PHYSICAL REVIEW B 87, 184202 (2013)

Mapping between finite temperature classical and zero temperature quantum systems:

Quantum critical jamming and quantum dynamical heterogeneities

Zohar Nussinov,"? Patrick Johnson,' Matthias J. Graf,> and Alexander V. Balatsky>*
'Department of Physics, Washington University, St. Louis, Missouri 63130, USA
2Kavli Institute for Theoretical Physics, Santa Barbara, California 93106, USA

3Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA
“NORDITA, Roslagstullsbacken 23, 106 91 Stockholm, Sweden
(Received 3 December 2012; published 15 May 2013)

Many electronic systems (e.g., the cuprate superconductors and heavy fermions) exhibit striking features in
their dynamical response over a prominent range of experimental parameters. While there are some empirical
suggestions of particular increasing length scales that accompany such transitions in some cases, this identification
is not universal and in numerous instances no large correlation length is evident. To better understand, as a matter
of principle, such behavior in quantum systems, we extend a known mapping (earlier studied in stochastic or
supersymmetric quantum mechanics) between finite temperature classical Fokker-Planck systems and related
quantum systems at zero temperature to include general nonequilibrium dynamics. Unlike Feynman mappings
or stochastic quantization methods in field theories (as well as more recent holographic type dualities), the
classical systems that we consider and their quantum duals reside in the same number of space-time dimensions.
The upshot of our very broad and rigorous result is that a Wick rotation exactly relates (i) the dynamics in
general finite temperature classical dissipative systems to (ii) zero temperature dynamics in the corresponding
dual many-body quantum systems. Using this correspondence, we illustrate that, even in the absence of imposed
disorder, many continuum quantum fluid systems (and possible lattice counterparts) may exhibit a zero-point
“quantum dynamical heterogeneity” wherein the dynamics, at a given instant, is spatially nonuniform. While
the static length scales accompanying this phenomenon do not seem to exhibit a clear divergence in standard
correlation functions, the length scale of the dynamical heterogeneities can increase dramatically. We further study
“quantum jamming” and illustrate how a hard-core bosonic system can undergo a zero temperature quantum
critical metal-to-insulator-type transition with an extremely large effective dynamical exponent z > 4 that is
consistent with length scales that increase far more slowly than the relaxation time as a putative critical transition
is approached. Similar results may hold for spin-liquid-type as well as interacting electronic systems. We suggest
ways to analyze experimental data in order to adduce such phenomena. Our approach may be used to analyze

other quenched quantum systems.
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I. INTRODUCTION

A prominent centerpiece in the understanding of numerous
systems is Landau Fermi-liquid (LFL) theory; this theory
allows the understanding of phenomena such as conventional
metals and low-temperature *He liquids. LFL theory is cen-
tered on the premise that the low-energy states of interacting
electron systems may be captured by long-lived fermionic
quasiparticles with renormalized parameters (e.g., effective
masses that differ from those of the bare electron). The
last three decades have seen the discovery of materials in
which electronic behavior deviates from simple LFL-type
behavior. These “singular” or “non-Fermi liquids” (NFL)
include the pseudogap region of the high-temperature cuprate
superconductors and “heavy fermions” (in which, as befits
their name, the effective electron mass becomes very large).
While there are clear indications of changes in the dynamics
in these systems, including putative quantum critical points,'
there is, in most cases, no clear experimentally measured
length scale that exhibits a clear divergence. A quantum
critical point is associated with a continuous phase transition
at (absolute) zero temperature. Typically, this may occur in
a system whose transition temperature is driven to zero by
doping or the application of magnetic fields or pressure. Within
a quantum critical regime, response functions follow universal
power-law scaling in both space and time. Specifically, at a
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quantum critical point, the effective infrared (IR) fixed point
theory exhibits scaling invariance in space-time: t — Af,X —
A/2% with a dynamical exponent z that can, depending on
the theory at hand, assume various canonical values. Unlike
classical critical points whose associated critical fluctuations
are confined to a narrow region near the phase transition,
quantum critical fluctuations appear over a wide range of
temperatures above the quantum critical point. These fluctua-
tions may generally lead to a radical departure of the system’s
electronic properties from standard LFL-type behavior. These
features are anticipated to be common across many strongly
correlated electronic systems and may be associated, in
some electronic systems, with a change of Fermi-surface
topology.> The genesis of NFL behavior in myriad systems
has attracted much attention. Various theoretical proposals
for quantum critical points in NFL include, amongst many
others, those that raise the specter of distinct local quantum
critical points* of specific types, e.g.,’ as well as new special
topological excitations.® In this work, we wish to suggest
that some aspects of effectively local behaviors exhibited by
many strongly correlated electronic systems might rather be
understood as direct quantum renditions of known classical
behaviors that naturally appear over a broad range of param-
eters. Quantum spin (or other) systems may display’ exotic
properties such as those associated with fractionalization
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at deconfined critical points that ultimately reflect classical
transitions

Many non-Fermi Liquids exhibit numerous phases (in-
cluding, quite notably, superconductivity). Indeed, competing
orders and proliferation of multiple low-energy states can lead
to spatially nonuniform glassy characteristics® and associated
first-order quantum transitions.’ The length scales character-
izing these electronic systems undergo a much milder change
than the corresponding changes in the dynamics. All of this
suggests an effective infrared (IR) fixed point quantum field
theory which is invariant under scaling in time but not in space,
i.e., the effective dynamical exponent z — oo. Response func-
tions such as those of the marginal Fermi-liquid form? describ-
ing cuprates near optimal doping show a marked frequency
dependence but essentially no spatial momentum dependence.
In this work, we will suggest how many quantum systems
might exhibit very large effective dynamical exponents.

It is natural to first look elsewhere in physics where similar
phenomena appear. One arena immediately comes to mind. In
classical structural glasses, there is a dramatic change in the
dynamics as a liquid is rapidly cooled (supercooled) below
its melting temperature, it falls out of equilibrium at low
temperatures and becomes quenched into a glass without the
appearance of easily discernible large changes in measurable
standard static length scales. While the ergodicity breaking
that accompanies a glass transition can not occur in a finite-size
system, it essentially mandates the appearance of a diverging
static length scale,'” but such divergent length scales generally
do not simply manifest themselves in bare standard correlation
functions. General correlation functions which may monitor
subtle changes include the “point-to-set”!! correlations and
others. Practically, in most instances,!? no clear signatures
of divergent length scales are easily seen in standard static
two-point correlation functions.

A far more transparent growth in length scales is seen from
four-point correlation functions that quantify the change in
correlations as the system evolves in time. These correlation
functions afford a glimpse into the length and time scaling
which describe dynamical heterogeneities that characterize the
spatially nonuniform rate of change or dynamics in the system.
The length scale associated with these heterogeneities was seen
to grow as the characteristic relaxation times increased.

We may use similar correlation functions to characterize
strongly correlated electronic systems in which there are
strongly discernible changes in the dynamics but no obvious
experimentally accessible tools that point to accompanying
divergent length scales in a general way.'®> To our knowledge,
to date, dynamical heterogeneities (or general static measures
such as those of the point-to-set method) have not been
systematically probed in electronic systems nor has their
existence been established as a matter of principle in quantum
systems. Initial ideas concerning nonuniform doping-driven
heterogeneities were discussed in Ref. 14. In this work, we
flesh out the blueprint for a proof outlined, by one of us, in
Ref. 15 and we will provide concrete “matter of principle”
theoretical testimony to the emergence of quantum dynamical
heterogeneities in clean systems and related properties in
quantum many-body systems. Some time after Ref. 15, the
authors of Ref. 16 have further confirmed the existence of
quantum dynamical heterogeneities in certain dissipative spin
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systems. In what follows, we focus on systems such as
structural glasses or jammed systems with no external disorder.

As is well appreciated, such translationally invariant
systems that are free of external disorder may, on their
own, display nonuniform spatial patterns concomitant with
interesting dynamical properties.!” For times far shorter than
the equilibration times, the two-point auto-correlation function

C(x,1) = (8¢(X,1)8¢(x,0)), (1)

with the brackets denoting an average over a translationally
invariant equilibrium average, records dynamic fluctuations at
all points X in d-dimensional space. In Eq. (1), the (deviations
of the) fields 8¢(x,t) may correspond to, e.g., density or
any other pertinent spatiotemporal quantity characterizing the
system. A notable variant in classical liquids is that for the
mobility field where, in all correlators, §¢(X,¢) is replaced by

N
n(x,1) = Z w; (H)8[X — x;(0)], @

i=1

with an individual particle (i) mobility w; monitoring par-
ticle motion during a time interval of size ¢, e.g., w;(t) =
exp[—|Fi(t) — 7;(0)|>/d*] with d the particle size. The two-
point correlator of Eq. (1) constitutes an analog of the Edwards-
Anderson'® order parameter that appears in spin glasses. In
uniform systems, the correlator of Eq. (1) is spatially (X)
independent. The spatial correlation amongst pair products
of time-separated products of fields [such as those in Eq. (1)]
at different spatial sites is a four-point correlation function'’
that attempts to measure cooperation

G4(X — ¥.,1) = (8¢(X,1)3¢(x,0)8(5,1)8¢(5,0))
—C(x,DCG.1). 3

This four-point correlation function relates the dynamics at
two different spatial points X and y. Generally, in the absence
of quenched disorder, due to translational invariance, this
correlation function depends only on (¥ — y) and not on X
and y separately. Empirically, the integral of this correlation
function,

xa(t) = / dx G4(3,t) = (C*(1)) — (C(1))?, )

where C(r) = f d‘x §¢(xX,1)8¢(%,0) [or, correspondingly,
C) = f d?x u(x,t)u(x,0) for spatiotemporal correlations
of the mobility of Eq. (2)] is often employed to enable a
quantification of dynamical heterogeneities when the atomic
coordinates may be resolved.!’

II. OUTLINE

This paper illustrates that the above-mentioned zero-point
dynamical heterogeneities can indeed rear their head in
quantum many-body systems. It more rigorously shows that
zero temperature quantum many-body systems can, apart from
quantum critical phenomena,'? exhibit exact analogs of finite
temperature classical behavior including that in glass-forming
systems. Towards this end, we establish two sets of results:

(1) Simple mathematical relations between the dynamical
correlation functions in (different) classical and quantum
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systems when these systems are linked to one another by a
duality that we will describe.

(2) Physical consequences of these mathematical relations
when these are applied to classical glass-forming systems
(whence they lead to predictions for the zero temperature time-
dependent correlation functions in dual quantum systems).

Accordingly, our work is split into, roughly, two equal parts
describing physical background and derivations that realize
both of these endeavours. The outline of this paper is as
follows. In Sec. III, we establish our main result given by
Eq. (9), which links time-dependent correlation functions in
finite temperature dissipative classical systems with their dual
zero temperature quantum systems. After stating our result,
much time is spent deriving it from first principles. Towards
this end, we first review the rudiments of stochastic quantum
mechanics and then derive in detail the key result in Eq. (9)
and similar relations like it for higher-order correlations. In
Sec. IV, we explicitly list several (of the many) dissipative
classical systems that exhibit dynamical heterogeneities and
other facets of glassy dynamics and their quantum duals.

With these relations in tow, we then proceed to discuss phys-
ical predictions for quantum many-body systems. In Sec. V, we
establish the existence of quantum dynamical heterogeneities,
scaling of relaxation times, and quantum critical jamming. In
the quantum dual models that exhibit these phenomena, the
relaxation times increase much more rapidly than correlation
length scales. Further building on these results, in Secs. VI
and VII we introduce hard-core Bose systems as well as
electronic systems with pairing interactions that may display
glassy dynamics. We outline in Sec. VIII data analysis that may
validate the presence of quantum dynamical heterogeneities in
experimental systems. We conclude (Sec. IX) with a synopsis
of our central results. Several technical details have been
relegated to the Appendices [including, perhaps most notably
(Appendix A) the proper analytic continuation for stretched
exponential dynamical correlations in dissipative classical
systems to obtain correlations in the corresponding quantum
glass systems].

III. A DYNAMICAL RELATION BETWEEN VISCOUS
CLASSICAL AND QUANTUM MANY-BODY SYSTEMS

In order to illustrate how, as a matter of principle, the
physics of such classical dissipative systems can appear in
clean quantum systems at zero temperature, we employ and
extend a mapping”®?® between classical dissipative systems
and quantum many-body systems to include general dynamical
(including nonequilibrium) systems. Aspects of this mapping
are intimately linked to Madelung hydrodynamics?® which
links the real and imaginary parts of the Schrodinger equation
to classical hydrodynamics. Related work concerning dynam-
ics in Rokshar-Kivelson®® systems also appears in Ref. 31. In
the following, we first briefly review this mapping. We will
then derive a hitherto unknown result linking the dynamics
in these classical and quantum systems. In these and other
calculations, we employ units in which both Boltzmann’s
constant and the reduced Planck constant are set to unity,
kg =h=1.

The crux of the “stochastic quantum mechanics” mapping
between dissipative classical systems and many-body bosonic
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theories?*-8 is the realization that the equation of motion for a

dissipative (or “Aristotelian”) classical system is a first-order
differential equation in time just as the Schrodinger equation
is. Using this equivalence, systems obeying the Langevin
equation

dx;

Yi——

= VWG, ..
7 N(X]

XN) + (1), ®)
with i the particle index, y; the coefficients of friction, nf(z)
Cartesian components of the Gaussian noise at site i with

(n @0l (1)) = 2Tayi818ap8 — 1), 6)

where T,; is the effective temperature of the classical system,
and o, = 1,2, ...,d (with d the system dimensionality) can
be exactly mapped®*?!?® onto a quantum many-body system of
bosons with effective mass m; = y; /(2T;) at zero temperature,
which is governed by the Hamiltonian

1 2 1 2 1 2
H = Z ; [_R'Ivi — EVI VN + m(leN)

p?
= Z j + VQuantum({z}) (7)

We will term the quantum system of Eq. (7) “the dual quantum
system” associated with the classical system of Egs. (5)
and (6). The many-body quantum potential Vouanum({X}) is
constructed from the gradients of the classical potential energy
Vy as in Eq. (7). Under this mapping,®° a dissipative
classical system with a potential energy Vy that captures
repulsive hard-core spheres maps onto a quantum system at
zero temperature with (as is apparent in the many-body poten-
tial energy Vouanwm) Similar dominant hard-core interactions
(augmented by soft sticky interactions).?® Although we will
focus on the mapping from classical systems to corresponding
quantum ones, it is also possible to go in the opposite
direction and map quantum mechanical systems with known
nondegenerate ground states onto classical dissipative systems
(see Appendix E). (For completeness, we note that different
“stochastic quantization”3? mappings relate stochastic systems
to quantum field theories by the introduction of an additional
fictitious time coordinate. An additional timelike coordinate
also appears in well-known textbook-type Feynman mapping
as well as far more recent holographic dualities.’® By contrast,
in the “stochastic quantum mechanics” mappings between
classical to quantum systems that we review and expand on
here to generally include dynamics, the number of space-time
dimensions is identical.)

Earlier work?*2® advanced the rudiments of this mapping
and further suggested dynamical aspects that might follow
from it. In this work, we explicitly derive and prove a general
and rather powerful relation between arbitrary correlation
functions in dissipative classical systems with time-varying
potentials (necessary for our discussion of quenching) and
relate these to corresponding correlation functions in zero
temperature quantum systems. In Sec. III B, we summarize,
following Refs. 20 and 22-26, more detailed aspects of this
mapping. We now proceed to set the stage for our result and its
consequences. In what follows, we consider a general classical
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two-point correlation function of the form
G classical (1) = (O(I)O(O)), (8)

where O(t) is any quantity, at times ¢ > 0. Our mapping
covers general nonequilibrium time-dependent Hamiltonians
in which only the initial (or only the final) classical system is
in thermal equilibrium at an initial (or final) temperature. In
such a case, the corresponding dual quantum problem evolves
unitarily with a time-dependent Hamiltonian. Specifically, as
we will elaborate on in Sec. III B, we find a very simple and
general result for any quantity O(¢):

’ GQuantum (1) = Gelassical (it) ‘ )

Thus, a “complexification” of the time coordinate (or Wick-
type rotation) relates general classical dynamical correlation
functions of the form of Eq. (8) to their corresponding
quantum counterparts. The quantum correlation function
GQuamum(t} ,t) is evaluated with the quantum many-body
potential Vouanwm({X}) of Eq. (64), while the corresponding
classical correlation function is computed for a system with a
potential Vn({x}). Similarly, for the quantum linear response
functions Rquanwm(?) [see Eqs. (58) and (59) for standard linear
response expressions], we have that

RQuamum(t) = i®(t)[Gclassical(it) - G:]assical(it)]‘ (10)

Equations (9) and (10) provide an entry in the mapping
between the finite temperature classical system of Eq. (5)
governed by a potential Vy and its corresponding quantum
zero temperature dual with a quantum many-body potential
energy Vouanwm({X}) in the Hamiltonian of Eq. (7).

Equations (9) and (10), along with their consequences,
are key results of this work. In Sec. IIIB, we provide a
detailed derivation of Eqgs. (9) and (10). Typically, in glassy
systems, the correlation function of Eq. (8) is a superposition
of many decaying modes. This distribution of modes will
manifest itself as a distribution of oscillatory modes in the
corresponding dual quantum problem. In many cases, this
will lead to zero temperature quantum dynamics of the dual
system that, with additional oscillations, will emulate the finite
classical dynamics. For instance, as it precisely occurs in
viscous systems with overdamped dynamics [for which Eq. (5)
applies], if for times ¢ > 0,

Gclassical(t) =A eXP[—(I/T)C], (1 1)

then, correspondingly for all of these positive times ¢ (see
Appendix A),

L) cos € \°
RQuantum(t) = 2A€7(?) % sin |: (—) sin %i| (12)
T

With the aid of the general relation of Eqgs. (9) and (10), the
quantum correlation function that corresponds to a general
stretched exponential correlation function in the classical arena
can be computed analytically. The linear response function is,
indeed, given by Eq. (12). A trivial yet important particular
corollary of Eq. (9) is that static correlations (i.e., those for
t = 0) are identical in the finite temperature classical and their
corresponding quantum dual systems.

The remainder of this section is organized as follows. In
Sec. IIT A, we review the basic known essentials of the mapping
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between finite temperature classical dissipative systems and
their quantum duals. This is then followed, in Sec. III B, by
the derivation of our result of Eq. (9).

A. Lightning review of known relations in stochastic
quantum mechanics

This section reviews earlier work which is necessary for
our derivations in the sections that follow. We will now
briefly highlight known salient features of the mapping?’-2¢
between classical stochastic systems and their quantum duals
(aka “‘stochastic quantum mechanics”). The subsections (and
sections) that follow will build on the classical to quantum
mapping that we now discuss here. There are two prominent
independent approaches that establish this duality: (i) a general
method that examines the Fokker-Planck equations and (ii)
an algebraic method highlighting a harmonic oscillator (with
a simple raising/lowering operator) type structure akin to
that more generally found in supersymmetric theories. Both
approaches directly lead to the effective quantum Hamiltonian
of Eq. (7). Although this Hamiltonian is more readily seen in
the algebraic formulation and leads to immediate and clear
intuition (which is why we briefly review it), the broader
approach is arguably that relying on the direct Fokker-Planck
evolution of dissipative classical systems. It is this Fokker-
Planck approach that we will use in our derivations in the
subsections that follow.

1. Fokker-Planck systems and their quantum duals

We first set the preliminaries for the Fokker-Planck ap-
proach following Ref. 21. Given an initial vector xy of the
coordinates of all particles at time ¢ = #;, the time-dependent
probability distribution P(X,; Xo,%) for the corresponding
position vectors {X(¢)} at time ¢ is given by

N
PUF).1: {Fo) o) = <H SI(F:(r) 5c',»}1> NGE)
i=1 (i1}, {%o}

where (.. .), (%, denotes the average over the random noise 7
[which we will take to be the Gaussian white noise of Eq. (6)]
given that initially, at time ¢ = t, the particle coordinates were
{Xo}. The average of a general function O[{X(¢)}] is then

/ 4N PUELL (Fo) 1) OUED) = (OGO . (14)

It is convenient to write P({X},¢; {Xo},%o) in a Dirac notation
as

PUX}LE; {Xohto) = (X} P(t,10)|{X0})- (15)

Time translation invariance and the Markov property of these
probabilities,

f dNx (XY P, )X DX P 1) [{Xo))

_ / AN PR L YPAE L (Fobto)

= P({x}.t; {Xo}.t0), (16)
imply that

P(t.tg) = Te™ o Hrr@r" (17)
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with a “Fokker-Planck” Hamiltonian Hgp and where 7 is
the time-ordering operator. We now return to our particular
classical-to-quantum mapping. The summary below closely
follows this mapping as presented by Biroli e al.?® In what
follows, we set

P = P(t,10)|{%o}). (18)

For the classical dissipative system of Eq. (5), the probability
distribution P({X}) evolves according to the Fokker-Planck
equation
ap
En
where the Fokker-Planck operator is

= —HppP, (19)

1 - N >
HFP = — Z ?Vz . [V; VN + TclviL (20)

with T;; being the temperature of the classical system [setting
the noise strength in Eq. (6)]. Equation (20) follows from
a direct differentiation of Eq. (13) while invoking Eq. (5)
for the derivatives of the coordinates {X;(¢)} in the argument
of the delta functions and performing short-time averages.
(Thus, this equation and our results pertain to systems in
which the dynamics is sufficiently slow such that short-time
averages over the noise 7 at fixed temperature are sensible.) A
detailed derivation of the Fokker-Planck equation for this and
more general Langevin processes appears in many excellent
textbooks, e.g., Ref. 34. The operator Hgp is non-Hermitian.
Each eigenvalue is generally associated with differing left and
right eigenvectors. The Fokker-Planck equation can be mapped
into a Hermitian Hamiltonian by

H= eVN/(ZTL»/)HFPe*VN/(ZTL»I) (1)

if the second derivatives are exchangeable, %i%j VN =

Y f V; Vn.3 A direct substitution leads to the quantum many-
body Hamiltonian of Eq. (7). Note that, thus far, we have
allowed Vy to be completely general. This potential energy
may include one-body interactions (i.e., coupling to an external
source), pair interactions between particles, and three- and
higher-order particle interactions. A key point that we will
further invoke later is that the transformation of Eq. (21)
leading to a Hermitian quantum Hamiltonian can be trivially
performed at any given time slice when Vy and T are,
generally, time dependent. It is worth highlighting that in
nonequilibrium time-dependent classical systems, the tem-
perature T; is set by the time-dependent noise amplitude
[following Eq. (6)]. For general Vy({x}), the Fokker-Planck
operator of Eq. (20) has non-negative eigenvalues.?**! For
any time-independent Hpp, the zero eigenvalue state, i.e., the
ground state, which according to Eq. (19) corresponds to a
stationary (time-independent) probability distribution P. This
is the equilibrium Boltzmann distribution

N 1 -
Peqml({x},t) — _e*ﬂVN({X})’ (22)
Zy

with Zy the partition function associated with Vy({X})and 8 =
1/T,. This is readily rationalized by the following argument.
For a finite-size system, the linear eigenvalue equation

(HFP)bcPc = —¢& P, (23)
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with the matrix row/column indices b and ¢ denoting classical
configurations, has a (finite-size) matrix Hgp with positive off-
diagonal elements and negative diagonal entries. Specifically,
in Eqgs. (19) and (23), the transition matrix Hgp has entries that
relate the probabilities of going from state b to state ¢ in a given
(infinitesimal) time interval. If these states are different (b #
¢), then clearly (Hpp)y. > 0. The diagonal elements (Hgp)pp
provide the probabilities of “leaking out” of state b and going
to all other states ¢ % b. From all of this it follows that

(Hep)or = — Y (Hep)p < 0. (24)
b

Detailed balance, i.e., the fact that the probability of going
from b to c is the same as that of going from c to b, asserts that

(Hgp)pee PE» = (Hpp)epe PEe. (25)

Equations (23) and (25) illustrate that the Hamiltonian of
Eq. (21) is Hermitian. In this classical system of Eq. (5), the
energies of the classical states E.. are simply given by Vn({X})
evaluated for the classical configurations c. With the aid of
Egs. (24) and (25), it is easy to see that the column vector
P2 = 72V exp(—BE.) [i.e., the distribution of Eq. (22)] is
a null eigenvector of Eq. (23). This probability eigenvector
corresponds, of course, to the equilibrium Boltzmann distri-
bution. The factor of Zj' is inserted to ensure normalization
of the classical probabilities (for any eigenstate): > . P, = 1.
Now, we can add a constant to the finite-dimensional matrix

’

Hpp — Hpp — const = Hp, (26)

to generate a matrix (—Hpgp) that has all of its elements
positive (—H};P)bC > 0. Specifically, to this end, in Eq. (26)
we can choose const to be any constant larger than the
sign inverted smallest off-diagonal element of (—Hpp), i.e.,
const > — miny.{ Hgp}p.. For such a positive matrix, we can
apply the Perron-Frobenius theorem which states that the
largest eigenvector of (—Hpp) is nondegenerate and that the
eigenvector is the only eigenvector that has all of its elements
positive with all other orthogonal eigenvectors having at least
one negative element. Clearly, all of the eigenvectors of Hgp
and HEP are identical with the corresponding eigenvectors
of both operators merely shifted uniformly by a constant.
With all of the above in tow, we see that P! corresponds
to the largest eigenvector of (—Hpp) and is thus also the
largest eigenvector of (—Hgp). For a time-independent Hrpp,
as Pl wag the null eigenvector of Hpp, it follows that
all other eigenvalues of Eq. (23), ¢ > 0, are positive and,
according to Eq. (19) and explicit earlier discussions, evolve
with time as lim,_, o, exp(—¢t) = 0. Thus, physically (as to
be expected) at long times the system attains its equilibrium
configuration of P°dil In the corresponding zero temperature
quantum problem, the dominant classical equilibrium state
with a lowest energy. We will thus label it in Sec. III B by
|G). The transformation of Eq. (21) relates the operators in
the classical Fokker-Planck and zero temperature quantum
problem to one another. The transformation for the right
eigenvectors P of Hgp, which we explicitly denote below as
|—)ep, to the eigenvectors of the quantum Hamiltonian H is
trivially

[=)rp — exp[—WN/CT:D]I=)rp = |=)Quantum-  (27)
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Similarly, the left eigenvectors ({(—|gp) of Hpp are to be
multiplied by exp[Vn/(2T,;)] in order to pass to the left
eigenstates of the quantum problem. (In the quantum problem
defined by H, the left and right eigenstates are trivially
related to each other by Hermitian conjugation.) Applying
Eq. (27) to the null right eigenstate of the Fokker-Planck
Hamiltonian of Eq. (22), we see that the quantum eigenstate
of H corresponding to this classical equilibrium state is given
by

Yo({x}) =

1 >
exp <_2_T[VN({X})> : (28)

1
VZy
The prefactor in Eq. (28) is set by the normalization of this
quantum state. When comparing Eqgs. (22) and (28) to one
another, we see that this wave function is related to the classical
equilibrium probability eigenvector by the appealing relation
Wo({x}) = / Peuil({X}). When V({X}) is symmetric under the
interchange of particle coordinates, the resulting wave function
may describe bosons. For two-body interactions V;; [Eq. (62)]
that are symmetric under the permutations of i with j, the wave
function of Eq. (28) is symmetric under any permutations of the
particles. Thus, the ground-state wave function of Eq. (28) is
a Jastrow-type wave function describing a bosonic system. Of
course, generally, Vy({X}) caninclude not only two-body terms
but also single-body contributions (local chemical potentials
or fields) as well as three- and higher-body interactions.
Although obvious, it is worth noting that if Viy({¥}) (and thus
the quantum Hamiltonian H) is invariant under any pairwise
permutation P;;, i.e., if [H,P;;] = 0 then the symmetry of
the initial wave function ¥, (corresponding to the classical
Boltzmann distribution for a system initially at an equilibrium
at temperature 7,;) does not change as the system evolves with
time (including general arbitrary H corresponding to classical
variations in temperature and other parameters).

We next briefly discuss a generalization of Eq. (21). It is, of
course, possible to write a general similarity transformation

H' = 8§ "HppS, (29)

with a time-dependent operator S. Under Eq. (29), the Fokker-
Planck equation of Eq. (19) reads as

W = —H'W, (30)
where ¥ = §~! P with P given by Eq. (18).

2. An algebraic approach relating the ground state of a dual
quantum system to the Boltzmann distribution of a finite
temperature classical system

As is well known, there exists a beautiful link between
stochastic classical statistical mechanics and supersymmetric
quantum systems, e.g., Ref. 37. This connection is especially
immediate for the ground-state wave functions which are of
zero energy [as indeed that of Eq. (28)]. This might lead
to the impression that the results that we will derive using
the correspondence between classical dissipative systems and
quantum duals are rather limited and special. Informally, this
suggested by some to lead to un-normalizable wave functions
if nonconstant equilibrium classical states are considered. As
we will explicitly elaborate in Sec. III B, the time evolution
operator U(t) in the corresponding dual quantum problem is
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unitary and thus if an initial state is normalized [such as that
of Eq. (28) corresponding to an initial classical equilibrium
state], then the quantum state will remain normalized at all
positive times [and vice versa for a unitary evolution towards
a final state of the form of Eq. (28)]. Although the ground
state of the quantum problem may be dismissed as trivial and
special, the relations concerning the time evolution to states
that are not of the form of Eq. (28) are not as immediate. These
relations concerning the dynamics form the core of this work.
For pedagogical purposes, we very briefly review here some
central notions concerning the mapping of the Fokker-Planck
process to supersymmetric quantum mechanics as they, in
particular, pertain to the equilibrium problem. The explicit use
of supersymmetry will not be invoked in the following and the
discussion will be made as simple as possible. The Hamiltonian
of Eq. (7) can, for fixed y; = y in a simple (single-particle)
one-dimensional rendition which we adopt for ease of notation,
be written as

H= %ATA, (31)

where
AT__i+L/ A—i+ 4

T ax 2T Cax 2Ty
In the higher-dimensional many-body problem, the gradients
are relative to each of the Cartesian coordinates of all of the
particles and V is replaced by Vn({X}). Clearly, yATA >0
and thus if a zero-energy eigenstate of H can be found, it
is the ground state. Now, the square root of the classical
equilibrium distribution function, i.e., the wave function of
Eq. (28), is clearly a null eigenstate of the operator A above.
Inserting Eq. (32) into Eq. (31) leads to the identification of the
quantum many-body potential in terms of the corresponding
classical potential energy Vn({X}). The astute reader will, up
to trivial alterations, recognize these operators as the standard
raising and lowering operators of the harmonic problem when
V is a harmonic potential. We briefly return to this point in
Sec. III C 3. The basic general relation between quantum and
classical systems for wave functions of the eikonal type is
further discussed in Appendix B. We provide very simple
illustrative examples of the duality in Appendix C.

(32)

B. Derivation of the quantum-to-classical correspondence
for general dynamical correlation functions

The central role of this section is the derivation of Egs. (9)
and (10) [or, more precisely, the derivation of Egs. (49) and (50)
that will lead to Eqgs. (9) and (10)]. The sole assumption made
in the following derivation of Egs. (49) and (50) is that the clas-
sical system starts from its equilibrium state and then evolves
with some general (time-dependent) potential Viy(¢). This will
be mapped onto analytic continuations of the correlation and
response functions of a quantum system that starts at time
t =0 in its ground state of Eq. (28) and then evolved with
the corresponding (time-dependent) Hamiltonian H (). It is
important to emphasize that we make no assumptions regard-
ing the final (and intermediate) states. The classical (quantum)
system need not stay in equilibrium (or within a ground state)
as it evolves in time. Before detailing the derivation, we collect
the basic relations discussed in Sec. III A with several new
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definitions:
P({x},1) = ({x}| P(2)), (33)
e~ WD/ T
Pe({x},t) = ({x}IG) = — (34
N
Hpp|G) =0, (35)
(+l{xh) =1, (36)
H = ¢"™W/2Ta HFPe*VN/sz. (37)

These will serve as a point of departure for the calculations in
this section. Equation (33) represents a general probability
distribution in bra-ket notation. Equation (34) defines the
ground-state distribution as a Boltzmann distribution in bra-
ket notation. Equation (35) defines the ground state as the
eigenvector of the Fokker-Planck Hamiltonian with zero
eigenvalue. Equation (36) defines the state |[+) to be the
uniform state such that |+) = f d{x}|+). Lastly, Eq. (37) can
be used to find a relationship between Hgp and H]IP.

Armed with these, we now proceed to some simple
calculations. As H is Hermitian,

HN = ¢=W/2Tu H]IpeVN/ZT‘I, s
(=H) = eN/2Tu HFPE*VN/ZTVI_ (38)

Explicitly multiplying by e"¥/27¢ on the left and by e~ /27«

on the right leads to
HIIP — eVN/TvIHFPe_VN/TrI' (39)

We will now prove that the state |+) is a left eigenstate of the
Fokker-Planck Hamiltonian with zero eigenvalue. Beginning
with a simple extension of the definition of the ground state,

Hpp|G) = 0 — (G|Hj, = 0. (40)
As is evident from Eq. (39), this is equivalent to
(Gle"/Ta Hppe=W/Ta — (), 41)
which [from Egs. (34) and (36)] implies that
Zy (+]Hppe W11 = 0. (42)

This illustrates that this uniform state is a left null eigenstate®®
for all Fokker-Planck Hamiltonians (i.e., (+|Hgp = 0).

We will now derive our new central result of Eq. (9).
Towards this end, we write anew the classical correlation
function of Eq. (8):

Gclassical(t) = <Ol(l)02(0)> (43)

By Bayes’ theorem, the joint probability distribution,
P{x}, {3} = PUX}{FDP{Y}), the probability of finding
coordinates {x} at time ¢ and coordinates {y} at time 0, is
given by the product of the conditional probability of finding
{x} attime ¢ given {y} at time O with the probability of attaining
{7} at time ¢ = 0. For a lattice system with fields ¢ at different
lattice sites (which we will briefly return to in Appendix E),
the equality P({x},{y}) = P({X}|{3}) P({}}) is to be replaced
by P[{¢(X,0)},{#¢(x,0)}] = P[{o(X, )} {#(X,0)}1P[{$(X,0)}].
As discussed in Sec. III A, the ground state has a probability
distribution given by a Boltzmann distribution Z,'e=#"(D
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[see Eq. (34)]. The conditional probability P({x}|{y}) can be
expressed in terms of the matrix element of 7 e~ Jo Hr(d!
(where 7 is the time-ordering operator) as this conditional P
satisfies Eq. (19). With O; depending on the coordinates {y}
at time ¢ and O on the coordinates {x} at time ¢t = 0, all this
implies the form of the expectation value of Eq. (43):

Goascat(t) = / 4V 4y O, P((F). (1O
= / dVxd™y O, PUXNITNO P({5))

- / d™x d™Ny O, (R} Te o B0 |53 0,

e~ BT
X 70 (44)
It is important to reiterate and emphasize yet again that, in
the last line above, we only assume that the initial state (|{y})
at time ¢t = 0) is in thermal equilibrium. The system need
not be in thermal equilibrium at positive times. As stated
earlier, this is the sole assumption made in this derivation
for general time-dependent systems with dynamical Vy (and
thus for time-dependent Fokker-Planck operators). A similar
derivation would hold mutatis mutandis when the system is
initially out of equilibrium and is in equilibrium in its final
state.
Equation (36) asserts that [ d’Vx ({X}| = (+]. Invoking this
along with Eq. (34), we have that

Gerassicat(t) = (+]01 Te b B4’ 0)1G). (45)

Asis evident from Eq. (42), inserting an exponentiation of Hgp
to the right of the state (4| leads to a multiplication by unity.
Thus, Eq. (45) can be rewritten as

Gclassical(t) — (_}_lt]'efot HFP(t/)dI/OlT€7 f(; HFP(T/)dt/OﬂG). (46)

With the aid of Eq. (37), we can express this quantity in terms
of the quantum Hamiltonian H instead of Hpp:

Gclassical(t) = <+|67VN/(2TFI)T@[J H(,,)dt/ol
x Te~ b HOW WICTD 0, |G).  (47)
Rather explicitly multiplying and dividing by «/Zy,

G (t) <+| e—VN/(ZTL.I)T fo, H(t/)dt’O T _fU, HOdr
classical = e 14e
VZn
X Oyy/ Z eI |GY. (48)

As discussed in Sec. IIT Al [in particular, Eq. (28)], the
ground state of the quantum system is given by |0) =
VZye"W/CID|G)Y. Further invoking Eqs. (34) and (36), we
can rewrite Eq. (48) as

Getassical(t) = (O[T el 1O O Te= i HOW 0,10y (49)

Note that, in this equation, |0) is the ground state of the system
defined by the quantum Hamiltonian H. Our results above are
general. We will shortly use Eq. (49) in order to relate it to
correlations in the quantum system. Under the exchange of ¢ by
(it), the reader may recognize Eq. (49) as a correlation function
in the quantum system. One very simple point which is worth
emphasizing is that not only the ground state of Eq. (28) is
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trivially normalized but, of course, any state formed by the
evolution with the unitary time-ordered exponential U(t) =
e—i Jo H@Hdt'

In the quantum arena, it is clear that for a system initially
prepared in the ground state |0) and then evolved with some
Hamiltonian H(¢), the corresponding correlation function is
given by

G Quanum () = (0| T & s O O T~ Jo HOOM' 0 10) - (50)

By comparing Eq. (49) with (50), Eq. (9) immediately follows.
The fundamental relation of Eq. (9) establishes the connection
between the overdamped Langevin equation of a classical
particle at finite temperature and the Schrodinger equation
of the dual quantum Hamiltonian. We suspect that related to
this result is the fluctuation-dissipation theorem that relates
correlation functions with the expectation value of time-
ordered products in equilibrium (see, for example, Ref. 20,
Chap. 13).

A derivation similar to that above can be performed
for a correlation function involving an arbitrary number of
operators. In the classical arena, such a correlation function
takes the form of

Gclassica] = <Ol (tl)OZ(tZ) .o On(tn»a (51)

where O; are arbitrary operators and t) <t < --- < 1,.
Similar to our earlier calculations, by Bayes’ theorem, this
correlation function is given by

/ddelddez ...d™x,0,

o — [ Hpp(tdt' | (-
X ([ Te™ b ON )0,
. —BVn({x1h)
- — [ Hep(t)dt' | (= e
X (B} Te i O G O ——. (52)
Zy
Invoking identity matrix insertions and integrations over a
complete set of eigenstates as before, this reduces to

([T e o Hevthar O, Te iy Hrd 0y
x .. Te i @il 016Gy, (53)

Transforming to the quantum Hamiltonian H(¢) and its
respective ground state at time ¢ = 0 yields

(O|Te__/;‘i,] H(r/)dl/OnTeif'L"—l H(t,)dt/0n71
% .. Te i H(t,)dt/ol |0). (54)

The remainder of the derivation is similar to that in the
two-time case. In order to transition from the classical to
the quantum system, we replace, in all pertinent correlation
functions, the times {z,}/_, by {iz,}_,.

We next return to the two-time correlation function and
discuss the quantum response function Rquanwm that monitors
the change in the average value of O; as a result of a
perturbation O,. We first review standard textbook?® results
concerning quantum linear response functions and then invoke
our new result of Eq. (9) to obtain zero temperature quantum
linear response functions given corresponding results on finite
temperature classical duals. Towards this end, we first consider
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the Hamiltonian
Ho=H+H, (55)

where H’ is a small perturbation which can be expressed
as H' = —A0,. We next review the standard protocol for
computing the lowest-order deviation

§(01(0) = (O1())s — (O1(D)o, (56)

which we will evaluate within the ground state |0). This devi-
ation is readily computed within the interaction picture where
we evolve with the time-ordered exponential T exp(—i H't):

(010, ~ < (1 i / dl’)»(f)oz(f/)) 01(1)

X <1 +1i /Z dt’k(t)@z(t/)> > 57

Collecting terms to lowest order,
5010) i [ a0,
= i/ dt it — T){[01(1). 02(0)])
0

= [ @t - Do 69
—00

As Oy(t) = Te~i o HOA' O T pi [y HE' from the last line of
Eq. (58), the quantum response function

Rouantum(r) = iO@)(0|[T ' o 1O 0, T~ i KO 0))0).
(59)
Comparing Egs. (49) and (59), we derive Eq. (10) by further

expanding it to get the imaginary part of the analytically
continued classical correlation function

RQuamum(I) =i ®(t)[Gc]assical(it) - G:]assical(it)]
= _2®(t)1m Gclassical(it)~ (60)

C. Fields on a lattice

We conclude this section with a brief discussion of the
duality for fields on lattice sites. If we replace Eq. (5) by
do; )

A VA
i 56, N(P1

to describe a classical lattice system with fields ¢; at the
various lattice points i, then trivially replicating all of our
calculations thus far with the exchange x; — ¢; (including in
all gradient or variational derivative operators), we will arrive
at a corresponding quantum lattice system mutatis mutandis.

S ON) + 0i(0) (61)

IV. HIGH-DIMENSIONAL QUANTUM GLASS MODELS
DERIVED FROM CLASSICAL COUNTERPARTS

In the next sections, we will examine the consequences of
Eq. (9) for disparate quantum systems. As outlined earlier,
our basic three-prong approach will be rather simple: (1) We
take a classical dissipative system whose dynamical behavior is
known at finite temperatures [including, in particular, pertinent
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temporal correlation functions of the form of Eq. (8)]. (2) We
determine the corresponding dual quantum Hamiltonian using
Eq. (7) orits explicit form for classical pair potentials which we
detail below. (3) We next invoke Eq. (9) in order to determine
the very same correlation function of Eq. (8), yet now at zero
temperature for the dual quantum Hamiltonians.

In this section, we will detail a few (of the many known)
classical glassy systems for which our results for the quantum
duals will hold. The specific heavily investigated classical
dissipative systems that we focus on all exhibit glassy
dynamics. It is worth emphasizing that the results that we
will obtain using our three-prong approach do not rely on any
special integrability of the quantum models. Rather, by using
the multitude of available information on the quantum glass
system, we will be able to make exact statements on numerous
quantum systems.

We consider what specifically occurs when the classical
potential energy in Eq. (5) is the sum of pairwise interactions
(as it typically is)

- 1 - -
VAR = 3 D Vi = %)). (62)
i#]
For such systems, the quantum many-body Hamiltonian of
Eq. (7) explicitly contains an effective potential which is the
sum of two- and three-body interactions:

- 1 1
VQuuntum({x}) = Z ; |:_§V52VN + aT. (V VN)2:|
X i cl
V Vii V Vi
N VZVZ tj ij’
Z it 2 T,
1#/ e

(63)

For a given classical two-body potential in d dimensions
which is both translationally and rotationally invariant, V (X) =
V(|X|), the resulting quantum potential energy is given by
(as in Ref. 26 yet now trivially extended to general classical
temperatures 1)

. 1 i . S
Vo) = 5 3 Vil — )

i#j
3-bod .
+ Z Voumtum (Xi = X, Xi = Xj1);
i A
Upair()-é) — _V2
=Ly = Vi) + —— VP
= — r)— r r
r ZTE[
I - = >/
V3P (x x) = T VV@) - VV(E)
cl
Lx ¥ Vv (64)
= — . =V'nHV'(t),
AT r v
with r = |X| = |X; — X;| and, in the three-body term, r’ =
|X'| = |X; — X;|. For short-range classical interactions V(r),

the three-body term can be appreciable only if the three points
(i,j,j') in the second sum of Eq. (64) defining the distances r
and r’ all lie within the short distance of one another where the
classical potential operates. Thus, statistically, the three-body
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interactions are typically insignificant by comparison to, the
far more dominant, pair interaction terms in Eq. (64).

As we explained in Sec. III A, whenever the classical
potential Vy is invariant under the permutations of the
coordinates of any pair of particles [as it explicitly is when
it is the sum of symmetric pair interactions V(|X; — X;|)],
then the resulting quantum many-body system is bosonic.
In Appendix D (and, to a lesser degree in Appendix E), we
elaborate how our results can, as a matter of principle, be
explicitly extended to specific fermionic systems (which are
of great pertinence in our goal of illustrating the feasibility of
the behaviors that we study in this work for electronic systems).

Although our results in the sections that follow are very
general, it is nevertheless useful to have concrete models in
mind. We next detail some typical model systems that we
will refer to. These systems include both off-lattice liquid and
lattice systems. The liquids that we list exhibit fluid behavior
at high classical temperatures and glasslike features at high
densities and/or low temperatures. Within the highly viscous
low-temperature regime, the classical fluids that we list below
become overdamped and may be modeled by Eq. (5).

Liquid models. (a) As a first example, we list a system of
three-dimensional spheres (s). The classical potential associ-
ated with this system is given by V(r) = Vyexp{—A[(r/0)? —
11}. This model has been extensively studied.?® In this system,
the potential V; has a clear finite range (set by the diameter of
the spheres o). Following our earlier discussion, the magnitude
of the three-body term in Eq. (64) will be negligible by
comparison to that of the pair interactions. The corresponding
pair term set by Eq. (64) is

pair 2xd — 4272 21772 )

o) = LT V) + S VP (69)
o T. 0

In the limit A — o0, the classical system corresponds to that
of hard spheres where o is the diameter of the hard sphere and
the quantum potential of Eq. (65) similarly exhibits a dominant
hard-sphere repulsion (augmented by an attractive potential at
the sphere boundaries that is of range 1/A). In the sections
that follow, we will refer to the finite temperature (7,; > 0)
behavior of this system (and the other models below). In the
hard-sphere (A — 00) limit, this system becomes temperature
independent. (b) A classical bidisperse repulsive system given
by the pair potential®

Var) = (%) (66)

between two particles (a,b) of two possible types [(a,b) € 1,2]
with o, = (0, 4+ 03)/2 and 0, /0] = 1.2. The corresponding
quantum potential is given by Eq. (64). It is this full potential
that leads to the exact same dynamical correlation functions for
the quantum system following Eq. (9). Similar to (a), for pair
distances larger than oy, the three-body term in the quantum
Hamiltonian of Eq. (64) is far smaller than the pair interaction
term. Thus, at low temperatures 7,; < €, in any number of
dimensions d, this classical system has a quantum dual given
by a pair potential

72e0 2
pa1r b
()= 2 67)
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(c) A classical bidisperse Lennard-Jones mixture. Similar to
(b), this is a model of two species: 1,2. Unlike (b), however,
each pair of atoms (a,b) interact via a Lennard-Jones—type
interaction

Oab 2 Oab 6
woeal(@) (2] e

This augments the repulsive only potential of (b) by an
additional longer-range attractive interaction. In the standard
Kob-Andersen mixtures*® that we will refer to, €p/€1; =
1.5,€25/€11 = 0.5 with similar lengths o,, as in (b). The
zero temperature quantum dual of a low-temperature classical
system (T; < €11) is

: 18€2, 012 Oub 6 Oub 12
pair, ab%ab a a
Vap (1) = Tyr'4 [1 _4{< r ) _( r > ” )

Lattice models. (d) The N3 and N2 lattice models*!"*?
(which share some similarity with earlier lattice glass
models*). In the square lattice N3 model, particles are
endowed with hard-core repulsive interactions that extend
up to a distance of three steps on the lattice. Similarly,
in the cubic lattice N2 model particles can not be nearest
neighbors nor next-nearest neighbors (i.e., the repulsive hard-
core interactions extend up to a distance of two steps on the
lattice). In Secs. VI and VII, we will further motivate and
discuss quantum lattice systems.

At their core, the results that we discuss next are not limited
to the examples (a)—(d) above nor to simple classical pair
interactions. Given any classical system whose evolution is
given by Egs. (5) and (19), the corresponding dual quantum
system is provided by Egs. (7) and (21). This can, e.g.,
include models of classical dislocation motion and turbulence
in liquids.

V. GLASSY DYNAMICS IN OFF-LATTICE
QUANTUM FLUIDS

Armed with all of the background and results described
in earlier sections, we now proceed to derive general physical
results in quantum systems. Our aim is to show that as a matter
of principle, zero-point quantum fluctuations can lead to very
rich glass-type behaviors in numerous many-body systems
which mirror those that appear in dissipative classical systems
at finite temperatures. As we alluded to in the Introduction,
classical liquids may become quenched into a glassy state
when they are rapidly cooled (“supercooled”) below structural
freezing temperatures and fall out of thermal equilibrium.
Invoking Eq. (9), this will suggest that in the zero temperature
quantum duals, a corresponding phenomenon will occur:
quantum fluids may veer towards a glassy state as parameters
are rapidly changed in time. As we emphasized earlier, our
derivation of Sec. III B allowed (as is physically crucial) for
time-dependent Hamiltonians which emulate rapid changes
in the classical temperature or any other parameters in the
interaction and for classical final (or initial) states which are
out of equilibrium. Its sole assumption was that the average
over the noise at any instant of time was still afforded by Eq. (6)
with T,; the corresponding classical temperature at that time.
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We focus on measurable quantities that may be ascertained
from response functions.

Response functions in classical glass-forming liquids which
become progressively more viscous and become frozen into
a glass as their temperature is rapidly lowered (as well as
response functions in various electronic systems) suggest the
presence of a distribution of local relaxation times that lead
to, e.g., the canonical Cole-Cole or Cole-Davidson***> and
similar forms as we briefly elaborate on. In various guises, all
of the models discussed in Sec. IV exhibit glasslike features
including notably the distribution of relaxation times which
we discuss now.

The response of a single attenuated mode to an initial
impulse at time ¢ = 0 scales as ggnge ~ €xp(—1/7) with T
the relaxation time; the Fourier transform of this response
iS gsingle(®@) = go/(1 —iwt). In systems with a distribution
f(z’) of relaxation events, the response functions are given
by [dt' f(t')exp(—t/t’). Empirically, in dissipative plastic
or viscoelastic systems, relaxations scale as exp[—(¢/7)]
with a power 0 <c < 1 that leads to a “stretching” of
the response function. This stretched exponential and other
similar forms, such as the Cole-Cole (CC) and Davidson-Cole
(DC) functions, quintessentially capture the distribution of
relaxation times.*** With g(w) = goG(w), where gy is a
constant, the CC and CD forms correspond to different choices
of G:

1

T Goo O oy ™
The parameters & and vV qualitatively emulate the real-time
stretching exponent c. This distribution of relaxation times
might be associated with different local dynamics (dynamical
heterogeneities) to which we will turn to shortly in Sec. V A.
As liquids are supercooled, their characteristic relaxation times
and viscosity may increase dramatically. There are several time
scales that govern the dynamics of supercooled liquids. The
so-called “« (or primary) relaxation” is associated with coop-
erative motion and leads to a pronounced rise of the viscosity
(especially so in the “fragile” glass formers). Empirically, in
real classical supercooled liquids at a temperature 7, the o
relaxation times follow the Vogel-Fulcher-Tammann form*®

Gecl(w) =

DTo/(Tu=To)  f T T
| we or > To,
t(Ter) = {oo for T < Tp. 1

Here, T is the temperature of the classical system at which the
relaxation times [if Eq. (71) is precise] will truly diverge and
D is a dimensionless constant. Mode coupling theory*’ and
numerous other theories might similarly capture aspects of the
increase in the « relaxation time. In a low-temperature liquid,
augmenting the long-time « relaxations to equilibrium, there
are so-called “B (or secondary) relaxations”*® which further
manifest in local relaxation processes. The § relaxation times
scale with temperature in an Arrhenius-type fashion:

A/T,
Tsecondary ™~ € /T (72)

with A a temperature-independent constant. Recent work
suggests intriguing relations between « and f relaxations.*’
By virtue of Eq. (9), the finite temperature classical o (and )
relaxations and their associated stretched exponential-type
relaxations all have zero temperature quantum duals. In
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the quantum arena, as discussed in Sec. III, the classical
temperature T, is replaced by the effective mass m =
y /(2T,) and parametrical changes in the many-body potential
VQuantum({)_é })

The classical hard-sphere limits of models (a) and (d) of
Sec. IV are athermal; in these models, a glass-type state may
only be arrived at by varying the system density. By contrast,
in models (b) and (c) [as well as away from the hard-sphere
limit of model (a)] lowering the temperature may induce a
transition into a glass. By a trivial application of our result of
Eq. (10), all of these finite temperature classical forms have
the same quantum zero temperature counterparts. Thus, the
relaxation times in the quantum dual models scale in precisely
the same way as they do in the classical glass-forming systems
[including Eq. (71) for duals to classical glass formers].
Slower dynamics also appears as the system density increases.
Several works, e.g., Ref. 50, suggest that relaxation times are
a function of a composite quantity involving both density and
temperature. It should be noted that all of our derivations
start from Eq. (5). When examining the quantum dual to
empirical forms describing classical liquids, the bare viscosity
[or associated bare relaxation time 7y in Eq. (71)] of the
ambient liquid appearing in these equations of motion may,
in principle, be allowed to change as the temperature (and
density) are varied. These may appear in addition to changes in
T,; and V) (capturing, e.g., changes in the density). In classical
simulated liquids, the bare viscosity may be kept constant.

A. Quantum dynamical heterogeneities and relations
for four-point correlators

We now focus on an intriguing aspect of classical glasses
which by virtue of the relation of Egs. (9) and (10) (as alluded
to in Ref. 15) leads to the appearance of new dynamical corre-
lations in quantum systems. Disorder-free models for classical
glass formers (including various simulated quenched systems
such as those endowed with various classical potentials Vy
discussed in Sec. IV that do not permit simple crystalline
orders) are known to exhibit “dynamical heterogeneities”
(DH), i.e., a nonuniform distribution of local velocities’! with
the location of the more rapidly moving particles changing
with time. By invoking Egs. (9) and (10), we see that
quantum dynamical heterogeneities'> (QDH) appear in their
corresponding zero temperature quantum counterparts. That s,
in disorder-free quantum systems derived [via Eq. (7)] from
the corresponding classical systems, zero point dynamics is
spatially nonuniform.

The presence of DH is empirically seen by numerous
probes®! in real glass formers as well as model systems
(including all of the systems in Sec. IV). As we alluded
to earlier, one often used metric is that of the four-point
correlations of Eq. (3) in various guises. These correlation
functions are of the form of Eq. (8) with O(¢) denoting the
overlap between fields ¢ when these are separated in time:

05 (1) = ¢3(D—5(0) — (¢5(1)) (9-5(0)), (73)

with g any wave vector. When Eq. (73) is substituted into
Egs. (8) and (9), the four-point correlator can be computed.
Classically, the Fourier space correlation functions [denoted
Sglassical (G 1) below] typically have an Ornstein-Zernike—type
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similar to that in critical phenomena®” or similar generalized

(for a non-vanishing ‘“anomalous exponent” 1) forms that
incorporate time dependence., e.g.,>>

_ Xxa(t)
1+ (g&s(0)>°

with the length scale &,(¢) representing the size of the typical
dynamical heterogeneity, when the system is examined at two
times separated by an interval ¢. The four-point susceptibility
xa(t) is simply set by [d?x G4(X,1) [see Eq. (4)]. The key
feature of Eq. (74) is that all of the ¢ dependence has been
relegated to a Lorentzian (n = 0) or similar ( # 0) form while
x4 and &, are otherwise general time-dependent functions. We
may next invoke Egs. (9) and (10) to generate the quantum
counterpart of Eq. (74) (or of any other related form) and
Fourier transform to real space to obtain, in the notation of
Eq. (3), the spatial quantum correlation function G2**"™™ (X —
y,t) associated with the potential Vouanwum Of Eq. (64). The
Fourier integral will be dominated by momentum-space poles
atg = %i§, ! Tt is clear that in employing the transformation
of Egs. (9) and (10), G?“amum(i — 3,¢) will exhibit exponential
decay with the very same correlation length &, that is
present in the classical system. This affords a direct proof
of the dynamical length scale & in all zero temperature
quantum counterparts [given by Eq. (7)] to any dissipative
classical system that is known to exhibit these (and there
are numerous known classical systems that exhibit dynamical
heterogeneities®').

Sz]assical(é’,t) (74)

B. Rapidly increasing time scale with concomitant slowly
increasing length scale in quantum glasses

There is a proof that a growing static length scale
must accompany the diverging relaxation time of glass
transitions.'” Some evidence has indeed been found for
growing correlation lengths (static and those describing
dynamic inhomogeneities).”*>7 As we noted earlier in this
work, correlation lengths were studied via “point-to-set”
correlations''*® and pattern repetition size.’® Other current
common methods of characterizing structures include (a)
Voronoi polyhedra,®>%2 (b) Honeycutt-Andersen indices,®
and (c) bond orientation;** all centering on an atom or a given
link. More recent approaches include graph theoretical tools
and various types of network analysis.®>* Not withstanding
current progress, it is fair to say that currently most “natural”
textbook-type length scales do not increase as dramatically
as the relaxation time does when a liquid is supercooled and
becomes a glass.

It is worthwhile to highlight that one of the most pertinent
naturally increasing length scales is that associated with the
typical size of the dynamical heterogeneity [i.e., £ of Eq. (74)].
Similar to other measures, this typical length scale does not
increase as rapidly as the characteristic relaxation time does
as the glass transition is approached. Recent work for a three-
dimensional bidisperse repulsive glass®’ of Eq. (66) suggests
that

T ~ exp (kéf), (75)

with @ ~ 1.3 and k a constant. An alternate assumed algebraic
form v ~ &; leads to a large dynamical exponent z 2~ 10.8.
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In these cases, the dynamics changes dramatically with little
notable change in the spatial correlation length.

C. Quantum critical jamming

The mapping between dissipative classical and quantum
systems raises the specter of a new quantum critical point
associated with jamming.'> Our discussion following employs
the exact mapping of Eq. (9) to derive exact results on quantum
jammed systems given the wealth of information on their
classical counterparts.

The classical jamming transition of hard spheres [such
as those of models (a) in Sec. IV] from a jammed system at
high density to an unjammed one with spatially heterogeneous
motion at lower densities is a continuous transition with
known critical exponents, both static’>”*> and dynamic.”” The
transition into the classical jammed phase may be brought
about by a reduction in temperature, increase in particle
density, and the application of stress. In most classical solids,
the ratio of the shear to bulk modulus is a number of order
unity (e.g., 1 in many conventional three-dimensional solids).
However, at the jamming threshold, this ratio tends to zero.
Thus, jammed systems may be very susceptible to shear
stresses. This softness is one of the peculiar features that
sets jammed systems apart from conventional solids.%® As
seen by our mapping from classical to quantum systems, the
classical jamming transition has a quantum analog with similar
dynamics. Replicating the mapping of the previous section
[and, in particular, Eq. (10) therein], we may derive an analog
quantum system harboring a zero temperature transition with
similar critical exponents. The classical zero temperature
critical point (“point J”*)®7" may rear its head anew in the
form of quantum critical jamming (at a new critical point:
“quantum point J”) in bosonic systems. A schematic of the
phase diagram of the associated quantum system is depicted
in Fig. 1.

We may ascertain dynamical exponents from those re-
ported for the classical jamming system.”” The classical
low-temperature system (7,; — 0) maps, according to Eq. (7),
onto a zero temperature quantum system in its large-mass
limit. Bosons of infinite mass are not trivial due their statistics.
Specifically, for a classical system of monodisperse soft
spheres with a repulsive force that is linear in the amount
of compression, it was found that the correlation length £ and
relaxation time 7 scale”® as

68-79

E~ (s =7 T~ (s =) (76)
In Eq. (76), p denotes the density with p; being the
critical density at the jamming transition marked by point J.
Equation (76) describes how the spatial and time scales diverge
as the density is increased and approaches (from below) the
density at the jamming transition. The correlation length in
the jammed systems is set by the scale at which the number of
surface zero modes is balanced by bulk effects. Taken together,
these imply that, on approaching the transition, the relaxation
time increases much more rapidly than the correlation length
T ~ & with a large effective dynamical exponent z =~ 4.6.
By use of Eq. (10), the same behavior is to be expected for
the quantum system governed by the corresponding quantum
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1/density

FIG. 1. (Color online) The phase diagram of the zero temperature
quantum jamming transition with line of J points. The phase
boundaries and axes were formed by employing the phase diagram
of the classical system (Ref. 69) and examining the duality between
the classical and quantum systems, i.e., comparing the parameters in
the quantum system of Eq. (7) with the classical system defined by
Egs. (5) and (6).

potential Vquanwum. The classical (and thus quantum) jamming
exponents are the same in two and three dimensions.

It may be remarked that a similar dynamical exponent was
found for a Bose glass model suggested to describe vortex lines
in high-temperature superconductors.?” In physical terms, for
charged bosons, the jamming transition constitutes a transition
from a metallic system (when the system is unjammed and
behaves as a fluid) to a jammed state (an insulator). We note
earlier work rationalizing metal to insulator transitions in terms
of electron pinning.®! In the bosonic jamming that we describe
above, no pinning is present and the transition is driven by
particle interactions.

For completeness, we make one further remark concerning
the physics of the jamming transition and its relation to
the glass transitions that we discussed hitherto. As found
in Refs. 82 and 83, p; is an important density as it marks
a change in the properties of the glass phase. That is, the
conventional jamming transition does not correspond to a
transition into a glass. Rather, point J and its finite temperature
extension lies deep within a glassy phase that already onsets
at a far lower density. The jamming transition at point J
is associated with changes in the mechanical/structural prop-
erties of the glass phase. It is this transition that we depict
in Fig. 1.

As in earlier sections, we see that time scales increase far
more precipitously than spatial correlation lengths.

One of the hallmarks of classical jammed systems is that
the spectral density of vibrational excitations D(w) is constant
at the jamming threshold.”>3* [In conventional Debye solids,
D(w) ~ w*.] This near constant value of D(w) in jammed
systems is independent of potential, dimension, and size of
the system. Away from the jamming threshold, D(w) exhibits
a plateau down to a frequency w*. Below w*, the system
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behaves similar to a Debye solid. This crossover frequency
w™ veers to zero on approaching the transition. The number
of low-energy modes is set by the absence of constraints and
Maxwell counting arguments. This constant density of states
implies an enormous increase in the low-frequency excitations.
These excitations can be probed by examining the trajectory
of a single particle and Fourier transforming its motion. The
corresponding modes are quasilocalized (or resonant) at low
frequency below w*. Above w*, these modes are extended but
still do not look at all like plane waves.%

We now turn to the quantum systems derived by the
mapping of Eq. (7). The results concerning the density of
the modes in classical systems hold unchanged for their dual
quantum counterparts. This is so as the dynamical matrix D is
formed by the second derivatives of the potential Vy relative
to the displacements. Thus, the same statement about mode
density of states that appear in classical jammed systems holds
verbatim in the classical potential Viy which we use to construct
the quantum many-body potential Vouanwm({X}) from Eq. (7).
It follows that any appearance of zero-energy (bulk or surface)
modes in the classical system will identically hold also in the
quantum system.

VI. BOSONIC LATTICE SYSTEMS

Thus far, we largely focused on continuum viscous classical
systems which, as we have seen, mapped onto continuum
bosonic systems. We briefly remark here on classical lattice
systems which similarly exhibit dynamical heterogeneities
and a jamming-type transition. (In Sec. IIIC, we further
briefly expanded on the extension of our derivation for lattice
systems.) References 41 and 42 studied, respectively, the
2DN3 and 3DN2 models on the square and cubic lattice
models in d = 2 and 3 dimensions. We provided details for
these lattice models in the discussion of models of class
(d) in Sec. IV. Similar to the continuum systems that we
largely focused on until now, these models may be regarded
as those of classical hard-core spheres. These finite-range
hard-core interactions on the lattice thwart crystallization
and lead to an amorphous jammed phase at high density.
Following the mapping reviewed in Sec. III, the quantum Bose
counterpart of such systems is that of dominant hard-sphere
interactions augmented by contact sticky interactions. In the
classical systems, simulation starts**> with an infinitely fast
quenching wherein particles are added whenever possible and
diffuse otherwise; this process is halted when the desired
density is reached. A clear increase was noted in the length
scales that characterize the dynamical heterogeneity.*'**> The
continuum jamming transition discussed earlier may have
a lattice counterpart for Cooper pairs as we now elaborate
on. The jammed phase is that of an insulating (or Mott)
phase of hard-core bosons forming a Hubbard-type system.
Specifically, a natural quantum counterpart to the N3 (N2)

model is given by an extended Bose-Hubbard—type®>*® model
with infinite hard-core repulsions
=—tY (blb; +He)+ UZn (i — 1)+ Y Vijun;,
(i) ij
(77
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where V;; — oo for lattice sites 7 and j which are fewer than
four (or three) steps apart and the onsite Hubbard repulsion
U is divergent (U — o00) as well. The Hubbard term leads to
a penalty only when there is a double or higher occupancy.
Based on our considerations thus far, we expect to obtain
the quantum bosonic counterpart to the classical jamming
transitions found in the classical 2DN3 and 3DN2 models.
This bosonic system may have all of the characteristics of the
classical jammed system including dynamical heterogeneities
and a large dynamical exponent z. For completeness, we
briefly comment on the difference between the lattice system
of Eq. (77) and the “Bose glass” first introduced in Ref. 85.
The Bose glass appears in the bare (i.e., that with V;; = 0) dis-
ordered rendition of Eq. (77) with the general Bose-Hubbard
Hamiltonian (with general finite repulsion U) being further
augmented by a local chemical potential term — ), u;n;
wherein p; is a spatially nonuniform random quantity. By
contrast, the lattice Hamiltonian of Eq. (77) as well as the
continuum models that we discussed in earlier sections are
free of disorder. The amorphous characteristics that these
clean systems may exhibit are borne out of “self-generated”
randomness,®” not randomness that is present in the parameters
defining the system.

VII. ELECTRONIC SYSTEMS WITH
PAIRING INTERACTIONS

Up to now, building on and extending the mapping between
classical dissipative systems and zero temperature bosonic
theories, we focused on hard-core bosons. We now turn to the
ground states of Fermi systems. In particular, in this section,
we will consider standard electronic systems with pairing
interactions

H = Zeka cka—i-Z;V,;*c c 7 =TT (78)
ki

where o =1, | is the spin-polarization index and V}, is the
mteractlon strength between the Cooper pairs |k 1 —k J)and
|l s -7 7). As is well known (and is readily verified), the
Fermi bilinears

br=cl !

FTURR (79)

Nl

P =i

corresponding to the creation/annihilation of Cooper pairs
satisfy hard-core Bose algebra. We next consider what oc-
curs if, within the ground state and pertinent excited states
generated by the (quenched or other) system time evolution,
the occupancies of the single-particle states are correlated
inasmuch as the electronic states on which the standard pairing
Hamiltonian of Eq. (78) operates can only be created by
applications of Cooper-pair creation operators on the vacuum
[i.e., if the ground and relevant time evolved states are
constrained to be invariant under the combined operations
of parity (k — —k) and time reversal (o — —o)]. When the
ground state is strictly invariant under the combined effect of
these symmetries, we may express the Hamiltonian of Eq. (78)
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as a bilinear in the hard-core Bose operators

H =Y Qede;+ Vibib. (80)

kI
The hard-core (Fourier space) Bose algebra of the creation
and annihilation operators [as, in particular, manifest in the

relation (Z;{)z = 0 mandating that no more than one boson
can occupy any given (Fourier space) site] is identical to that
of raising and lowering operators in the spin S = % system.
Thus, a simple extension of the standard real-space Matsubara-

Matsuda transformation®® is given by
_T — _
b; — S;, b/?_>S/?‘ (81)

Substituting Eq. (81) into Eq. (80), we arrive at an XY model.
In situations in which the band dispersion ¢;, is nearly flat (and
may be omitted for fixed particle number), in determining the
ground state(s), we must only find the pairing V that affects
pair hopping. Similar considerations apply in real space
when Cooper pairs are short ranged and may be replaced
by real-space hard-core bosons. In such cases, whenever the
system is dominated by hard-core contact interactions between
the bosonic Cooper pairs we see, replicating our analysis
thus far, at zero temperature, that the system may undergo
a jamming-type transition between an itinerant and jammed
phase at sufficiently high densities or pressure. In this case, it
displays rapidly increasing relaxation times concomitant with
spatial correlations that do not increase as dramatically as the
relaxation times do on approaching this transition.

VIII. POSSIBLE IMPLICATIONS
FOR EXPERIMENTAL DATA

We now, very briefly, turn to a discussion of possible data
analysis of experiments. One of the main messages of our
work is that classical physics associated with overdamped
classical systems can rear its head in the quantum arena.
Correspondingly, data analysis which has led to much insight
in the study of classical glasses and other damped systems
may be performed anew for quantum systems. A principal
correlation function which we focused on in this work has
been that of the four-point correlation function of Eq. (3).
This correlation function need not be directly measured in
real time. For instance, scanning tunneling spectroscopy (STS)
data taken at different positions and bias voltages may provide
a valuable conduit towards the evaluation of the four-point
correlator when it is expressed as an integral over frequencies
(or associated bias voltages). Rather trivially with ¢(x,V)
denoting the local density of states at location x for a bias
voltage V, and e* the electronic charge, the corresponding
four-point correlation function is given by

Ga(f = 5.) = f AV dVsdVsd Vi (36 V)S(E. Va)

x 8¢(3,V3)8¢ (3, Vi))e'« ' V1HYD
—C(X,1)C(y,1), 82)

with the two-point autocorrelation function

C(%,1) = / dV (8¢(X,V)sp(X,0)e' V. (83)
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As seen from our discussion in Sec. VA concern-
ing the Fourier-transformed four-point correlation function
Sglassical (g 1) in Eq. (74), quantum dynamical heterogeneities
may be manifest in this correlation function.

IX. CONCLUSIONS

A central result of this work is the exact temporal
correspondence of Eq. (10) that spans both equilibrium and
nonequilibrium dynamics in general time-dependent systems
(so long as either the initial or the final state of the classical
system is that of thermal equilibrium). This equality relates (i)
the autocorrelation function of Eq. (8), for any quantity © when
evaluated for the classical dissipative system of Eq. (5) with
a many-body potential energy Vy, to (ii) the autocorrelation
function of the very same corresponding quantum operator
O in a dual bosonic system governed by the Hamiltonian of
Eq. (7). When fused with known results for dissipative classical
systems, this extremely general equality immediately leads to
numerous nontrivial effects which we introduced and readily
proved as a matter of principle. These include the following:

(1) Quantum dynamical heterogeneities (QDH). We illus-
trated that similar to classical systems even in the absence
of disorder, bosonic systems can, at zero temperature, ex-
hibit spatially nonuniform zero-point motion. Of course, in
translationally invariant systems, the average (time-averaged)
dynamics is uniform. However, at any given time, there are
particles that move more rapidly than others. We suggested
how experimental data may be analyzed to search for quantum
dynamical heterogeneities in electronic systems.

(2) The length scale characterizing the zero temperature
QDH, the four-point correlation length &, (a trivial analog of
its classical counterpart) may increase as the dynamics of the
clean Bose system becomes progressively sluggish. However,
albeit its rise, this length scale may increase much more slowly
than the relaxation time. The far more rapid increase of the
relaxation time as compared to readily measured length scales
is a hallmark of many electronic systems. Cast in terms of
quantum critical scaling (if and when it might be realized), the
effective dynamical exponent z capturing the relation between
correlation lengths and times is very large (z >> 1). Other
relations such as those of Eq. (75) may hold once they are
established for viscous classical systems.

(3) The dramatic increase of primary relaxation times
(which are far larger than the increase in conventional static
length scales) with classical temperature as given by Eq. (71)
[as well as the secondary relaxations of Eq. (72)] have
direct zero temperature quantum analogs wherein changes
in the classical temperature are replaced by a scaling of
effective mass of particles and form of the many-body potential
VQuantum({z})-

(4) Classical stretched exponential relaxations of the form
of Eq. (11) have quantum analogs in the form of Eq. (12).
In the quantum arena, there are sinusoidal modulations that
multiply stretched exponential-type relaxations.

(5) Similar to classical systems, quantum systems may
jam at high densities or pressure notwithstanding zero-point
motion. The character of the jamming transition in zero
temperature quantum systems is identical to that of their
corresponding classical finite temperature counterparts. As
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the classical systems exhibit a critical point at the jamming
transition (at “point J”’), so do their bosonic counterparts. As a
result, we established the existence of a quantum critical point
associated with a quantum critical jamming of a hard-core
Bose system. As in the other systems that we discussed, the
characteristic relaxation time diverges more precipitously than
the correlation length on approaching the transition (“quantum
point J”’) with a large effective dynamical exponent z >~ 4.6.

(6) The continuum theories that we predominantly focused
on may have a broad applicability as continuum theories
describe the same physics as their lattice renditions do in the
vicinity of critical points. In Sec. VI, we discussed specific
possible lattice renditions.

(7) Theresults that we derived for zero temperature bosonic
theories suggest similar features in electronic systems. In some
cases, as discussed in Sec. VII, finding the ground states
of interacting electronic systems can be cast in terms of a
corresponding zero temperature hard-core Bose problem.

(8) The general mapping of Eq. (81) between hard-core
bosons to § = % spin systems [in either momentum (I:) or real
(¥) space] along with the complementary relation for the z
component of the spin

[bb; — 1/21 — S (84)

in the same space allows us to derive similar results for certain
spin § = % systems. Spin models may exhibit transitions from
spin-liquid-type phases to disorder-free glassy systems. In
these systems, dynamical heterogeneities concomitant with
a notable increase in relaxation-time scales may arise.

Thus, with the aid of the viscous classical many-body
quantum correspondence of Eq. (10), we trivially established
all of these results without the need to perform various standard
and far more laborious computations for quantum systems.

Other possible extensions of our results include the relation
between localization (or caging) in classical systems and
their corresponding quantum counterparts. We may similarly
examine disordered systems; for a random classical potential
VN, the corresponding quantum potential Vouanum 1S also
random. Although our focus has been on supercooled systems,
Eq. (10) implies that also standard (nonglassy or spin-glassy)
classical transitions have corresponding zero temperature
quantum analogs.

As we discussed in detail [see Eq. (28)], if we are given a
known quantum ground state, we may find the corresponding
effective classical potential. With the aid of calculations on
how the correlation functions of the classical system depend on
time as parameters in the classical potential are varied, we may
then determine the corresponding time-dependent correlation
functions of the dual many-body quantum system. That is,
we need not always find corresponding quantum systems to
classical systems; the Fokker-Planck mapping also enables
us to go in the opposite direction from quantum systems to
classical ones.

Numerous related extensions may be considered. For in-
stance, we may consider magnetic and other systems in which
fermionic degrees can be formally integrated out, leaving only
effective bosonic degrees of freedom. Consequences for the
Ward identity relating four-point with two-point correlation
functions (as in, e.g., Ref. 89) may be considered. The
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Langevin equation may be reexamined for single vortex
crossing of a narrow superconducting wire at finite temperature
to derive the mapping for the quantum dual at absolute zero
temperature.””®! This would offer an alternative path for
exploring the viability of quantum phase slips in nanowires.
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APPENDIX A: ANALYTIC CONTINUATION OF
CLASSICAL STRETCHED EXPONENTIALS

In Sec. IIIB, we explicitly illustrated how a Wick-type
rotation ¢ — it relates time-dependent correlation functions
in the viscous classical systems to those in the dual quantum
many-body theories. For the sake of clarity, we explicitly
discuss how the analytic continuation of the classical cor-
relation function should be performed in some simple yet
empirically relevant cases for dynamical response functions
in viscous classical systems wherein Eq. (11) describes the
dynamical response. In Eq. (12), we provided the quantum
dual to exponentially stretched classical dynamics. In this
brief Appendix, we describe how this result is derived and
outline how analytic continuations for other response functions
of classical viscous systems may be analytically continued
following such a Wick-type rotation.

If Gelassical(t) = Y, Bye™"/™ then, trivially, the quantum
response function will be uniquely defined and given by Ry =
Zn B, cos(t/1,). The same applies, of course, for distributions
of modes [whence the discrete sum over overdamped classical
modes 7 is replaced by an integral with some density of modes
f(2)]. In the limit of an infinite number of modes,

[o.¢]

Gclassical(t) = /(‘) df/f(f/) CXP(—I/T/), (Al)
with f a distribution that generally is no longer a sum of
Dirac delta functions. As stated in Eq. (9), GQuanum(t) =
Gclassical(it)- ThllS,

oo

GQuantum(t) = \/0' d‘[,f(‘E,) eXp(_it/T,) (AZ)
In the complex t’ plane, for any “well-behaved” function
f(z’) that is localized in a region of positive finite 7/, the

184202-15



NUSSINOV, JOHNSON, GRAF, AND BALATSKY

integral of Eq. (Al) may be performed along any contour
connecting the origin and the T = oo along the real line such
that the contour lies exclusively in the right half complex plane
(the pertinent Stokes wedge in this case) of a positive real
component of 7/, i.e., Re{t’} > 0. Of particular interest to
us is the stretched exponential form given by Gejassical(t) =
Aexp[—(t/7)°]. Now, in performing the substitution t — it
to implement the transformation from Eq. (Al) to (A2), we
perform the rotation

= lewﬁp 0 — Pfinal » (A3)

with @ana = m(4n + 1)/2 where n is an integer. The integral
of Eq. (A2) remains well defined in the top complex half-plane
of a positive real part of 1/, i.e.,, Re{t’} > 0 (the rotated
counterpart of the original Stokes wedge). If ¢ is varied
continuously from 0 to 7 /2, there remain contours from ¢/ = 0
to oo that appear in the original Stokes wedge of Re{t’} > 0
that pass exclusively through the region Im{t’} > 0; the
integrals along these contours can be analytically continued
when ¢ is continuously increased from O to w /2. Thus, we
may perform the rotation of Eq. (A3) continuously increasing
@ torepresent i as e'™/? and replace t — te'™/? in the argument
of Gelassical(f). This is what we have done in Eq. (12). For
other choices of n for ¢, = 7 (4n + 1)/2 as we continuously
vary ¢ from its initial value of zero, there will always appear
situations where the original Stokes wedge will have no
overlap with its rotated counterpart. Thus, the substitution
of t — te'™/? in the argument of G qsicai(t) is the only one
that may be implemented out of the possible choices in
Eq. (A3) in order to evaluate the integral of Eq. (A2). This
forms the correct analytic continuation of the original real-time
correlation function of G jugsical(f) of Eq. (A1).

APPENDIX B: RELATION BETWEEN THE CLASSICAL
AND QUANTUM POTENTIALS IN THE EIKONAL
APPROXIMATION TO THE SCHRODINGER EQUATION

Following, we briefly review the eikonal approximation and
then discuss its relation to the connection between the classical
and quantum many-body potentials as seen in Egs. (7) and (28).
This link lies at the heart of Madelung hydrodynamics.?’
Towards this end, we write the wave function as a function
of only the phase, the eikonal approximation

Wy = Ae'S, (B1)

and substitute this into the Schrodinger equation with the
Hamiltonian in the second line of Eq. (7), then we will arrive
at

1 - N i
N VIS ’ Vi uantum X = st B2
2m2i:( 7 + Vounun (15 + - Zmlz ’s. (B2

For time-independent solutions, % = 0 and Eq. (B2) rather
trivially becomes

. 1 -
Vouanum(1X) = ) [L 7S — %(visf]. (B3)

2m

If we now invoke the correspondence iS < —BVn/2, then
Eq. (B1) will transform into Eq. (28) and, similarly, Eq. (B3)
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will become Eq. (7) relating the quantum potential energy
VQuantum to the classical potential energy V.

APPENDIX C: SIMPLE EXAMPLES OF
CLASSICAL-TO-QUANTUM CORRESPONDENCE
AND THEIR ASPECTS

To elucidate some aspects of the known mapping be-
tween classical dissipative and quantum systems reviewed in
Sec. Il A, we discuss several extremely simple examples in d
spatial dimensions.

1. Noninteracting particles

For a (free) system having zero potential everywhere, the
quantum ground-state wave function is a constant in real
space. That this is so can be seen by our mapping and the
form of the classical probability in Eq. (28) for vanishing
classical potential energy. By Eq. (7), the same also occurs for
the quantum potential, which is everywhere zero: Vouanum =
Vn = 0.

2. Zero-energy bound state

In d spatial dimensions, for a short-range attractive po-
tential, the zero-energy eigenstate outside the potential, up to
volume normalization factors, is given by

Invoking Eq. (28), we see that, in this case,
VN (X)) = 2T (d — 2)In [X]. (C2)

Indeed, substituting Eq. (C2) into (7) and recalling that, in its

scalar “S-wave” (or “¢ = (07) representation, the Laplacian is
given by V? = j% + <14 it s readily verified, as it must
self-consistently be, that the corresponding quantum potential

Vouanum = 0 in the region outside the range of the interaction.

3. Harmonic oscillator systems

As seen by Eq. (7), classical systems with harmonic
potentials Vy map onto quantum systems with similar (up to
innocuous shifts) harmonic potentials Vguanwm = VN + const.
That this must be so is readily seen as the ground state Wy of
simple quantum harmonic potentials is given by a Gaussian.
Using Eq. (28), we see that this indeed relates to a harmonic
classical potential Vy as it must. As can be further seen
from Eq. (32), in the case of harmonic classical systems, the
operators A and AT are trivially related to the raising and
lowering operators in the quantum harmonic problem (and
indeed the Gaussian form of the ground state can, as is very
well known, be seen from the requirement that the annihilation
operator must yield zero when acting on the ground state).

4. Scaling invariance of time and space

As is well known, for a homogeneous classical potential
Vn({X}) which scales as a power (say, p) of the spatial
coordinates |x|, the equations of motion are invariant under a
simultaneous rescaling of the time coordinates. This analysis
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is typically done for inertial systems. When replicated for the
overdamped system of Eq. (5), we find that

)?i — a)_c',»,t — bt, (C3)

where b plays the role of the scaling parameter A discussed
in the Introduction and a plays the role of A!/%. This leads
to an invariance of Eq. (5) if b = a>~”. By contrast, in the
corresponding quantum problem of the Schrodinger equation
with the Hamiltonian of Eq. (7), a scaling such as that of
Eq. (C3) is possible only for a single case: that of a potential
Vn({X}) that is a logarithmic function of its arguments (e.g.,
as in Eq. (C2)) or a constant. For this particular case, we find
that b = a?. Correspondingly, the time scales as ¢t ~ |x|? as in
diffusion or the free-particle quantum problem.

APPENDIX D: SLATER-JASTROW FORMS

The general results presented thus far may, in some
instances, be generalized to describe fermions. A limited
extension is the one concerning the evolution starting off from
an initial Slater-Jastrow—type fermionic wave function. As we
have emphasized earlier, if the V;; in Eq. (62) are symmetric
under the exchange of i and j, the resulting wave function
obeys Bose statistics. This symmetry is maintained for the
ground state as it is a Jastrow function given by Eq. (28).
Fermionic wave functions are afforded by the product of the
symmetric boson ground state and an antisymmetric term

Wy = Wpy. (D1)

The function x can take any antisymmetric form. For
simplicity, we choose it to be a Slater determinant of the form

ekt kit gikiFy
1 1 ei;z-;l el’/;y;z . eiEZ‘;N

X=ovn il : N

eikN';l eik}v‘fz ...

(D2)

with © the volume of the system.
As ia,\IJ() = H\I—’(),

10;(Wox) = x (0 Wo) + Wo(id: x) = x [H + Esiaeer] Yo,
(D3)

where Egjq 1S the energy of the free-particle system described
by x and

H(Wox) = (To + Vauantum)(Wo X)- (D4)

The potential energy operator, in the second term, leads to
X (Vuantum Wo). The kinetic energy operator T, generates three
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terms of, respectively, the forms Y (VZ)¥ %, Y. (Vax) -
(V,r?), and > X(Vflﬂ). The first and the last of these terms
represent the term proportional to Egjer and the original
bosonic kinetic energy, respectively. The segond term, that
of the mixed gradients, is proportional to ) k,. For a system
invariant under parity, this sum vanishes. Up to an innocuous
phase factor, the evolution given an initial fermionic wave
function of Eq. (D1), will be thus identical to that with the
bosonic wave function W and all correlation functions will be
identical to those which we earlier computed for the bosonic
system. That is, the general time-dependent correlation func-
tions given an initial fermionic state of Eqs. (28) and (D1) will
adhere to the general # — it rule, which we detailed in earlier
sections. A notable difference by comparison to the bosonic
case, however, is that the wave function of Eq. (D1) at an
initial (or at a final) time is, generally, not a ground state of the
Hamiltonian H.

APPENDIX E: COMPLEX WAVE FUNCTIONS

We now briefly suggest and elaborate on several extensions
of our calculations thus far. We will illustrate and suggest how
our results may hold for general systems with complex wave
functions. This will enable us to go from a given quantum
mechanical problem (including that of a fermionic system) to
a corresponding classical one.

The similarity transformation of Egs. (21), (27), and (29)
captures a simple mathematical identity between the gener-
alized probability distribution of a classical system, obeying
the Fokker-Planck dynamics with an operator Hgp [Eq. (19)],
and the wave function obeying the Schrodinger equation of
the quantum dual Hamiltonian H. Given this relation, it
is possible to, formally, consider extensions in which the
function evolving with the Fokker-Planck dynamics need not
be a probability distribution. Most of our results concerning
temporal correlations may hold under such a generalized
interchange if we invoke Eq. (28) to define (when given a
quantum problem) a corresponding classical system which
need not be a bona fide physical Boltzmann distribution as
in the scalar bosonic systems which we primarily focused
on thus far and employ |Wo|? as the initial (or final) time
weight in the multiple time classical correlation function of
Sec. III B. In Appendix B, we examined a formally imaginary
counterpart to VN and explicitly demonstrated how it leads to
standard results. Thus, given a quantum wave function, we may
consider its logarithm to correspond to a classical potential Vy.
Wave functions of spinless Fermi systems can not be purely
positive, and for these complex (as well as divergent) potentials
will formally arise. There may be subtleties, however, in our
imaginary-time (+ — it) analytic continuations when VJ is not
purely real (and the system effectively not purely dissipative)
which are more complex than those which we invoked thus
far in our analysis of real Vi, which led to response functions
of pure damped modes and their superpositions such as those
which we encountered in Eq. (11) (see also Appendix A).
Physically, these are related to analogs of classical systems
with instantons and tunneling events (the behavior for the
pure dissipative system) when these further exhibit nondamped
oscillatory behavior.
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