denotes a face (square)
of the lattice. The Z2 gauge symmetry of this model is

�Si → χi
�Si, σij → χiχjσij (for χi = ±1). (7)

Above, we have written the Boltzmann weight for the gauge
field in a form suitable for the graphical expansion. Later, we
will rewrite it in a more conventional form.

The graphical expansion begins by expanding out the
product over faces F and representing the terms by a simple
graphical rule (a face is coloured black if the q term is
chosen, and white if the 1 − q term is chosen). This generates
percolation configurations P ,

Z =
∑
P

qB (1 − q)W Tr

(∏
l∈∂P

σl

)∏
〈ij〉

(1 + xσij
�Si · �Sj ),

(8)

where ∂P denotes the set of links lying on percolation cluster
boundaries.

Next we expand out the product over links. Only one term
in this expansion survives after summing over σij , namely that
in which the factors of �Si · �Sj lie on the cluster boundaries:

Z =
∑
P

qB(1 − q)Wx length Tr
∏

〈ij〉∈∂P
Sa

i Sa
j . (9)

“Length” refers to the total length of cluster boundaries. We
have written the spin index a explicitly in the inner product
�Si · �Sj to emphasize that each link on a cluster boundary
now carries an index a = 1, . . . ,n. Finally, we perform the
remaining integrals over the vectors �S, using

Tr Sa
i Sb

i = δab,

Tr Sa
i Sb

i S
c
i S

d
i = n

n + 2
(δabδcd + δacδbd + δadδbc). (10)

The three terms in the second formula correspond to the three
ways of connecting up the links in pairs at a node for which
all four links are in ∂P . Expanding out all such brackets gives
3N terms, each associated with a loop configuration C. For
a given C, each loop comes with a product of δ functions
forcing the indices a to be equal for all links on that loop. We
may therefore think of each loop as carrying a “color” index
ranging from 1, . . . ,n. Summing over the possible colours for
each loop yields a fugacity n:

Z =
∑
C

αNqB (1 − q)Wx lengthnno. loops. (11)

The parameter α is n/(n + 2) as a consequence of Eq. (10). It
can be varied by exchanging the hard constraint �S2 = n for a
potential for �S2.
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FIG. 6. (Color online) The watermelon correlator G4(x,y).

B. Correlation functions and the replica trick

We have seen that a graphical expansion of the lattice
gauge theory (6) generates the configurations of the loop
model with the right weights. The correspondence also extends
trivially to correlation functions. Switching temporarily to
a continuum notation, the basic ones are the watermelon
correlation functions Gk(x,y), which give the probability that
k distinct strands of loop connect x and y. For example, on the
lattice G2 can be taken to be the probability that two links lie
on the same loop, and G4 the probability that two nodes are
connected by four strands.

In the continuum, the correlator Gk is the two-point function
of the “k-leg” operator Ok:

Ok(x) ∝ S1(x)S2(x) · · · Sk(x). (12)

Gk vanishes for odd k, either by gauge invariance or equiva-
lently because two regions cannot be joined by an odd number
of strands (for example, if two sites lie on the same loop they
are joined by two strands). We can visualize the above operator,
when inserted into a correlation function, as emitting k strands
with color indices ranging from 1 to k (see Fig 6).

We see that in order to write down the correlator Gk , we
require the number n of spin components to be at least k. This
presents a problem if the model we wish to study has a loop
fugacity n < k: for the model of most interest to us with n = 1,
it does not allow us to write down any of the above correlation
functions! Fortunately, this problem can be resolved in two
standard ways.

Firstly, we can treat n → 1 as a replica-like limit, so that

Gk = lim
n→1

〈Ok(x)Ok(y)〉 . (13)

This trick may also be used for other values of the loop fugacity,
integer or noninteger. For integer n, there is a more rigorous
alternative, which is to use supersymmetry.2,3 This allows us to
increase the number of components of �S without increasing the
loop fugacity, by making some of the components fermionic.
For our purposes, the two approaches are equivalent, so for
presentational simplicity we will use the replica language. The
required supersymmetric construction is explained in Refs. 10
and 12: in outline, �S is replaced by a vector �� with both
bosonic and fermionic components,

�� = (�S,�η,�ξ ), �S2 + 2�η · �ξ = n, (14)

where �S has n + 2m components and �η, �ξ each have m

anticommuting components. The loop fugacity determines n,

but m is arbitrary—supersymmetry ensures that the partition
function and its loop representation do not depend on it. Thus
m may be chosen large enough for any desired correlator to be
constructed.

C. Z2 vortices and Z2 fluxes

The local gauge-invariant degree of freedom in the lattice
gauge theory (6) is a nematic vector, obtained by identifying
�S with −�S. It can be encoded in a real symmetric matrix,

Qab = SaSb − δab, tr Q = 0, (15)

which will be the relevant degree of freedom on long length
scales. Q lives on real projective space,RP n−1; since this man-
ifold has nontrivial fundamental group,44 the Q configuration
can have vortex defects which we now discuss.

RP 1 is equivalent to the circle, so at the special value
n = 2 vortices are standard XY vortices and are characterized
by an integer topological charge. However, π1(RP n−1) = Z2

when n > 2, so in general the vortex charge is defined only
modulo two. In the replica limit—which requires analytic
continuation of formulas defined for arbitrarily large n to
n < 2—the vortices should again be viewed as Z2 vortices.
[This may be clearer in the supersymmetric formulation of
the n = 1 loop model, Eq. (14), where the bosonic part of the
superspin lives on RP 2m for m � 1, which has fundamental
group Z2.]

For a more concrete picture, we return to �S and σ . Let
σl = +1 on all links l, except for a semi-infinite string of
parallel links ending at a plaquette F (see Fig. 7). The flux

∏
σ

is then −1 only on F . The spin configurations which maximize
the Boltzmann weight vary smoothly except at the string,
across which �S changes sign. This indicates the presence of a
Z2 vortex located at F . (This connection between vortices in
nematics and Z2 fluxes is standard.45)

Since vortices are associated with plaquettes of nontrivial
flux, we can assign a vortex number to each plaquette which is

1

FIG. 7. (Color online) Plaquettes with gauge flux
∏

σ = −1
(shaded in pink) are endpoints of strings of links with σ = −1
(marked in bold/blue), across which �S changes sign. In terms of
the nematic order parameter, which is obtained by identifying �S with
−�S and which lives on RP n−1, these plaquettes are vortices. (This is
of course a caricature, neglecting fluctuations.)
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+1 if
∏

σ = −1 and 0 if
∏

σ = 1. The gauge field part of the
Boltzmann weight can then be written in terms of the number
Nv of vortices:∏

F

[
(1 − q) + q

∏
〈ij〉∈F

σij

]
= (1 − 2q)Nv . (16)

We see that the factor (1 − 2q) is simply a fugacity for vortices,
and that the exchange q ↔ 1 − q corresponds to changing the
sign of the vortex fugacity.

This sign distinguishes the two short-loop phases in Fig. 5
from each other. In Ref. 20, Z2 vortices play an analogous role
in a σ model for localization, with the sign of the vortex
fugacity distinguishing two insulating phases. (The vortex
fugacity is also important for the critical behavior20—see
Sec. V C.)

Let us rewrite the Boltzmann weight for σ in the conven-
tional form for Z2 gauge theory. In the absence of a boundary,
Eq. (6) may be written as

Z ∝ Tr exp

(
κ

∑
F

∏
〈ij〉∈F

σij

) ∏
〈ij〉

(1 + x σij
�Si · �Sj ), (17)

where the gauge field stiffness is

κ = 1

2
ln

1

|1 − 2q| . (18)

In the presence of a boundary, denoted ∂ , the Boltzmann weight
acquires an additional term when q > 1/2:∏

〈ij〉∈∂

σij . (19)

This term effects the sign change in the vortex fugacity. It is
equal to (−)Nstrings , where Nstrings is the number of σ = −1
strings that terminate on the boundary. Since this number
is equal to the number of vortices in the interior modulo 2,
(−)Nstrings = (−)Nv .

We see that the sign of the vortex fugacity does not affect
bulk properties. Instead, it determines the presence or absence
of an edge loop.

Finally, consider the point q = 1/2. The vortex fugacity
vanishes here [see Eq. (16)]; however, the universal properties
of this point do not differ from those in the rest of the Goldstone
phase (see Fig. 5). This is because vortices are anyway RG
irrelevant in that phase. We discuss this in the next section in
terms of a σ model for Q.

The suppression of vortices (either microscopically or in
the infrared) means that in the Goldstone phase this σ model
has a correspondence with the simpler O(n) σ model. In the
IPLC at q = 1/2 this correspondence holds microscopically,
since the gauge field stiffness diverges there [see Eq. (18)]. This
enforces

∏
σ = 1 for every face F , giving σij = χiχj (so long

as the lattice lives on a simply-connected manifold46):

Z ∝
∑
{χ}

TrS
∏
〈ij〉

[1 + x (χi
�Si) · (χj

�Sj )]. (20)

Changing variables to �S ′ = χ �S eliminates the gauge degrees
of freedom from the Boltzmann weight, leaving a lattice O(n)
model. (Non-gauge-invariant correlators pick up factors of χ ,
ensuring that they vanish,47 however, on summing over χ .) In

the regime we consider, i.e., at sufficiently large x, this O(n)
model is expected to be described by the O(n) σ model in its
Goldstone phase.

D. Continuum description

The naive continuum description of the lattice field the-
ory (6) is a σ model for Q,

L = K

4
tr (∇Q)2, (21)

together with the constraint on Q following from its definition
in terms of �S. To conform with convention, we use the
normalization �S2 = 1 in the continuum [rather than Eq. (5)];
then Qab = SaSb − 1

n
δab.

The fugacity for vortices is hidden in the ultraviolet
regularization of the σ model (21). We will restore this
parameter explicitly when we consider RG in the vicinity of
the critical point (see Sec. V C), where vortices are crucial.

However, since the classical free energy of a pair of vortex
defects is proportional to the stiffness K , they are suppressed at
large K (as in the XY model at large stiffness). In the Goldstone
phase, which we now discuss, K flows to large values under
coarse-graining, and vortices are an irrelevant perturbation.

Nonsingular (i.e., vortex-free) configurations of Q are
equivalent to nonsingular configurations of �S (on a manifold
of trivial topology, and up to a global sign ambiguity). Thus
for a perturbative treatment at large K , the RP n−1 σ model
can be replaced with the more familiar O(n) σ model, argued
previously10 to apply to the CPLC at q = 1/2:

L = K

2
(∇ �S)2, �S2 = 1. (22)

The perturbative beta function for K changes sign at n =
2:10,53

dK

d ln L
= 2 − n

2π

(
1 + 1

2πK
+ · · ·

)
. (23)

When n > 2, the stiffness flows to zero under RG and the σ

model has only a disordered phase; thus the loop model is not
expected to be critical. At n = 2, the σ model is the XY model,
and we have in addition the quasi-long-range-ordered phase
in which K does not flow. By the Mermin-Wagner theorem,
these are the only possibilities when n � 2.

However, in the replica limit the Mermin-Wagner theorem
does not apply,10 and Eq. (23) shows that for n < 2 the stiffness
K flows to infinity in the infrared. This is the Goldstone phase.
At the infrared fixed point, the n − 1 Goldstone modes are free
fields, so the central charge is c = n − 1.10 We now discuss
the extraction of a continuum description for the CPLC, the
appearance of a nontrivial vortex fugacity in that model, and
the extra symmetry on the boundaries of the phase diagram.

E. Lattice field theory for the CPLC

The CPLC can again be mapped to a lattice spin model with
a Z2 gauge symmetry, though with a less conventional form,
and as long as we are in the interior of the phase diagram
(see Fig. 3) the continuum description is again the RP n−1

model. The following construction is similar to that described
in Ref. 13, so we give only an outline.
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We again introduce fixed-length spins �Sl (�S2
l = n) but for

the CPLC they live on the links l of the square lattice. The
Boltzmann weight involves four-spin interactions between the
spins surrounding each node i:

Z = Tr exp

(
−

∑
nodes i

Ei

)
. (24)

In order to define Ei , we denote the links surrounding i by
1,2,3,4, with the weight p pairing being 1 with 3 and 2
with 4, and the weight (1 − p)q pairing being 1 with 2 and 3
with 4:

exp (−Ei) = p(�S1 · �S3)(�S2 · �S4) + (1 − p)q(�S1 · �S2)(�S3 · �S4)

+ (1 − p)(1 − q)(�S1 · �S4)(�S2 · �S3).

These three terms are in correspondence with the three
possibilities in Fig. 2, and a graphical expansion of the above
partition function gives the sum over loop configurations
defining the CPLC [see Eq. (2)].

The above Boltzmann weight again has a Z2 gauge
symmetry: on changing the sign of the spin on the link ij , both
e−Ei and e−Ej change sign but the overall Boltzmann weight
is unchanged. The naive continuum limit is again the RP n−1

σ model described above, and the universal properties are
expected to be identical with those of the IPLC. In Sec. III G,
we will argue that the effective fugacity forZ2 vortices changes
sign on the line q = 1/2, just as for the IPLC.

The lattice field theory (24) and the continuum limit (21)
require a couple of comments. Firstly, the RP n−1 description
does not apply on the boundaries of the phase diagram; here the
model has a higher symmetry, which is not taken into account
in (24)—see next section. Secondly, note that exp(−Ei) is not
always positive. This is not an obstacle to taking the continuum
limit—in fact, it is an important feature of the problem (note
that non-real lattice actions are not necessarily pathological,
and are the norm in quantum problems). We have seen that
different signs for the vortex fugacity distinguish the two short
loop phases in the IPLC, and we will see that the same is
true for the CPLC. (The possibility of nonpositive Boltzmann
weights can be important even in the Goldstone phase, see
Sec. IV B).

In the model without crossings, discussed below, it is again
crucial that the lattice Boltzmann weight is not positive since
the continuum Lagrangian contains an imaginary θ term.9 We
now briefly review this formulation and discuss its implications
for the phase diagram of the CPLC.

F. Phase diagram boundaries and CP n−1

As mentioned in Sec. II A, the CPLC has an additional
symmetry9,11 on the boundaries of the phase diagram (when
p = 0, or q = 0, or q = 1). On each of the three boundaries
of the phase diagram, the links of the lattice can be assigned
fixed orientations, with two incoming and two outgoing links
at each node, such that the allowed pairings are always between
an incoming and an outgoing link. This orients all the loops.
The necessary choice of link orientations differs for each of
the components of the boundary, as mentioned in Sec. II A.
Then instead of constructing a lattice field theory using real
spins �S, we may take complex spins �z. The inner products

�Sl · �Sl′ in the Boltzmann weight for a given node are replaced
with �z †

l · �zl′ , where l is the outgoing link and l′ the incoming
link. One way of understanding the appearance of complex
fields is to view the loops as world lines of quantum particles
in (1 + 1)-dimensional space-time: the fact that we are now
dealing with oriented world lines means that these particles
carry a U (1) charge.

The SO(n) global and Z2 gauge symmetry in the interior
of the CPLC phase diagram are promoted to an SU(n) global
and U (1) gauge symmetry on its boundary. The appropriate
field theory is a σ model for a field on complex projective
space (CP n−1), with a θ term.9,11 Complex projective space is
the manifold of unit vectors �z modulo the gauge equivalence
�z ∼ eiφ�z; again, a nonredundant parametrization is provided
by a traceless matrix Q̃, which is now Hermitian rather than
real symmetric (Q̃ab = zaz∗b − δab/n). The Lagrangian for
the CP n−1 σ model is

LCP n−1 = K

4
tr (∇Q̃)2 + θ

2π
εμν tr Q̃∇μQ̃∇νQ̃. (25)

The field Q̃ can sustain skyrmion textures, since π2(CP n−1) =
Z. The θ term weights skyrmions by a factor eiθ and
antiskyrmions by e−iθ . In the case n = 2, the above field
theory is equivalent to the O(3) σ model [the O(3) spin is
equal to tr �σ Q̃, where �σ is a vector of Pauli matrices]—for
a pedagogical discussion of the θ term in this case see for
example Ref. 49.

Bulk properties of the CP n−1 σ model depend on θ only
modulo 2π . For n � 2, there is a critical point at θ = π

mod 2π ; other values of θ are massive (flowing under RG
to θ = 0mod2π , K = 0). The critical point at θ = π is the
critical point of the loop model at p = 0, q = 1/2.9,11 Close
to this point the bare value of θ varies as

(θ − π ) ∝ (q − 1/2). (26)

For our present purposes the CP n−1 description tells us
two things. Firstly, it implies that the left- and right-hand
boundaries of the phase diagram in Fig. 3, which correspond
to the Manhattan lattice loop model, are localized for all p as
previously expected.27,37 Here, θ can be shown50 to be equal to
zero mod 2π , so that the σ model is in the disordered phase.
However the correlation length ξ , and the typical loop size,
diverge exponentially as p → 1,

ξ ∼ (1 − p)−2econst./(1−p) (when q = 0,1).

This follows from the beta function for the CP n−1 model48

and the fact that the bare stiffness is of order (1 − p)−1. It is
the behavior of ξ for noncritical localization in class C,35 to
which the Manhattan lattice loop model is related.27

Secondly, the CP n−1 description of the model without
crossings gives a way of seeing that the vortex fugacity in the
RP n−1 description of the CPLC changes sign on the central
line q = 1/2, just as it does at the central point q = 1/2 in the
IPLC. We now discuss this issue.

G. Vortex fugacity and the θ term for CP n−1

A natural way to approach the field theory for the CPLC,
at least when the weight p for crossings is small, is by
perturbing the field theory for the model without crossings.
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In the CP n−1 language, making the weight p for crossings
nonzero corresponds to adding a small mass for the imaginary
part of Q̃, i.e., δL ∝ −p tr (Im Q̃)2.12 This anisotropy favors
real Q̃ and leads in the infrared to an order parameter living
on RP n−1.

If we simply set Q̃ to be real, the kinetic term for LCP n−1

becomes that of LRP n−1 , and the θ term vanishes. Thus we
regain the RP n−1 σ model Lagrangian (21) for the loop model
with crossings.

However, this does not mean the θ term plays no role: it
vanishes only if we neglect RP n−1 vortices. In the presence
of a vortex, we must allow the imaginary part of Q̃ to become
nonzero in the vortex core, in order to retain continuity of Q̃

and the σ model constraint. There is then a contribution from
the θ term there. This mechanism also pertains to quantum
magnets described by anisotropic σ models in both 1 + 1 and
2 + 1 dimensions.51,52

The vortex core corresponds either to a half-skyrmion
or to an anti-half-skyrmion, depending on the sign of the
imaginary components of Q̃. [This can easily be visualized
for n = 2, when the perturbed CP 1 model is equivalent
to the O(3) σ model with easy-plane anisotropy: a half-
skyrmion corresponds to a vortex in the easy plane, with the
O(3) spin perpendicular to the easy plane in the core.] The
effective vortex fugacity V is obtained by summing over both
possibilities, half-skyrmion and anti-half-skyrmion, leading to

V ∝ eiθ/2 + e−iθ/2.

Since at p = 0 we have (θ − π ) ∼ (q − 1/2), the vortex
fugacity in the RP n−1 description of the CPLC changes sign
at q = 1/2, just as the vortex fugacity changes sign at q = 1/2
in the IPLC.

IV. THE GOLDSTONE PHASE

The Goldstone phase shows subtle universal behavior,
different from that seen in loop models without crossings,
which can however be understood in detail. Within this phase
we can work with the O(n) σ model,10 as discussed in
Sec. III D.

For most purposes the Lagrangian (22) will be sufficient, but
to calculate the length distribution in Sec. IV C we will need to
add a small perturbation, γ , which breaks the symmetry from
O(n) to O(n − 1) × Z2. Writing

�S = (S1,�S⊥), (27)

where �S⊥ is an (n − 1)-component vector, we take

L = K

2
[(∇ �S)2 + γ S2

⊥], �S2 = 1. (28)

We briefly recall one-loop RG results for this model,53,56 which
may be obtained easily using the background field method.
S(x) is decomposed into a slowly-varying field S̃(x) and
rapidly varying fluctuations φ(x):

�S(x) = �̃S(x)
√

1 − φ(x)2 +
n−1∑
β=1

φβ(x)�eβ(x). (29)

The eβ(x), β = 1, . . . ,n − 1, are a set of vectors orthogonal
to S̃(x) (there is a gauge freedom in this choice). If the initial

UV cutoff is �, so that S involves modes with wave number
|k| < �, then the modes in S̃ are limited to |k| < �̃ for the
new cutoff �̃ < �, and φ contains modes in the momentum
shell |k| ∈ (�̃,�). Integrating φ out, and working to leading
order in K−1 and γ , we obtain the RG equations

dK

dτ
= 2 − n

2π
,

dγ

dτ
=

(
2 − 1

πK

)
γ. (30)

Here, τ is the RG time; after time τ , the new cutoff is e−τ�.
Again, the important point is that K flows to large values in
the infrared if n < 2.10

Note that in two dimensions, the higher-order anisotropies
(higher powers of S2

⊥) are as relevant as S2
⊥ at tree level, but

less relevant at one-loop order. They will be important for the
polymer phase diagram discussed in Sec. VII.

We now calculate a range of observables both analytically
and numerically; details of the numerical procedure are given
in Sec. VI. As we discuss in Sec. VII, incompatible hypotheses
about the universal behavior at the point n = 1, p = 1/3, q =
1/2 have previously been put forward, which is one reason for
making a careful comparison of numerics and theory in the
Goldstone phase.

A. Correlation functions

The watermelon correlation function Gk(r) may be ex-
pressed as the two-point function of the operator S1 . . . Sk(x)
(see Sec. III B). Including the UV cutoff � and the σ

model stiffness K explicitly in the argument of Gk , a simple
calculation following53 gives

Gk(r�,K) = Gk

(
1,K + 2−n

2π
ln �r

)(
1 + 2−n

2πK
ln �r

)αk
, (31)

where the exponent in the denominator depends on k and on
the loop fugacity n:

αk = k (k + n − 2)

2 − n
. (32)

The correlation function in the numerator of Eq. (31), which
is evaluated at a separation of the order of the new UV cutoff,
tends to a constant for large r . Thus the asymptotic behavior
of the watermelon correlation functions Gk(r) is given by a
universal power of ln r:

Gk(r) = Ck

(ln r/r0)αk
, r0 = �−1e− 2πK

2−n , (33)

with nonuniversal Ck , r0.
It is interesting to note that although the stiffness K flows to

infinity in the Goldstone phase—which we would usually think
of as implying long range order—all the correlation functions
G2l decay to zero at large distances for n > 0. Correlators Gk

with odd k have no meaning in the RP n−1 σ model or in the
CPLC but can be defined in loop models described by the
O(n) σ model without a Z2 gauge symmetry; such models
allow operators that insert dangling ends. For n = 1, G1 tends
to a constant, indicating that the entropic force between the
ends of an open strand inserted into such a soup of closed
loops vanishes at large separations.

We may contrast this with the case n = 0, which describes
the universality class of the dense polymer with crossings10—a
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FIG. 8. (Color online) Two- and four-leg watermelon correlation
functions G2 and G4 in the Goldstone phase. The fits are to the form
Gk = C̃k(ln L/rk)α̃k (k = 2,4), see text.

single loop whose length is comparable with the number of
lattice sites. Here, G2(x) is a constant at large separations,
in consequence of this fact. On the other hand G1(x) has a
negative exponent α1, indicating that if the polymer is an open
strand the two ends suffer a weak entropic repulsion.

We might have expected the logarithmic form of Eq. (33) to
prevent us from seeing the universal exponents αk numerically,
but this is not the case. Figure 8 shows G2(L/2) and G4(L/2)
for L × L systems with periodic boundary conditions, with L

ranging up to L = 106 for G2 and L = 104 for G4 (see Sec. VI
for further details). Simulations are at p = q = 1/2. We fit G2

and G4 to the form Gk = C̃k(ln L/rk)−α̃k , leading to exponents
consistent with Eq. (32):

α̃2 = 1.9(1), α̃4 = 12.5(10). (34)

We have ln r2 = −15.4(14), ln r4 = −18(2), consistent with
the fact that r0 is shared between different Gk in Eq. (33).

B. Spanning number

The logarithmic RG flow of the σ model stiffness K can be
seen empirically: this stiffness is directly related to the mean
“spanning number” for an L × L cylinder on which curves are
allowed to terminate on the boundary. This is the number ns

of curves that traverse the cylinder from one boundary to the
other. Note that ns must be even if L is even and odd if L is
odd.

To calculate ns , the correspondence of Sec. III E between
the loop model and a spin model must be extended to the case
with dangling boundary links. We simply take the spins on the
dangling links to be fixed, with

�Stop√
n

= (cos θ, sin θ,0, . . . ,0),
�Sbottom√

n
= (1,0, . . . ,0)

on the top and bottom boundaries (above we temporarily revert
to the lattice normalization of �S). The graphical expansion then
goes through as before, except that spanning curves acquire an
additional weight cos θ .54

Denoting the partition function with the above boundary
conditions by Z(θ ), we therefore have

〈(cos θ )ns 〉 = Z(θ )

Z(0)
. (35)

In the Goldstone phase, the stiffness flows to large values
in the infrared, so to calculate the right-hand side we need to
consider only classical solutions with the appropriate boundary
conditions. Letting x be the coordinate along the cylinder, these
are

�S = ±(cos φ(x), sin φ(x),0, . . . ,0), φ(x) = x(θ + πm)

L
.

Both odd and even values of m are allowed—the boundary
condition is satisfied only up to a sign—but when L and m are
both odd the Boltzmann weight acquires an additional minus
sign, as can be seen from the lattice partition function.55

The action of these solutions is calculated using the
renormalized stiffness K̃ on scale L, leading to

〈(cos θ )ns 〉 �
∑
m

(−)mL exp

[
− K̃

2
(θ − πm)2

]
. (36)

For a given value of θ , only one or two values of m are not
exponentially small in K̃ .

To extract low-order cumulants for ns , we set cos θ = e−x

and expand in x. Since expression (36) is dominated by the
m = 0 term for θ ∼ 0, the difference between even and odd L

is not seen. The lth cumulant is given by〈〈
nl

s

〉〉 � − K̃

2
∂l
y(arccos ey)2

∣∣
y=0.

In particular, the mean spanning number is given by the
renormalized stiffness K̃ , so

〈ns〉 ∼ 2 − n

2π
ln

L

L0
. (37)

This logarithmic flow (for n = 1) is seen in Fig. 9 for
two points in the Goldstone phase. We have fitted the data
for large sizes to the slightly more accurate form 〈ns〉 �

1
2π

(ln L/L0 + ln ln L/L0), which comes from including the
subleading O(1/K) term in the beta function for the stiff-
ness (23). In the upper inset to Fig. 9, we plot the numerical
value of the slope d 〈ns〉 /d ln L, which is seen to converge
slowly to 1/2π for large L.

Since all cumulants are proportional to K̃ , their ratios are
universal numbers that we can compare with data:〈〈

n2
s

〉〉 = 2

3
〈ns〉,

〈〈
n3

s

〉〉 = 4

15
〈ns〉 .

These relations are obeyed to good accuracy—plotting the two
cumulants above against 〈ns〉 for p = 1/2 and various L gives
straight lines with slopes 0.668(5) and 0.274(18), respectively
(data not shown). Note that the scaling of the cumulants means
that when 〈ns〉 becomes very large the probability distribution
Pns

for the spanning number becomes Gaussian (away from
its tails).

To extract the probability distribution for small integer ns ,
we set cos θ = ε in Eq. (36),∑

ns

Pns
εns � e− K̃

2 (arccos ε)2 + (−)Le− K̃
2 (arccos ε−π)2

. (38)
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FIG. 9. (Color online) The logarithmic increase of the mean
spanning number 〈ns〉 with system size in the Goldstone phase. Main
panel: p = 1/2, q = 1/2; lower inset: p = 1/3, q = 1/2. Fits are to

1
2π

(ln L/L0 + ln ln L/L0) with ln L0 � −13.78, − 8.06 for p = 1/2
and 1/3, respectively. Upper inset shows the numerical estimates for
the slopes d 〈ns〉 /d ln L plotted against ln L—they are expected to
converge to 1/2π (horizontal line).

For even circumference, this gives for example

P0 = 2e−π2〈ns 〉/8, P2 = π2 〈ns〉2 − 4〈ns〉
4

e−π2〈ns 〉/8.

In Fig. 10, the expressions for P0, . . . ,P8 are compared with
data (at p = q = 1/2 and L in the range 102–106) showing
remarkable agreement. There is no free parameter in these fits.

C. Length distribution

To calculate the length distribution for a loop, we must
consider the RG flow away from the Goldstone phase induced
by a symmetry-breaking perturbation. To summarize the result
of the following calculation, which is for n = 1, the probability
for a loop randomly chosen from the soup to have length l falls
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FIG. 10. (Color online) Probabilities Pns
of ns spanning curves,

as a function of 〈ns〉 (data for p = q = 1/2). Curves are the analytical
expressions from Eq. (38), with K̃ = 〈ns〉.
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FIG. 11. (Color online) The probability distribution P (l) for the
length of a loop in the Goldstone phase. We have multiplied by
l2 to remove the expected power-law part, leaving the logarithmic
dependence. The fit is as described in the text, with ln l0 = −33.7(8).
Data are for p = q = 1/2. (Inset) Two ways of defining the effective
finite-size exponent value τeff (see text). Green squares are the data
from P (l), together with the fit (dashed line) implied by Eq. (39)
(ln l0 = −32.7). Red circles are the data from �X(l).

off as

P (l) ∝ 1

l2 ln2(l/ l0)
(39)

for large l.
Figure 11 shows the distribution obtained numerically for

loops of length up to l ∼ 1010. We multiply P (l) by l2 in order
to expose the logarithmic correction, which we fit to the form
a(ln l/ l0)−c. We obtain

c = 2.03(3) (40)

in striking agreement with Eq. (39). This value is also in
agreement with numerical results for trails,16,17 as we will
discuss shortly.

Note that P (l) differs by a factor of l from the length
distribution for the loop passing through a fixed link,

Pfixed link(l) ∝ l P (l), (41)

simply because longer loops visit more links. Thus 〈l〉
evaluated using P (l) is finite, as for Eq. (39).

Let g(x) denote the generating function for the length of a
loop randomly chosen from the soup (the “marked” loop):

g(x) =
∑

l

P (l)xl = 〈x length of marked loop〉. (42)

In order to extract g(x) we use the trick of Ref. 57, splitting the
components of �S, or equivalently the loop colours, into two
groups. For simplicity, we will consider only the loop model at
fugacity one, though it would be easy to generalize. We split �S
as in Eq. (27), yielding an (n − 1)-component vector �S⊥. In the
graphical expansion of a lattice model, say of the CPLC (the
IPLC would be similar), we correspondingly split the loops
into unmarked loops, whose color index is equal to one, and
marked loops, whose color index runs over 2, . . . ,n. After
summing over loop colors, a configuration with N marked
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loops has a weight (n − 1)N , and expanding the partition
function in (n − 1) is equivalent to expanding in the number
of marked loops in the configuration. Writing n′ = n − 1,

Z(n′) =
∑
C

WC + n′ ∑
C; one

marked loop

WC + · · · . (43)

Here, WC is the weight of a configuration C in the CPLC at
n = 1 [see Eq. (1)]. The first term on the right-hand side is
equal to one.

Next, we wish to modify the weight of a configuration by
the factor xl , where l is the total length of marked loops. This
is easily done: all the inner products �Sl · �Sl′ appearing in the
node factors e−Ei (see Sec. III E) are replaced according to

�Sl · �Sl′ −→ S1
l S

1
l′ + x �Sl⊥ · �Sl′⊥. (44)

In this way, every unit length of marked loop picks up a factor
of x, and the graphical expansion yields

Z(n′,x) = 1 + n′ ∑
C; one

marked loop

WC xl + · · · . (45)

Differentiating with respect to n′ gives the required generating
function:

g(x) = ∂n′Z(n′,x)|n′=0

∂n′Z(n′,1)|n′=0
. (46)

In terms of the free energy density f (n′,x),

Z(n′,x) = e−L2f (n′,x), f (n′,x) = f0 + n′f1(x) + · · · ,

this is g(x) = f1(x)/f1(1). In order to calculate the length
distribution for large values of l, we require the free energy for
x � 1 and to first order in n′.

In the continuum description, the symmetry-breaking per-
turbation x �= 1 leads to an infinite number of relevant pertur-
bations of which the most relevant is that in Eq. (28). Setting
x = exp(−μ) with μ � 1, we have γ ∼ μ, the constant of
proportionality being nonuniversal.

Beginning with the Lagrangian (28), we integrate out
high-frequency modes, retaining their contribution to the free
energy, up to an RG time τ∗. This gives

f (K,γ ) = f <(K,γ ) + f >(K,γ ), (47)

where we have split up the contribution from the modes that
have been integrated out,

f <(K,γ ) = n′

4π

∫ τ∗

0

dτ

e2τ
[ln K(τ ) + γ (τ )] − n′A

[the nonuniversal constant A ensures f < 0, as required by
Eq. (45)] and those remaining:

f >(K,γ ) = e−2τ∗f (K(τ∗),γ (τ∗)).

The solutions to the RG equations (30) are

K(τ ) = K + τ

2π
, γ (τ ) = γ e2τ

(
2πK

2πK + τ

)2

. (48)

Stopping the RG when γ∗ becomes of order one, f > may be
approximated as the free energy of a massive theory in which

�S executes only small fluctuations around �S = (1,0, . . . ,0):

L = K∗
2

[(∇ �S⊥)2 + γ∗ �S2
⊥ + O(�S4

⊥, �S2
⊥/K∗)]. (49)

[The O(�S2
⊥/K∗) term comes from the σ model measure.]

However, the dominant terms in f come from f <. To the
order we require

f (K,γ ) = −B + γ

(
2πK − 8π2K2

ln 1/γ
+ · · ·

)
(50)

(B is a constant). We thus have the form of the generating
function at small μ:

〈e−μl〉 = 1 − C μ

(
1 − 4πK

ln 1/μ
+ · · ·

)
. (51)

The constants C and K are nonuniversal, and the fact that the
leading μ dependence is linear in μ is simply a consequence of
the fact that 〈l〉 is finite. However, we may infer the behavior of
P (l) at large l from the form of the nonanalytic term, yielding
Eq. (39).

Previous work on self-avoiding trails,16,17 which map to
the n = 1 loop model at p = 1/3, q = 1/2 (see Sec. VII),
considered a probability Q(l) that may be written

Q(l) =
∫ ∞

l

Pfixed link(l′)dl′. (52)

Viewing the loops as the trajectories of walkers, Q(l) is
the probability that a walker has not yet returned to its
starting point after l steps. Equations (39), (41), and (52) give
Q(l) ∼ 1/ ln l. This agrees with the scaling found numerically
in Refs. 16 and 17.

For a generic critical loop ensemble, P (l) ∼ l−τ for some
τ � 2, and the mean size �X of a loop scales with its length
as �X ∼ l1/df . The fractal dimension df is related to τ by

τ = 2/df + 1. (53)

In the Goldstone phase, τ = deff = 2, with logarithmic cor-
rections. We may define finite size estimates of τ either using
d ln P/d ln l or using d ln �X/d ln l and the scaling relation.
These are plotted in the inset to Fig. 11; both are expected to
converge to two, but with different logarithmic corrections.

Here, �X is defined as the mean extent of a loop in one
of the coordinate directions. A similar quantity—the mean
square end to end distance of an open trail in the ISAT model—
was considered numerically by Owczarek and Prellberg,16 and
logarithmic corrections to Brownian scaling were found. It
would be interesting to calculate these quantities analytically.

V. THE CRITICAL LINES

The critical lines separate the Goldstone phase from phases
with short loops. In the language of the RP n−1 model, they
correspond to order-disorder transitions at which Z2 vortices
are set free. In this section we give numerically determined
critical exponents for this transition at n = 1 and briefly
consider an approximate RG treatment of vortices.19,20
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FIG. 12. (Color online) The mean spanning number ns as a
function of q for p = 1/2 and various system sizes, showing a
crossing at the transition. (Inset) Data collapsed according to Eqs. (55)
and (56).

A. Critical spanning number, ν, and yirr

At the critical point, the dimensionless quantity ns (defined
in Sec. IV B) is expected to take a universal value. This is
manifested in the crossings of the various curves in Fig. 12,
which shows the spanning number ns as a function of q for
p = 1/2 and for cylinders of various sizes. Figure 13 shows the
same quantity, but in the immediate vicinity of the critical point
and including much larger system sizes (up to L = 128 000).
The main panel of Fig. 14 shows data for p = 0.3; here
finite size effects—visible in the drift in crossings—are much
stronger.

The basic finite size scaling form for ns is

ns = h(x), x = L1/νδq, (54)

where δq = q − qc. We take into account also nonlinear
dependence of the scaling variable x on δq, replacing the
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FIG. 13. (Color online) The behavior of the mean spanning
number at p = 1/2 very close to the critical point. Note the larger
system sizes compared to Fig. 12. (Inset) Finite size corrections to the
spanning number at the critical point (note log-log scale) and linear
fit leading to estimate of yirr.
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FIG. 14. (Color online) Spanning number at p = 0.3 (close-up of
the critical point) showing larger drift in crossing points than at p =
1/2 (however, note different scale). (Inset) The vertical coordinate n∗

s

is the crossing in the spanning number between consecutive system
sizes and L∗ is the geometrical mean of the sizes. Red and black dots
correspond to p = 1/2 and p = 0.3, respectively. The horizontal line
is the estimated asymptotic value (57).

second equation above with

x = L1/νδq(1 + β1δq + β2δq
2), (55)

and finite size corrections with (negative) irrelevant exponent
yirr in the form

ns = h(x)[1 + Lyirr (β3 + β4x)]. (56)

A reasonable scaling collapse may be obtained by adjusting the
values of qc, βi , ν, and yirr. To find these values we fit ns to the
form (56), constructing h(x) using B-splines with 22 degrees
of freedom. The result for p = 1/2 is shown in the inset to
Fig. 12. What is plotted is nF

s = ns/ [1 + Lyirr (β3 + β4x)],
which should be equal to the scaling function h(x) by Eq. (56).

Our estimates of the correlation length exponent and
(universal) critical spanning number, obtained from the data at
p = 1/2, are

ν = 2.745(19), ncrit
s = 2.035(10). (57)

We cannot constrain the irrelevant exponent very precisely.
From the full fit, we obtain

yirr ∈ −(0.2,0.35). (58)

A direct estimate from the finite size corrections to the
spanning number at the critical point gives a result compatible
with this: the fit in the inset to Fig. 13 corresponds to
yirr = −0.272.

Results for p = 0.3 are consistent with our expectation that
all points on the critical line are in the same universality class,
but error bars are larger because of larger finite size effects
and smaller system sizes. We find ν = 2.87(10) and ncrit

s =
2.07(3). With regard to the convergence to a common ncrit

s , see
the inset to Fig. 14, which shows the vertical coordinates of
the crossings between curves for consecutive L values.
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FIG. 15. (Color online) Two-leg watermelon correlator G2 at the
critical point. The power-law decay G2 ∼ L−2x2 gives the fractal
dimension df via (61). The upper inset compares this value (indicated
by the horizontal black line) with the finite-size estimates coming
from �X(l) (red circles) and P (l) (green squares)—see text. The
lower inset shows the four-leg watermelon correlator G4.

B. Watermelon correlators, fractal dimension, and
length distribution

Next we consider the watermelon correlation functions G2

and G4 defined in Sec. III B. We evaluate these correlators at
separation L/2 for a range of system sizes L—see Fig. 15.
The data are for the critical point at p = 1/2.

Fitting to pure power laws,

Gk(L/2) ∝ L−2 xk , (59)

we obtain the scaling dimensions of the two- and four-leg
operators:

x2 = 0.091(1), x4 = 0.491(1). (60)

The scaling relation

df = 2 − x2 (61)

gives the fractal dimension of the critical loops,

df = 1.909(1). (62)

We may obtain independent estimates of df from �X(l), the
mean linear size of a loop of length l, and from the length
distribution P (l) and the scaling relation (53). The finite size
estimates for df coming from the numerical estimates of
d ln �X/d ln l and d ln P (l)/d ln l are shown in the inset to
Fig. 15. Both plots are consistent with Eq. (62).

C. RG equations in the presence of vortices

For an approximate description of the transition, we extend
the RG description (23) to take account of the nonzero fugacity
forZ2 vortices. In this, we follow the treatment by Fu and Kane
of the O(2N )/O(N ) × O(N ) σ model at N → 0.20 This σ

model and the RP n−1 σ model are similar—both sustain Z2

vortices, and each reduces to the XY model in an appropriate
limit, which can be expanded around. An expansion around
the XY limit was also considered for the O(n) model near

n = 2 in Ref. 59. The importance of topological defects in
replica σ models for localization in two dimensions was also
pointed out by Konig et al., who developed an RG approach
to localization in the chiral symmetry classes taking account
of Z vortices.19

Since RP 1 = S1, our σ model coincides with the XY

model at n = 2. With the normalization of Eq. (21), this
has a Kosterlitz Thouless transition at the critical stiffness
Kc = 8/π . The RG flow near this point is governed by the
Kosterlitz RG equations for K and the vortex fugacity, which
we denote V .

We assume that we can expand the RG equations in (2 −
n) and that V should be interpreted as the fugacity for Z2

vortices58 when n �= 2. At lowest order, these equations are
corrected by the β-function for K in the absence of vortices,
dK/dτ � (2 − n)f (K):

dV

dτ
=

(
2 − πK

4

)
V, (63)

dK

dτ
= (2 − n)f (Kc) − V 2. (64)

These equations yield critical points at K = Kc = 8/π and
V = ±√

(2 − n)f (Kc), with critical exponents

ν =
√

2

(2 − n)πf (Kc)
, yirr = −

√
(2 − n)πf (Kc)

2
.

The critical stiffness Kc ∼ 2.4 is of roughly the same
magnitude as the critical winding number ncrit

s ∼ 2.0 at
n = 1 (57), as we expect from Sec. IV B. Making the further
approximation of evaluating f (Kc) using the perturbative β

function at large K ,

f (K) � 1

2π

(
1 + 1

2πK

)
,

yields at n = 1,

ν ∼ 1.9, yirr ∼ −0.5.

As n → 2, ν diverges and the irrelevant exponent tends to zero.
As expected, this crude approximation does not give quan-

titatively accurate results for n = 1, but it does reproduce the
qualitative structure of the phase diagram, with the Goldstone
phase sandwiched between massive phases at positive and
negative V , and the appearance of a large correlation length
exponent.

A comparison with alternative approaches—for example,
an approximate treatment of σ model directly at n = 1 in
the supersymmetric formulation, or an expansion in (2 − n)
avoiding the additional large K approximation required here—
would be desirable.

VI. NUMERICAL METHODS

We have considered system sizes from L = 100 up to L =
106. For sizes up to L ∼ 2 × 104, we can use a straightforward
Monte Carlo procedure, which of course benefits from the fact
that node configurations are independent random variables
when n = 1. Very large sizes require a more efficient “knitting”
procedure.

In the straightforward approach, we construct independent
L × L samples, assigning the node configurations at random
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with the probabilities in Sec. II A. By following the loops,
we then calculate the spanning number ns, the loop length
distribution, P (l), the average linear size of a loop of length l,
�X(l), and the correlation functions G2 and G4 at separation
L/2. The spanning number (defined in Sec. IV B) requires
open cylinder boundary conditions, while fully periodic BCs
are used for the other observables. However, the same
samples may be used for both, since the Boltzmann weight
is independent of the boundary conditions when n = 1.

The two-leg correlator G2(L/2) is the probability that two
links at separation L/2 lie on the same loop, and we take
G4(L/2) to be the probability that two nodes at separation
L/2 are visited by the same pair of loops. This is not the only
way that two nodes can be joined by four strands—the four
strands can make up a single loop rather than a pair—but the
scaling is the same for the two types of contribution.

The data for P (l) and �X(l) are stored in histograms in
a logarithmic scale in l. For each box we calculate the mean
and standard deviation of the loop size. The former gives the
estimate of �X(l); to avoid finite size effects, a box is discarded
if its �X is within two standard deviations of L. With this
procedure, the number of independent samples constructed
for a given system size varied between 2 × 105 for the largest
size and 2 × 106 for the smallest.

A. Knitting

As we expect logarithmic behavior in the Goldstone phase,
it is crucial to be able to study very large systems. The
straightforward procedure above is very efficient in terms
of CPU time, but it is limited by the available computer
memory since it requires us to store the full configuration.
The first improvement comes from the fact that a cylinder of
circumference L can be “knitted” by the successive addition
of L × L′ strips, where L′ is of order one.

At a given stage in the growth of the cylinder, it contains
both closed loops in the interior, and strands that end on the
boundary. The lengths and sizes of the closed loops are already
included in the histograms for P (l) and �X(l). Then, the only
information about the configuration that we need to store is
the connectivity of the links on the boundary, together with the
lengths of the connecting strands. (Note that this connectivity
information is configuration-dependent—this is distinct from
the transfer matrix approach, in which the transfer matrix is not
configuration dependent and which is limited to small sizes.)
When we add a new strip to the cylinder some loops will
become closed: we add their lengths l and their sizes �X—
defined as the height of the loop in the growing direction—to
our histograms.

Growing the cylinder strip by strip, the required memory is
proportional to the circumference L (strictly to L ln L) rather
than to L2 as in the straightforward approach (algorithms for
percolation which avoid storing the full configuration also
exist60). We have been able to compute cylinders with L up to
106 and height much greater than L.

This method requires storing the (realization-dependent)
connectivity information for the boundary links of a large
cylinder. This has the flavor of a transmission matrix in a
localization problem. In the future it would be interesting to
consider the properties of this “matrix” in more detail.

B. Shuffling

A further improvement that significantly reduces CPU
effort involves constructing sets of strips of width L and height
H = L/20 (using the knitting procedure). For each strip, we
store the connectivity of the boundary links. Joining 20 of
them yields a square sample, and we have enough information
about this sample to calculate G2(x,y) (for links x and y which
lie on the boundaries of two strips) as well as ns . From each
set of 20 pieces, many different samples may be created by
shuffling the order of the pieces and by rotating them in the
transverse direction. We construct 1000 samples for each set.
These samples are not of course independent, so we estimate
error bars by producing many independent such sets (80–200)
and examining the statistical fluctuations between sets.

For the calculation of ns in large systems to a given
precision, the shuffling and rotation of strips reduces CPU
time by a factor of 200. We have parallelized this procedure
for OpenMP and for CUDA GPUs. The parallelization for the
graphics cards was particularly efficient—a typical program
ran almost 100 times faster on an Nvidia Tesla M2070 card
than on a single core in an Intel Xeon E5520 CPU.

VII. POLYMER COLLAPSE

A long polymer with repulsive (or excluded volume)
interactions between segments displays the universal behavior
of the lattice self-avoiding walk (SAW), while strong enough
attractive interactions cause the polymer to collapse. The
boundary between these two regimes is the so-called � point.
In de Gennes’ description of the polymer via the O(N → 0)
model, the SAW corresponds to the critical point, and the �

point to the tricritical point.1,43,61 However, the actual situation
is more complicated, especially in two dimensions.

While the SAW behavior is extremely robust, the � point
is more subtle. Different lattice models can yield different
universality classes of collapse transition,16,18,62,63 and it also
turns out that the phase diagram in the vicinity of the � point
can have a more complex structure than would naively have
been expected.18,62,64,65

The interacting self-avoiding trail model (ISAT) has been
particularly controversial,16,18,24,66–68 with numerous conflict-
ing results and hypotheses put forward for the critical expo-
nents at the collapse point. In this model, the polymer can visit
links only once, but nodes twice, so allowed configurations
of a closed polymer are equivalent to allowed configurations
of a single loop in the CPLC. Here, we give a field theoretic
description of the ISAT which explains the phase diagram
found numerically18 and shows that the ISAT � point is highly
fine-tuned from the point of view of more general polymer
models, being an infinite-order multicritical point at which the
O(N ) symmetry of the problem is enhanced from the generic
O(N → 0) to O(N → 1).

On a lattice of large finite size L, the ISAT partition function
is69

Zpol(k,t) =
∑

polymer
configs

klengthtno. self-contacts. (65)

A self-contact is a node visited twice by the polymer. We are
now at fixed length fugacity rather than fixed length, but the
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FIG. 16. Schematic representation of the phase diagram for the
polymer found in Ref. 18, together with our interpretation in terms of
a perturbed O(1 + n′) model in the limit n′ → 0. The thin solid line
is in the universality class of the self-avoiding walk (polymer in good
solvent). The dot is the multicritical collapse point, or � point, with
full O(1 + n′) symmetry. The bold line is a first-order transition. The
dashed line is a transition in the Ising universality class between two
regimes in which the polymer is dense (visits a finite fraction of the
links of the lattice): the “crystalline” and “liquid” phases.

two ensembles are simply related.70 The parameter t controls
interactions which are repulsive for t < 1 and attractive for
t > 1.

An interesting feature of this model is the phase diagram,
obtained numerically by Foster.18 A schematic version is
shown in Fig. 16. For small k, the polymer is of finite typical
size and not critical (the zero-density phase), while for large
k it is dense, i.e., has length of order L2. When t is small,
the transition between these phases shows the usual critical
behavior of the SAW (thin solid line), and for large t there is
a first-order transition associated with the collapsed polymer
(thick line). The � point separates these.

An unexpected feature, from the point of view of the de
Gennes theory, is an additional line of transitions within the
dense phase (dashed line), which are found numerically to
be in the Ising universality class.18 A similar line of Ising
transitions terminating at a � point was found in a polymer
model without crossings studied by Blöte and Nienhuis,62

and a heuristic explanation was provided by associating Ising
degrees of freedom with the faces of the lattice,62,71 for which
the polymer was a domain wall. In that model, the absence
of crossings also allows for a Coulomb gas description that
captures the Ising transition.72

For a field-theoretic description of the ISAT, we make
use of the fact that precisely at the � point, which is at
k = 1/3, t = 3,16 the ISAT maps to the CPLC at a point in
the Goldstone phase, namely n = 1, p = 1/3, q = 1/2. The
� point is therefore described by the O(n → 1) σ model,10

and we can understand the region around it by perturbing
this σ model. The following considerations may readily be
generalized to the various modifications of ISAT that have been
studied numerically, e.g., on other lattices,64 with additional
interactions,73–75 or in higher dimensions.76

Before continuing, we note that an alternative conjecture for
the critical behavior of the ISAT � point was put forward on

the basis of numerical transfer matrix calculations in Ref. 18.
According to this conjecture, the � point has nontrivial critical
exponents identical to those of an exactly solvable model of
polymers without intersections.62,77 This is at odds with the
predictions of the Goldstone phase, which yields trivial critical
exponents together with universal logarithmic corrections.
We believe the Goldstone phase scenario is convincingly
established by our numerical results for large systems (note
that Sec. IV B includes data at the relevant point p = 1/3, q =
1/2), together with the logarithmic behavior seen numerically
in Refs. 16 and 17 and the theoretical arguments of Ref. 10 and
Sec. III, and that the apparent nontrivial exponents in Ref. 18
are due to logarithmic finite size corrections (see the endnote78

for more details).
To describe the single-polymer problem in the language of

the spin model, we proceed along similar lines to Sec. IV C,
expanding the partition function for the CPLC in n′ = n − 1 to
separate out configurations with a single marked loop (which
will be our polymer).

To control k and t for this polymer, we must modify the
partition function (24) in a way that breaks the symmetry
of the O(n) σ model down to Z2 × O(n′). At each node,
Eq. (24) contains terms of the form (�S1 · �S2)(�S3 · �S4). Such a
term corresponds to two sections of loop passing through the
node, one connecting link 1 to link 2, and one connecting link
3 to link 4. In the new ensemble, these sections can be sections
of marked or unmarked loops, and we modify the weights
accordingly:

(�S1 · �S2)(�S3 · �S4) −→ (
S1

1S1
2

)(
S1

3S
1
4

) + 3k
(
S1

1S
1
2

)
(�S⊥3 · �S⊥4)

+ 3k(�S⊥1 · �S⊥2)
(
S1

3 .S1
4

)
+ 3k2t (�S⊥1 · �S⊥2)(�S⊥3 · �S⊥4). (66)

Each unit of marked length acquires a factor of 3k, and each
meeting of two marked strands acquires an additional factor
of t/3. Expanding in n′ as in Eqs. (43) and (45),

Z(n′,k,t)

= 1 + n′ ∑
C; one

marked loop

WC (3k)length(t/3)no. self-contacts + · · · .

Separating the sum into a sum over configurations of the
marked loop (polymer) and a sum over the configurations of
the other loops, and performing the latter,

Z(n′,k,t) = 1 + n′ Zpol(k,t) + · · · . (67)

We discuss only the partition function, but one may easily
check that the natural geometrical correlation functions in
the polymer problem, i.e., the watermelon correlators, can be
expressed as correlators of �S⊥ in the replica limit n′ → 0.

The polymer multicritical point at (k,t) = ( 1
3 ,3) corre-

sponds to the CPLC at p = 1/3, q = 1/2 and therefore to
the σ model with full O(n) symmetry. Varying (k,t) away
from this point introduces symmetry-breaking perturbations,
of which the most relevant are γ1 and γ2:

L = K

2
[(∇ �S)2 + γ1O⊥1 + γ2O⊥2],

(68)

O⊥1 = �S2
⊥, O⊥2 = (�S2

⊥)2 − 2(n + 1)

n + 4
S2

⊥.
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Before considering the more detailed RG picture, we identify
the phases in Fig. 16 with the phases of this perturbed σ

model. These are characterized by whether the Z2 and O(n′)
symmetries are broken, i.e., whether 〈S1〉 �= 0 and whether
〈�S⊥〉 �= 0.

When 〈�S⊥〉 �= 0, the polymer fills the system densely and
the transverse modes �S⊥ are in a Goldstone phase. To see
that such a phase is possible, note that when fluctuations in
S1 are massive, we may imagine integrating them out to get
an effective O(n′) σ model for �S⊥. In the limit n′ → 0, this
σ model has a Goldstone phase as a consequence of the β

function in Eq. (23). This is just the theory for the dense
polymer with crossings studied in Ref. 10.

The phase with 〈S1〉 = 〈�S⊥〉 = 0 does not appear upon
perturbing around the � point, since the latter is controlled
by the fixed point at infinite stiffness. However, the other three
do.

(1) Zero-density phase, 〈�S⊥〉 = 0, 〈S1〉 �= 0. The leading
effect of reducing the length fugacity k below the �-point value
is to introduce a mass for �S⊥, so that �S orders in the longitudinal
direction and the transverse modes �S⊥ are massive. Correlators
thus decay exponentially for the polymer, and it has a finite
typical size.79

(2) Dense phase with Ising disorder, 〈�S⊥〉 �= 0 & 〈S1〉 = 0.
Moving away from the � point by increasing k makes S1

massive, and �S “orders” in the transverse plane. The system
thus goes from the Goldstone phase of the O(n → 1) model
to the Goldstone phase of the O(n → 0) model. The two-leg
watermelon correlation function is a constant at long distances,
as discussed in Sec. IV A, meaning that the polymer is dense.

(3) Dense phase with Ising order, 〈�S⊥〉 �= 0 and 〈S1〉 �=
0. For appropriate values of the coefficients γ1, γ2, the
renormalized free energy is minimized when both 〈�S⊥〉 and
〈S1〉 are nonzero, so that both symmetries, Z2 and O(n′), are
broken.

[A minor subtlety regarding the above classification is that
only gauge-invariant operators are meaningful in the loop
model/RP n−1 model. For this reason, the global symmetry
of the perturbed loop model80 is O(n′) = Z2 × SO(n′), rather
than Z2 × O(n′) as in the perturbed O(n) σ model. However,
we are free to use the language of the latter, which (for
the reasons discussed in Sec. III D) captures the universal
properties of the perturbed RP n−1 σ model in the regime
we are considering.]

The field theory description also determines the nature of
the phase transitions. First, consider the thin solid line in
Fig. 16. The field S1 is Ising-ordered on both sides of this
transition, and its massive fluctuations play no role in the
critical behavior of �S⊥. We therefore have the critical point
of the O(n′) model in the limit n′ → 0. This is the usual
description of the self-avoiding walk,1,43 confirming what we
expect and find in the polymer problem.

Next, consider the dashed line in Fig. 16. Here, S1 under-
goes an ordering transition at which Z2 symmetry is broken.
Thus we would expect an Ising transition. We must check,
however, that the massless degrees of freedom associated with
�S⊥—which are in the Goldstone phase—do not modify the
Ising critical behavior. But it is easy to see they do not. The
most relevant coupling allowed by Z2 × O(n′) symmetry is

via the product of the energy operators,

EIsing × EGold stone. (69)

This composite operator has dimension (length)−3, so is
irrelevant.

Finally, consider the thick line in the figure, which separates
phases breaking different symmetries [Z2 on one side, and
O(n′) on the other]. According to Landau theory, this transition
should be first order, as it is numerically found to be.18

What does Ising order/disorder mean for the polymer?
Define a new configuration of Ising spins μF on the faces
F of the square lattice by the requirement that the polymer is
the (only!) domain wall in this configuration. Then the dense
phase with Ising disorder corresponds to antiferromagnetic
order in μ, while μ is disordered in the dense phase with Ising
order. (To show this, we write 〈μF μF ′ 〉 in terms a correlator
of twist fields in the RP n−1 model, which force the fields Q1a

with a > 1 to change sign on a line connecting F and F ′.)
Antiferromagnetic order in μ is equivalent to the crystalline
order of Ref. 18, and it becomes perfect when the polymer
visits every link of the lattice. It is also essentially equivalent
to the Ising order defined in Refs. 62 and 71 for a different
model.

For a more detailed picture of the phase diagram, we use the
RG equations for the σ model. We must include the lowest two
anisotropies as in Eq. (68), where γ1, γ2 are linearly related to
the perturbations

δk = k − 1/3, δt = t − 3 (70)

when these are small (we will give approximate expressions
below). After running the RG up to a large time τ∗, we have
(for n = 1)

K∗ ∼ τ∗
2π

, γ1∗ ∼ γ1e
2τ∗

(τ∗/2πK)2
, γ2∗ ∼ γ2e

2τ∗

(τ∗/2πK)7
.

For generic small initial values (γ1,γ2), we will renormalize to
a regime where γ1∗ = O(1) and |γ2∗| � |γ1∗|, putting us deep
within one of the phases—either the zero-density phase or the
dense phase with Ising disorder, depending on the sign of γ1.
The phase transitions occur instead in the regime where the
renormalized γ1∗ and γ2∗ become of order one simultaneously.

Since the stiffness of the renormalized σ model is large
(τ∗ ∼ ln |γ1|−1/2 ∼ ln |γ2|−1/2), we may determine which
phase it is in simply by minimizing the potential in the
renormalized Lagrangian. In doing this, we must bear in mind
the constraint �S2 = 1. We find the three phases described
above, with the phase transition lines located at

SAW: γ1 � 4

5
γ2

(
4πK

ln 1/|γ2|
)5

(γ2 > 0),

Ising: γ1 � −3

5
γ2

(
4πK

ln 1/|γ2|
)5

(γ2 > 0),

1storder: γ1 � −1

5
γ2

(
4πK

ln 1/|γ2|
)5

(γ2 < 0).

(These formulas are valid asymptotically close to the � point.)
For a very crude estimate of the relation between (γ1,γ2) and
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(δk,δt), we can evaluate the right-hand side of Eq. (66) for
spatially constant �Sl , and take the logarithm of the Boltzmann
weight for a node to obtain the potential terms in the bare
Lagrangian. We find

γ1 ∼ −C

(
δk + 2

45
δt

)
, γ2 ∼ −C

δt

18
, (71)

where C is an undetermined constant. The above confirms
that the three phases meet at the � point, and shows that the
SAW and Ising critical lines are asymptotically parallel as they
approach the � point.

A remarkable consequence of the above field theory
mapping is that the � point of the ISAT—despite the simplicity
and naturalness of this model—is in fact an infinite order
multicritical point! We have mentioned the two most relevant
anisotropies O⊥1 and O⊥2, but there is an infinite number of
these, with O⊥k = (S2

⊥)k + · · · , and generic perturbations of
the ISAT � point will introduce all of them with couplings γk .
At n = 1, the RG equation for γk is

dγk

dτ
=

(
2 − 2k2 − k + 1

2πK

)
γk + · · · , (72)

so they are all relevant at the K = ∞ fixed point.
The � point of the ISAT does not therefore represent the

universality class of the generic � point polymer model with
crossings. (This explains why the model in Ref. 82 shows
different behavior to the ISAT.) A similar argument explains
why the three-dimensional ISAT76 shows distinct universal
behavior from standard models of polymer collapse.

In two dimensions, the generic �-point behavior in the
presence of crossings is different from that63 in their absence.
Since the ISAT � point does not represent the generic behavior
of the �-point polymer with crossings [which we expect
to be described by the tricritical O(N → 0) model], the
exact exponents for the latter are still unknown. We will
discuss RG flows for �-point polymers in detail in a separate
publication.

VIII. OUTLOOK

The loop models we have discussed are described by
“replica” σ models of the kind familiar from localization and
polymer physics. Such problems remain at the frontier of our
understanding of critical phenomena, and we hope that the
transitions in the loop models will provide a testing ground for
new approaches.

While exact results for the critical behavior discussed in
Sec. V would be desirable, the development of more accurate
analytical approximations would also be enlightening. On
the numerical side,81 work on the critical loop model should
be extended to other values of n, either via Monte Carlo or

the transfer matrix,23 in order to pin down the properties of
the whole family of critical points for 0 < n < 2. We plan to
return to these issues. (Three-dimensional RP n−1 loop models
exist as well—we will report numerical results elsewhere.)

The connection between the CPLC at n = 1 and disordered
fermions remains an open question. To begin with, recall the
situation for the loop model without crossings (p = 0). This
can be related to localization in at least two ways. Firstly, a
limiting case of the Chalker Coddington model for the quantum
Hall effect,83 in which the scattering matrices at a node
become “classical,” yields the loop model without crossings,
i.e., classical percolation. This is the familiar semiclassical
description of the quantum Hall transition,84 but because
quantum tunneling has not been taken into account, it does
not correctly capture the universal critical behavior. However,
the loop model has a second relationship with localization,
which is less obvious and which does not rely on suppressing
quantum tunneling. This is due to an exact mapping from a
network model for the spin quantum Hall transition (an analog
of the quantum Hall transition, but in symmetry class C rather
than A) to the loop model.26–28,32

For loops with crossings (p > 0) we can again construct a
mapping of the first kind by taking a classical limit in a network
model with a Kramers doublet on each edge (replacing each
quantum node with one of the three classical possibilities in
Fig. 2). However, this correspondence is rather trivial because
of the explicit suppression of quantum tunneling. It would be
interesting to know whether the analogy with localization goes
beyond this—in particular, whether the critical behavior of the
loop model can be related to the critical behavior of a true
localization problem. (It is interesting to note that our value of
ν is close to estimates of ν for the symplectic class.85)

Returning to loop models in their own right, there is a good
understanding of the zoology of critical points in loop models
without crossings, many of which fit into the one-parameter
family of universality classes in SLEκ . In general, crossings
take us outside this family. Here we have discussed a new
line of critical points exemplifying this, but we certainly do
not expect that this exhausts the possibilities for new critical
behavior—much remains to be learned.
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the partition function closest to k = 0,43 i.e., in the case of Fig. 16
by a point on the line separating the zero-density phase from the
dense phase. The crystalline and liquid phases are dense, i.e., the
length of the polymer is comparable with the lattice area.
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