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We review some recently published methods to represent atomic neighborhood environments, and analyze
their relative merits in terms of their faithfulness and suitability for fitting potential energy surfaces. The crucial
properties that such representations (sometimes called descriptors) must have are differentiability with respect
to moving the atoms and invariance to the basic symmetries of physics: rotation, reflection, translation, and
permutation of atoms of the same species. We demonstrate that certain widely used descriptors that initially look
quite different are specific cases of a general approach, in which a finite set of basis functions with increasing
angular wave numbers are used to expand the atomic neighborhood density function. Using the example system
of small clusters, we quantitatively show that this expansion needs to be carried to higher and higher wave
numbers as the number of neighbors increases in order to obtain a faithful representation, and that variants of
the descriptors converge at very different rates. We also propose an altogether different approach, called Smooth
Overlap of Atomic Positions, that sidesteps these difficulties by directly defining the similarity between any
two neighborhood environments, and show that it is still closely connected to the invariant descriptors. We test
the performance of the various representations by fitting models to the potential energy surface of small silicon
clusters and the bulk crystal.

DOI: 10.1103/PhysRevB.87.184115 PACS number(s): 07.05.Tp, 36.40.Mr

I. INTRODUCTION

The appropriate representation of atomic environments is a
crucial ingredient of algorithms used in modern computational
chemistry and condensed matter physics. For example, in
structure search applications,1 each configuration depends
numerically on the precise initial conditions and the path
of the search, so it is important to be able to identify
equivalent structures and detect similarities. In molecular
dynamics simulations of phase transitions,2 one needs good
order parameters that are capable of detecting changes in the
local order around atoms. Typically, the representation is in
terms of a descriptor (also called a fingerprint), a tuple of real
valued functions of the atomic positions, e.g., bond lengths,
bond angles, etc. “In silico” drug discovery3,4 and other areas
of chemical informatics also rely on characterizing molecules
using descriptors. When constructing interatomic potentials
and fitting potential energy surfaces (PES),5–8 the driving
application behind this work, the functional forms depend on
components of a carefully chosen representation of atomic
neighborhoods.

While specifying the position of each atom in a Cartesian
coordinate system provides a simple and unequivocal descrip-
tion of atomic configurations, it is not directly suitable for
making comparisons between structures: the list of coordinates
is ordered arbitrarily and two structures might be mapped to
each other by a rotation, reflection, or translation so that two
different lists of atomic coordinates can, in fact, represent
the same or very similar structures. A good representation is
invariant with respect to permutational, rotational, reflectional,
and translational symmetries, while retaining the faithfulness
of the Cartesian representation. In particular, a system of
invariant descriptors q1,q2, . . . ,qM is said to be complete
if it uniquely determines the atomic environment, up to
symmetries. It is said to be overcomplete if it contains spurious
descriptors in the sense that a proper subset of {q1,q2, . . . ,qM}
is, by itself, complete. If a representation is complete, then

there is a one-to-one mapping (i.e., a bijection) between
the genuinely different atomic environments and the invari-
ant tuples comprising the representation. An overcomplete
representation assigns potentially many distinct descriptors
to a given atomic structure, but guarantees that genuinely
different atomic structures will never have identical descriptors
associated with them: the function relating representations to
atomic structures is a surjection.

Fitting potential energy surfaces (PESs) and electrostatic
multipole moment surfaces of small molecules to data gen-
erated by first-principles electronic-structure calculations has
been a mainstay of computational chemistry for decades.7,9–27

Typically, when modeling the PES of a small group of
atoms, the list of pairwise distances is used or, equivalently,
some transformed version of the interatomic distances, e.g.
reciprocal6 or exponential.7 This description works when the
number of atoms is fixed. Even in this case, a seemingly new
configuration is obtained by just permuting the order of atoms,
i.e., crucial symmetries may be missing in this framework.
Braams and Bowman7 remedied this last shortcoming by
using polynomials of pairwise distances, constructed such that
each term is invariant to the permutation of identical atoms.
Computer code is available that generates the permutationally
invariant polynomials automatically7 (up to 10 atoms), but this
approach still does not allow for varying number of atoms in
the database of configurations.

In order to generate interatomic potentials for solids or large
clusters, capable of describing a wide variety of conditions,
the number of neighbors that contribute to the energetics of an
atom has to be allowed to vary, with the symmetry-invariant
descriptors remaining continuous and differentiable. Even
though it is possible to allow the dimensionality M to change
with the number of neighbors, for the purpose of function
fitting it is more practical that M remains the same. None of
the traditional representations fulfill this criterion. Recently,
however, a number of new, promising descriptors have been
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proposed together with potential energy surfaces based on
them.5,8,24,28,29 Behler and Parrinello’s “symmetry functions”5

were used to generate potentials for silicon,30 sodium,31 zinc
oxide,32 and water33 amongst others; Bartok et al. employed
the bispectrum8 to fit a many-body potential for crystalline
phases and defects in diamond. Sanville et al. used a subset
of internal coordinates to fit silicon potentials.28 Rupp et al.
used the ordered eigenvalues of the Coulomb matrix to fit
atomization energies29 of a set of over 7000 small organic
molecules. At this point, it is not clear which method of
representing atomic neighborhoods will prove to be optimal
in the long term. We attempt to disentangle this issue from
the rather complex details of generating first-principles data
and fitting PES, and separately consider the problem of
constructing good descriptors.

The most well-known invariants describing atomic neigh-
borhoods are the bond-order parameters originally proposed
by Steinhardt et al.34 Here, we show that the bond-order
parameters form a subset of a more general set of invari-
ants called the bispectrum.35 The formally infinite array of
bispectrum components provides an overcomplete system of
invariants, and by truncating it one obtains representations
whose sensitivity can be refined at will. We relate the
bispectrum to the representation proposed by Behler et al.5,36

and show that, together with another descriptor set described
below, their angular parts are all simple polynomials of the
same set of canonical invariants.

The paper is organized as follows. In Sec. II, we briefly
recall how potential energy surfaces are constructed using
invariant descriptors. In Sec. III, we describe a number of
descriptors, starting with a simple distance metric between
atomic configurations which will be used as a reference to
assess the faithfulness of all other descriptors but which itself
is not differentiable. In Sec. IV, we introduce a continuous
and differentiable distance metric for constructing potential
energy surfaces, called Smooth Overlap of Atomic Positions
(SOAP), which has superior properties. In Sec. V, we show
numerical tests that help assess the degree of completeness
and faithfulness of various descriptors and SOAP, and also
show and explore their performance in fitting models for small
silicon clusters and the bulk crystal.

II. POTENTIAL ENERGY SURFACE FITTING

The main motivation behind this paper is to define and
assess a family of invariant descriptors to be used for fitting
interatomic potentials, or potential energy surfaces (PESs). In
the construction of potentials for materials applications, the
short-range part of the total energy is decomposed into atomic
contributions

Eshort =
∑

n

ε
(
q

(n)
1 , . . . ,q

(n)
M

)
,

where ε is the contribution of the nth atom, and q(n) =
(q(n)

1 , . . . ,q
(n)
M ) is a system of descriptors characterizing the

local atomic environment.
Traditionally, such atomic energy functions are defined

in closed form. However, recently, there has been a lot of
interest in using more flexible, nonparametric PESs, derived
from computing the total energy and its derivatives at a

certain set {q(1), . . . ,q(N)} of “training” configurations using
first-principles calculations. A crucial question then is how to
fit ε to the computed data points. The simplest approach is
to use a linear fit, while Behler and Parrniello advocate using
artificial neural networks (NN),5 and Bartók et al. use Gaussian
Approximation Potentials (GAP).8 However, ultimately, each
of these procedures result in a PES of the form

ε(q) =
N∑

k=1

αkK(q,q(k)), (1)

where N is the number of training configurations, which
are indexed by k. The coefficient vector α ≡ (α1, . . . ,αN )
is determined by the fitting procedure, and K is a fixed
(nonlinear) function, called the kernel, whose role, intuitively,
is to capture the degree of similarity between the atomic
environments described by its two arguments. Clearly, then,
the choice of descriptors, in particular, their invariance to
symmetries, as well as the choice of kernel, are critical
ingredients to obtaining good quality PESs.

In general, the kernel K can be interpreted as a covariance
function, and therefore it must be symmetric and positive
definite [meaning that K(q,q′) = K(q′,q) and for any nonzero
vector α of coefficients,

∑
k

∑
� αkα�K(q(k),q(�)) > 0).

Rasmussen and Williams37 present a number of such kernels,
some of the simplest ones being the following.

The dot-product (DP) kernel is defined as

KDP(q,q′) =
∑

j

qjq
′
j , (2)

which, when substituted into Eq. (1), results in

ε(q) =
N∑

k=1

αk

∑
j

qj q
(k)
j =

∑
j

qj

N∑
k=1

αkq
(k)
j

=
∑

j

qjβj ≡ q · β,

i.e., the linear regression on the descriptor elements with
coefficient vector β.

When using artificial neural networks with NH hidden units,
the atomic energy function ε is given by

ε(q) = b +
NH∑
j=1

vjh(q,uj ), (3)

where b is the bias, v the vector of unit weights, h is the transfer
function, and {uj }NH

j=1 the unit parameters.37 In the limit of an
infinite number of hidden units, for specific transfer functions
it is possible to reformulate Eq. (3) in the form of Eq. (1)
with well-defined covariance functions.37–39 For example, for
h(q,u) = tanh(u0 + ∑

ujqj ), the corresponding kernel is39

KNN(q,q′) ∼ −|q − q′|2 + const.

Finally, the squared exponential (SE) kernel that we have
used in the past with the GAP8 and in some of the examples
below is

KSE(q,q′) = exp

⎛⎝−
∑

j

(q − q ′)2

2σ 2
j

⎞⎠ . (4)
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III. DESCRIPTORS

Among the applications mentioned in the Introduction,
some require representing the geometry of an entire molecule,
while for others one needs to describe the neighborhood of an
atom perhaps within a finite cutoff distance. While these two
cases are closely related, the descriptors for one are not directly
suitable for the other, although often the same idea can be used
to derive representations for either case. Following, we focus
on representing the neighbor environment of a single atom,
but for some cases we briefly mention easy generalizations
that yield global molecular descriptors.

For N neighboring atomic position vectors {r1,r2, . . . ,rN }
taken relative to a central atom, the symmetric matrix

� =

⎡⎢⎢⎣
r1 · r1 r1 · r2 . . . r1 · rN

r2 · r1 r2 · r2 . . . r2 · rN

...
...

. . .
...

rN · r1 rN · r2 . . . rN · rN

⎤⎥⎥⎦ (5)

is, according to Weyl,40 an overcomplete array of basic
invariants with respect to rotation, reflection, and translation.
However, � is not a suitable descriptor because permutations
of atoms change the order of rows and columns. For example,
swapping atoms 1 and 2 results in the transformed matrix⎡⎢⎢⎣

r2 · r2 r2 · r1 . . . r2 · rN

r1 · r2 r1 · r1 . . . r1 · rN

...
...

. . .
...

rN · r2 rN · r1 . . . rN · rN

⎤⎥⎥⎦ . (6)

To compare two structures using their Weyl matrices � and
�′, we define a reference distance metric

dref = min
P

‖� − P�′PT ‖, (7)

where P is a permutation matrix and the minimization is over
all possible permutations. This metric is not differentiable at
locations where the permutation that minimizes (7) changes. It
would also be intractable to calculate exactly for large numbers
of atoms, but nevertheless we will use this metric to assess the
faithfulness of other representations for a small system. Other,
differentiable invariants shown later in this paper are, however,
closely related to the elements of �.

One way to generate permutationally invariant differen-
tiable functions of the Weyl matrix is to compute its eigenval-
ues; indeed, a very similar descriptor was recently used to fit the
atomization energies of a large set of molecules.29 However,
the list of eigenvalues is very far from being complete since
there are only N eigenvalues, whereas the dimensionality
of the configuration space of N neighbor atoms is 3N − 3
(after the rotational symmetries are removed). It is also unclear
how to make the descriptors based on the eigenspectrum con-
tinuous and differentiable as the number of neighbors varies.

The Z matrix, or internal coordinates, is a customary set
of rotationally invariant descriptors usually used to describe
the geometry of entire molecules, but it is not invariant to
permutations of atoms. The Z matrix is complete, but in
contrast to the Weyl matrix of basic invariants which are
based solely on bond lengths and bond angles, it is a minimal
set of descriptors that also contains some dihedral angles. It
is typically used to construct force fields, in which the total

energy is written as a sum over bond, angle, and dihedral terms.
Such an expression for the energy is of course permutationally
invariant due to the summation over all bonds, angles, and
dihedral terms, and all of these terms can indeed be made
continuous and differentiable as atoms enter or leave each
other’s neighborhood. However, we are not considering the Z

matrix here because such an ansatz for the atomic energy is
itself not general: it manifestly omits all terms that involve
more than four atoms. While this has traditionally been
accepted for biological systems and organic molecules, the
comparative success of embedded atom models for metals and
semiconductors shows that fully many-body terms (involving
the positions of up to 20 neighbors or more) is likely to be
essential for an accurate description of these materials.

Another straightforward way to compare structures is based
on pairing the atoms from each and finding the optimal rotation
that brings the two structures into as close an alignment as
possible. For each pair of structures {ri}Ni=1 and {r′

i}Ni=1, it is
possible to order the atoms according to their distance from the
central atom (or center of mass, in case we want to compare
entire molecules) and compute

�(R̂) =
N∑
j

|ri − R̂r′
i |2,

where R̂ represents an arbitrary rotation (including the
possibility of a reflection). We can then define the distance
between two configurations as

� = min
R̂

�(R̂). (8)

This distance clearly has all the necessary invariances and
completeness properties, but, like dref , it is not suitable for
parametrizing potential energy surfaces because it is again not
differentiable: the reordering procedure and the minimization
over rotations and reflections introduce cusps.

In the field of molecular informatics, one popular descriptor
is based on the histogram of pairwise atomic distances,41

similar to Valle’s crystal fingerprint.42 We will not consider
these here because they are unsuitable for fitting PES, as they
are clearly not complete: e.g., from six unordered distance
values it is not necessarily possible to construct a unique
tetrahedron, even though the number of degrees of freedom is
also six. Figure 1 shows two tetrahedra that were constructed
such that the edges in each correspond to the same set of six
distances. The tetrahedra are manifestly different, which can
also be seen by comparing the lists of angles, shown in Table I.
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FIG. 1. Two distinct tetrahedra, constructed from the same set of
six distances.
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TABLE I. Angles of the tetrahedra shown in Fig. 1.

42.66◦ 49.32◦ 49.63◦ 50.36◦ 52.84◦ 54.10◦ 55.50◦ 61.74◦ 68.63◦ 70.40◦ 77.84◦ 86.98◦

41.78◦ 42.66◦ 49.63◦ 50.36◦ 50.42◦ 50.80◦ 61.74◦ 61.77◦ 67.81◦ 68.63◦ 86.98◦ 87.42◦

A. Bond-order parameters

As a first step in deriving continuous invariant representa-
tions of atomic environments, we define the atomic neighbor
density function associated with a given atom as

ρ(r) =
∑

i

wZi
δ(r − ri), (9)

where the index i runs over the neighbors of the atom within
some cutoff distance, wZi

is a unique weight factor assigned
according to the atomic species of i, and ri is the vector from
the central atom to neighbor i. For clarity, we will omit the
species weights from now on, and assume a single atomic
species, but none of our results rely on this. Determining
which neighbors to include in the summation can be done
by using a simple binary valued or a smooth real valued
cutoff function of the interatomic distance, or via a more
sophisticated procedure, e.g., Voronoi analysis.34 The atomic
neighbor density is already invariant to permuting neighbors
because changing the order of the atoms in the neighbor list
only affects the order of the summation. To simplify the
following derivation, for now we omit the information on
the radial distance to the neighbors, but will show later how
the radial information can be included. The atomic neighbor
density function can then be expanded in terms of spherical
harmonics:

ρ(r̂) =
∞∑
l=0

l∑
m=−l

clmYlm(r̂), (10)

where r̂ is the point on the unit sphere corresponding to the
direction of the vector r, thus ρ(r̂) is the projection of ρ(r)
onto the unit sphere S2.

The properties of functions defined on the unit sphere
are related to the group theory of SO(3), the group of
three-dimensional rotations. Spherical harmonics form an
orthonormal basis set for L2(S2), the class of square integrable
functions on the sphere:

〈Ylm|Yl′m′ 〉 = δll′δmm′ ,

where the inner product of functions f and g is defined as

〈f |g〉 =
∫

f ∗(r̂)g(r̂) d�(r̂),

where the surface element d�(r̂) can be expressed in terms of
the polar angles θ and φ as

d�(r̂) = sin θ dθ dφ,

and the coefficients clm are given by

clm = 〈ρ|Ylm〉 =
∑

i

Ylm(r̂i). (11)

The quantities Qlm introduced by Steinhardt et al.34 are
proportional to the coefficients clm. Dividing by N , the number

of neighbors of the atom (within a finite cutoff distance)
provides the atomic order parameters

Qlm = 1

N

∑
i

Ylm(r̂i). (12)

Furthermore, averaging Eq. (12) over atoms in the entire
system gives a set of global order parameters

Q̄lm = 1

Nb

∑
ii ′

Ylm(r̂ii ′),

where Nb is the total number of atom pairs included in the
summation, and we wrote rii ′ for the vector connecting atom
i to its neighbor i ′. Both sets are invariant to permutations of
atoms and translations, but still depend on the orientation of the
reference frame. However, rotationally invariant combinations
can be constructed as

Ql =
[

4π

2l + 1

l∑
m=−l

(Qlm)∗Qlm

]1/2

and (13)

Wl =
l∑

m1,m2,m3=−l

(
l l l

m1 m2 m3

)
Qlm1Qlm2Qlm2 (14)

for atomic neighborhoods and

Q̄l =
[

4π

2l + 1

l∑
m=−l

Q̄∗
lmQ̄lm

]1/2

,

W̄l =
l∑

m1,m2,m3=−l

(
l l l

m1 m2 m3

)
Q̄lm1Q̄lm2Q̄lm2

for the entire structure. The factor in parentheses is the Wigner
3jm symbol,43 which is zero unless m1 + m2 + m3 = 0.

The numbers Ql and Wl are called second-order and third-
order bond-order parameters, respectively. It is possible to
normalize Wl such that it does not depend strongly on the
number of neighbors:

Ŵl =
[

l∑
m=−l

(Qlm)∗Qlm

]−3/2

Wl.

For symmetry reasons, only coefficients with l � 4 have
nonzero values in environments with cubic symmetry and
l � 6 for environments with icosahedral symmetry. Different
values correspond to crystalline materials with different sym-
metry, while the global order parameters vanish in disordered
phases, such as liquids. Bond-order parameters were originally
introduced for studying order in liquids and glasses,34 but
were soon adopted for a wide range of applications. They have
been used to study the free energy of clusters,44,45 melting
of quantum solids,46 nucleation,47 as well as to serve as
reaction coordinates in simulations of phase transitions48,49

and glasses50 and also to generate interatomic potentials.51
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B. Power spectrum

Using some basic concepts from representation theory, we
now prove that the second-order bond-order parameters are
indeed rotationally invariant, then we show a more general
set of third-order invariants,35 of which the Qs and the W s
are a subset. An arbitrary rotation R̂ operating on a spherical
harmonic function Ylm transforms it into a linear combination
of spherical harmonics with the same l index:

R̂ Ylm =
l∑

m′=−l

Dl
mm′(R̂)Ylm′,

where the Dl(R̂) matrices are known as the Wigner matrices,
which form the irreducible representations of the three-
dimensional rotation group SO(3). The elements of the Wigner
matrices are given by

Dl
mm′(R̂) = 〈Ylm|R̂|Ylm′ 〉. (15)

It follows that the rotation operator R̂ acts on the function ρ as

R̂ρ = R̂
∑
l=0

l∑
m=−l

clmYlm =
∑
l=0

l∑
m=−l

clmR̂Ylm

=
∑
l=0

l∑
m=−l

l∑
m′=−l

clmDl
mm′(R)Ylm′

≡
∑
l=0

l∑
m′=−l

c′
lmYlm′ ,

thus the column vector cl of expansion coefficients transforms
under rotation as

cl → Dl(R̂)cl .

Making use of the fact that rotations are unitary operations
on L2(S2), it is possible to show that the matrices Dl are unitary,

Dl†Dl = I,

and therefore c†l cl transforms according to

pl ≡ c†l cl → (c†l D
l†)(Dlcl) = c†l cl , (16)

i.e., is invariant under rotation. We call pl the rotational power
spectrum due to the analogy with the familiar power spectrum
of ordinary Fourier analysis.

We also note that the elements of cl transform under
reflection about the origin as

cl → (−1)l cl , (17)

thus the power spectrum is also invariant to this symmetry
operation. A comparison with Eqs. (11), (12) and (13) shows
that the second-order bond-order parameters are related to the
power spectrum via the simple scaling

Ql =
(

4π

2l + 1
pl

)1/2

.

The power spectrum is clearly not a complete descriptor for
a general function f (r̂) on the sphere, for example, consider
the two different functions

f1 = Y22 + Y2−2 + Y33 + Y3−3

and

f2 = Y21 + Y2−1 + Y32 + Y3−2,

which both have the same power spectrum p2 = 2 and p3 =
2 (with all other components equal to zero). However, for
the restricted class of functions which are sums of a limited
number of delta functions [such as the atomic neighbor density
ρ in Eq. (9)], the power spectrum elements turn out to be
polynomials of the basic invariants of Weyl. Using numerical
experiments we demonstrate in Sec. V that for a fixed number
of neighbors a certain set of power spectrum components is
likely to be overcomplete.

C. Bispectrum

We generalize the concept of the power spectrum to
obtain a larger set of invariants via coupling different angular
momentum channels.35,52 Let us consider the direct product
cl1 ⊗ cl2 , which transforms under a rotation as

cl1 ⊗ cl2 → (Dll ⊗ Dl2 )
(
cl1 ⊗ cl2

)
.

It follows from the representation theory of compact groups
that the direct product of two irreducible representations can be
decomposed into a direct sum of irreducible representations.53

In the case of the SO(3) group, the direct product of two
Wigner matrices can be decomposed into a direct sum of
Wigner matrices

D
l1
m1m

′
1
D

l2
m2m

′
2
=

∑
l,m,m′

Dl
mm′

(
Cl l1l2

mm1m2

)∗
C

l l1l2
m′m′

1m
′
2
, (18)

where Cl l1l2
mm1m2

denote the Clebsch-Gordan coefficients or,
using more compact notation,

Dll ⊗ Dl2 = (
Cl1l2

)† ⎡⎣ l1+l2⊕
l=|l1−l2|

Dl

⎤⎦ Cl1l2 , (19)

where Cl1l2 denote the matrices formed of the Clebsch-Gordan
coefficients. These are themselves unitary, so the vector
Cl1l2 (cl1 ⊗ cl2 ) transforms as

Cl1l2
(
cl1 ⊗ cl2

) →
⎡⎣ l1+l2⊕

l=|l1−l2|
Dl

⎤⎦ Cl1l2
(
cl1 ⊗ cl2

)
. (20)

Writing out the block-diagonal matrix in the square brackets
as

⎡⎣ l1+l2⊕
l=|l1−l2|

Dl

⎤⎦ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D|l1−l2 |

D|l1−l2 |+1

. . .

Dl1+l2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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we see that each block selects a particular slice of the vector
in Eq. (20), which transforms according to a given Dl matrix.
We give a new symbol to these slices, gl l1l2 , so that the original
vector is their direct sum

Cl1l2
(
cl1 ⊗ cl2

) ≡
l1+l2⊕

l=|l1−l2|
gl l1l2 ,

and each gl l1l2 transforms under rotation as

gl l1l2 → Dlgl l1l2 .

Analogously to the power spectrum, we can now define the
bispectrum as the collection of scalars

bl l1l2 = c†l gl l1l2 ,

which are invariant to rotations:

bl l1l2 = c†l gl l1l2 → (
clDl

)†
Dlgl l1l2 = c†l gl l1l2 .

It follows from Eq. (17) that those elements of the bispectrum
where l1 + l2 + l is odd change sign under reflection about
the origin. If invariance to reflection is required, we take the
absolute value of these components or omit them from the
descriptor.

Rewriting the bispectrum formula as

bl l1l2 =
l∑

m=−l

l1∑
m1=−l1

l2∑
m2=−l2

c∗
lmCl l1l2

mm1m2
cl1m1cl2m2 , (21)

the similarity to the third-order bond-order parameters be-
comes apparent. Indeed, the Wigner 3jm symbols are related
to the Clebsch-Gordan coefficients through(

l1 l2 l3
m1 m2 m3

)
= (−1)l1−l2−m3

√
2l3 + 1

C
l1l2l3
m1m2−m3

, (22)

and by substituting the spherical harmonics identity Ylm =
(−1)mY ∗

l−m in Eq. (12), it follows that

Qlm = (−1)m(Qlm)∗. (23)

Substituting the identities (22) and (23) into the definition (14),
we obtain

Wl = 1√
2l + 1

×
l∑

m1,m2,m3=−l

(−1)−mCl l l
m1m2−m3

Qlm1Qlm2 (−1)m(Qlm3 )∗,

thus the third-order parameters Wl are seen to be proportional
to the diagonal elements of the bispectrum bl l l . Noting that
Y00 ≡ 1, the coefficient c00 is the number of neighbors N , and
using C

l 0 l2
m 0 m2

= δl l2δmm2 , the bispectrum elements l1 = 0, l =
l2 are identical to the previously introduced power spectrum
components:

bl 0 l = N

l∑
m=−l

l∑
m2=−l

c∗
lmδmm2clm2

= N

l∑
m=−l

c∗
lmclm = Npl ,

therefore,

Ql ∝ √
pl ∝

√
bl 0 l ,

Wl ∝ bl l l .

The first few terms of the power spectrum and bispectrum
for an atom with three neighbors are shown in the following,
where θii ′ is the angle between the bonds to neighbors i and i ′,
and the sums are over all the neighbors. The fact that dihedral
angles do not need to feature here can be seen by considering
the Weyl matrix, which is known to be a complete descriptor,
and it consists solely of the bond lengths to and angles between
the neighbors:

p0 = 9

4π
,

p1 = 3

4π

(∑
ii ′

cos θii ′ + 3

)
,

p2 = 5

4π

(
3

2

∑
ii ′

cos2 θii ′ + 6

)
,

p3 = 7

4π

(
5

2

∑
ii ′

cos3 θii ′ − 3

2

∑
ii ′

cos θii ′ + 3

)
,

p4 = 9

16π

(
35

2

∑
ii ′

cos4 θii ′ − 15
∑
ii ′

cos2 θii ′ + 13

)
,

b211 =
√

15

128π3

[
3

4

( ∑
ii ′

cos θii ′

)2

+ 3

2

∑
ii ′

cos2 θii ′ + 5
∑
ii ′

cos θii ′

]
,

b321 = 150

8

√
7

π3

[
5

2

∑
ii ′

cos3 θii ′

+ 5

4

∑
ii ′

cos2 θii ′
∑
ii ′

cos θii ′ − 1

2

(∑
ii ′

cos θii ′

)2

+ 4
∑
ii ′

cos2 θii ′ − 2
∑
ii ′

cos θii ′ + 18

]
.

D. Radial basis

Thus far, we neglected the distance of neighboring atoms
from the central atom by using the unit-sphere projection of the
atomic environment. One way to introduce radial information
is to complement the spherical harmonics basis in Eq. (10)
with radial basis functions gn (Ref. 54):

ρ(r) =
∑

n

∑
l=0

l∑
m=−l

cnlmgn(r)Ylm(r̂). (24)

If the set of radial basis functions is not orthonormal,
i.e., 〈gn|gm〉 = Snm �= δnm, after obtaining the coefficients
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c′
nlm with

c′
nlm = 〈gnYlm|ρ〉,

the elements cnlm are given by

cnlm =
∑
n′

(S−1)n′nc
′
n′lm.

In practice, when constructing the bispectrum, either c′
nlm or

cnlm can be used.
Rotational invariance must only apply globally, and not to

each radial basis separately, therefore the angular momentum
channels corresponding to different radial basis functions need
to be coupled. So, although extending Eqs. (16) and (21)
simply as

pnl =
l∑

m=−l

c∗
nlmcnlm,

bnl l1l2 =
l∑

m=−l

l1∑
m1=−l1

l2∑
m2=−l2

c∗
nlmCl l1l2

mm1m2
cnl1m1cnl2m2

provides a set of invariants describing the three-dimensional
neighborhood of the atom, this can easily lead to a poor
representation if the radial basis functions do not sufficiently
overlap. The different radial shells will only be weakly
coupled, and the representation will have spurious quasi-
invariances to rotating subsets of atoms at approximately the
same distance, as illustrated in Fig. 2.

To avoid this, it is necessary to choose basis functions that
are sensitive over a wide range of distances, although this may
reduce the sensitivity of each radial basis function because
they are varying very slowly. The fine tuning of the basis set is
rather arbitrary, and there is no guarantee that a choice exists
that is optimal or even satisfactory for all systems of interest.

We suggest constructing radial functions from cubic
and higher-order polynomials φα(r) = (rcut − r)α+2/Nα for

0 rcutr1 r2

r

g
n
(r

)

1
2
3
4

FIG. 2. Example of weakly overlapping radial basis functions
gn(r) [cf. Eq. (24)]. Atoms 1 and 2 at distance r1 and r2 from the
center become decoupled as their contribution to the power spectrum
or bispectrum elements is weighed down by the product gn(r1)gn(r2),
which is rather small for all n.

0 rcut
r

g
n
(r

)

1
2
3
4

FIG. 3. Example of radial basis functions gn(r), as defined in
Eq. (25) for n = 1,2,3,4.

α = 1,2, . . . ,nmax, normalized on the range (0,rcut) using

Nα =
√∫ rcut

0
(rcut − r)2(α+2)dr =

√
r2α+5

cut

2α + 5
.

The orthonormalized construction

gn(r) =
nmax∑
α=1

Wnαφα(r) (25)

guarantees that each radial function returns smoothly to zero
at the cutoff with both the first and the second derivatives
equal to zero (see Fig. 3). The matrix W of linear combination
coefficients is obtained from the overlap matrix as

Sαβ =
∫ rcut

0
φα(r)φβ(r)dr =

√
(5 + 2α)(5 + 2β)

5 + α + β
,

W = S−1/2.

Another way to avoid radial decoupling is to define the
rotational invariants in such a way that they couple different
radial channels explicitly, for example, as

pn1n2l =
l∑

m=−l

c∗
n1lm

cn2lm and (26)

bn1n2l l1l2 =
l∑

m=−l

l1∑
m1=−l1

l2∑
m2=−l2

c∗
n1lm

Cl l1l2
mm1m2

cn2l1m1cn2l2m2 .

Here, each invariant has contributions from two different
radial basis channels, and so we ensure that they can not
become decoupled, but at the price of increasing the number
of invariants quadratically or even cubically in the number of
radial basis functions used.

E. Four-dimensional power spectrum and bispectrum

We now present an alternative to the SO(3) power spectrum
and bispectrum that does not need the explicit introduction of
a radial basis set, but still represents atomic neighborhoods in
three-dimensional space. We start by projecting the atomic
neighborhood density within a cutoff radius rcut onto the
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surface of the four-dimensional sphere S3 with radius r0. The
surface of S3 is defined as the set of points s ∈ R4, where
s2

1 + s2
2 + s2

3 + s2
4 = r2

0 , while the polar angles φ, θ , and θ0 of
s are defined so that

s1 = r0 cos θ0,

s2 = r0 sin θ0 cos θ,

s3 = r0 sin θ0 sin θ cos φ,

s4 = r0 sin θ0 sin θ sin φ.

We choose to use the projection

r ≡
⎛⎝ x

y

z

⎞⎠ →
φ = arctan(y/x)
θ = arccos(z/|r|)
θ0 = π |r|/r0

,

where r0 > rcut is a parameter, thus rotations in three-
dimensional space correspond to a subset of rotations in
four-dimensional space. This projection is somewhat similar to
a Riemann projection, except in that case θ0 would be defined
as

θ0 = 2 arctan(|r|/2r0),

implying

θ0 ≈ |r|/r0 for |r| � r0.

In contrast to the Riemann projection, our choice of θ0 allows
more sensitive representation of the entire radial range. The
limit r0 = rcut projects each atom at the cutoff distance to
the south pole of the four-dimensional sphere, thus losing all
angular information. Too large an r0 would project all positions
onto a small surface area of the sphere around the north pole,
requiring a large number of basis functions to represent the
atomic environment. In practice, a large range of r0 values
works well, in particular, we used r0 = 4

3 rcut.
To illustrate the procedure, Fig. 4 shows the Riemann

projections for one and two dimensions, which can be easily
drawn.

An arbitrary function ρ defined on the surface of a four-
dimensional (4D) sphere can be numerically represented using
the hyperspherical harmonic functions U

j

m′m(φ,θ,θ0) (Refs. 43
and 55):

ρ =
∞∑

j=0

j∑
m,m′=−j

c
j

m′mU
j

m′m, (28)

which, in fact, correspond to individual matrix components of
the Wigner (i.e., rotational) matrices, as defined in Eq. (15). In
this case, the arguments represent a rotation by θ0 around
the vector pointing in the (φ,θ ) direction, which can be

FIG. 4. Two- and three-dimensional Riemann constructions that
map a flat space onto the surface of a sphere in one higher dimension.

transformed to the conventional Euler angles, and j takes
half-integer values.

The hyperspherical harmonics form an orthonormal basis
for L2(S3), thus the expansion coefficients c

j

m′m can be
calculated via

c
j

m′m = 〈
U

j

m′m

∣∣ρ〉
,

where 〈. . . | . . .〉 denotes the inner product defined on the four-
dimensional hypersphere

〈f |g〉 =
∫ π

0
dθ0 sin2 θ0

∫ π

0
dθ sin θ

∫ 2π

0
dφ

×f ∗(θ0,θ,φ) g(θ0,θ,φ).

Although the coefficients c
j

m′m have two indices besides j , for
each j it is convenient to collect them into a single vector cj .
Similarly to the three-dimensional case, rotations act on the
hyperspherical harmonic functions as

R̂U
j

m′
1m1

=
∑
m′

2m2

R
j

m′
1m1m

′
2m2

U
j

m′
2m2

,

where the matrix elements R
j

m′
1m1m

′
2m2

are given by

R
j

m′
1m1m

′
2m2

= 〈
U

j

m′
1m1

∣∣R̂∣∣Uj

m′
2m2

〉
.

Hence, the rotation R̂ acting on ρ transforms the coefficient
vectors cj according to

cj → Rj cj .

The unitary Rj matrices are the SO(4) analogs of the Wigner
matrices Dl of the SO(3) case above, and it can be shown that
the direct product of the four-dimensional rotation matrices
decomposes according to

Rjl ⊗ Rj2 = (
Hj1j2

)† ⎡⎣ j1+j2⊕
j=|j1−j2|

Rj

⎤⎦ Hj1j2 ,

which is the four-dimensional analog of Eq. (19). The coupling
constants Hj1j2 , or Clebsch-Gordan coefficients of SO(4),
are55,56

H
jmm′

j1m1m
′
1,j2m2m

′
2
≡ Cj j1j2

mm1m2
C

j j1j2

m′m′
1m

′
2
.

The rest of the derivation continues analogously to the 3D
case, and finally we arrive at the expression for the SO(4)
bispectrum elements

Bj j1j2 =
j1∑

m′
1,m1=−j1

c
j1

m′
1m1

j2∑
m′

2,m2=−j2

c
j2

m′
2m2

×
j∑

m′,m=−j

Cj j1j2
mm1m2

C
j j1j2

m′m′
1m

′
2

(
c
j

m′m
)∗

,

while the SO(4) power spectrum is

Pj =
j∑

m′,m=−j

(
c
j

m′m
)∗

c
j

m′m.

The SO(4) bispectrum is invariant to rotations of four-
dimensional space, which include three-dimensional rotations.
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TABLE II. Number of components in the full and diagonal
bispectrum as a function of the band limit jmax.

jmax 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

Bj j1j1 1 2 5 7 12 15 22 26 35 40
Bj j1j2 1 4 11 23 42 69 106 154 215 290

However, there are additional rotations, associated with the
third polar angle θ0, which, in our case, represents the radial
information. In order to eliminate the unphysical invariance
with respect to rotations along the third polar angle, we modify
the atomic density as

ρ(r) = δ(0) +
∑

i

δ(r − ri),

i.e., we add the central atom, with the coordinates (0,0,0),
as a fixed reference point, anchoring the neighborhood. The
resulting invariants Bj j1j2 have only three indices, but contain
both radial and angular information, and have the required
symmetry properties. There are no adjustable parameters in
the definition of these invariants, apart from the projection
parameter r0 discussed above.

The number of components in the truncated representation
depends on the band limit jmax in the expansion (28). For
symmetry reasons, the bispectrum components with nonin-
teger j1 + j2 + j change sign under reflection and, because
of this reason, we omitted them. Just as in the 3D case,
the representation is probably overcomplete, i.e., most of
the bispectrum components are redundant. To reduce the
number of redundant elements, we only used the “diagonal”
components, i.e., j1 = j2. Table II shows the number of
bispectrum elements for increasing band limit values.

F. Parrinello-Behler descriptor

We include in the tests below the descriptor suggested
by Parrinello and Behler5 using the parameters published
recently57 (and henceforth termed PB) (see Fig. 5). The

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/Å

G
2 (

r
)

η = 0 .001 Bohr− 2

η = 0 .010 Bohr− 2

η = 0 .020 Bohr− 2

η = 0 .035 Bohr− 2

η = 0 .060 Bohr− 2

η = 0 .100 Bohr− 2

η = 0 .200 Bohr− 2

η = 0 .400 Bohr− 2

FIG. 5. Radial basis functions G2 in the Parrinello-Behler (PB)
type descriptors (Ref. 57).

θ

co
s
(l

θ
)

0 π/4 π/2 3π/4 π−1

0

1

1
2
3
4

FIG. 6. Examples of the angular basis functions for lmax = 4 of
the AFS descriptor.

two- and three-body symmetry functions (in their terminology)
are

G2
α =

∑
i

exp[−ηα(ri − Rsα)2]fc(ri)

and

G4
α = 21−ζα

∑
i,i ′

(1 + λα cos θii ′ )
ζα

× exp
[−ηα

(
r2
i + r2

i ′ + r2
ii ′

)]
fc(ri)fc(ri ′)fc(rii ′),

where the cutoff function is defined as

fc(r) =
{ [

cos
(

πr
rcut

) + 1
]/

2 for r � rcut,

0 for r > rcut.

Different values of the parameters η,Rs,ζ,λ can be used to
generate an arbitrary number of invariants.

G. Angular Fourier series

Notice that the angular part of the power spectrum, bispec-
trum (Sec. III C) and the descriptors defined by Parrinello and
Behler (Sec. III F) are all simple polynomials of the canonical
set

∑
ii ′ cosm θii ′ for integer m, which, in turn, are sums of

powers of the basic invariants of Weyl. We include in the tests
in the next section a further descriptor set, which we call the
angular Fourier series (AFS) descriptor formed by a system of
orthogonal polynomials of the basic invariants, conveniently
chosen as the Chebyshev polynomials Tl(x), as

Tl(cos θ ) = cos(lθ ), (see Fig. 6)

and incorporate the radial information using the basis functions
defined in Eq. (25), leading to

AFSn,l =
∑
i,i ′

gn(ri)gn(ri ′) cos(lθii ′).

IV. A SIMILARITY MEASURE BETWEEN ATOMIC
ENVIRONMENTS

It is clear from the preceding section that there is a lot
of freedom in constructing descriptors, e.g., in the choice of
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angular band limit, the radial basis and also which subset of
the basis elements are actually used. As we have shown in
Sec. II, the key to PES fitting is not the descriptors per se, but
the similarity measure K(q,q′) that is constructed from the
descriptors. This suggests an alternative approach, in which
descriptors are bypassed altogether, and a similarity measure
between atomic neighborhoods is constructed directly. The
criteria for a good similarity measure is not only that it
be invariant to symmetry operations of the atoms of each
environment and have a well-defined limit when comparing
two identical or two very different environments, but also that
it change smoothly with the Cartesian atomic coordinates.

We define the similarity of two atomic environments
directly as the inner product of two atomic neighbor densities
ρ and ρ ′ [defined in Eq. (9)],

S(ρ,ρ ′) =
∫

ρ(r)ρ ′(r)dr. (29)

This clearly satisfies the permutational invariance criterion.
Integrating Eq. (29) over all possible rotations of one of the
environments leads to a rotationally invariant similarity kernel

k(ρ,ρ ′) =
∫

|S(ρ,R̂ρ ′)|ndR̂

=
∫

dR̂

∣∣∣∣∫ ρ(r)ρ ′(R̂r)dr

∣∣∣∣n . (30)

It is easy to see that for n = 1, all angular information
(the relative orientation of individual atoms) is lost because
the order of the two integrations can be exchanged, but
for n � 2 the kernel retains the angular information of the
original environments. The obvious practical difficulty with
this construction is the evaluation of the angular integral, which
is addressed next.

A. Analytic evaluation a smooth similarity kernel

Retaining the Dirac-delta functions in the definition of
the atomic neighbor density would lead to a discontinuous
similarity kernel in that the dissimilarity between two envi-
ronments with very close but not identical atomic positions
would be large. Therefore, instead of the Dirac-delta functions,
we construct the atomic neighbor density using Gaussians,
expanded in terms of spherical harmonic functions as58

exp(−α|r − ri |2)

= 4π exp
[−α

(
r2 + r2

i

)] ∑
lm

ιl(2αrri) Ylm(r̂) Y ∗
lm(r̂i),

(31)

where ιl are the modified spherical Bessel functions of the first
kind. The atomic neighbor density function is then defined as
a sum of Gaussians with one centered on each neighbor,

ρ(r) =
∑

i

exp(−α|r − ri |2) =
∑

i

∑
lm

ci
lm(r)Ylm(r̂), (32)

where

ci
lm(r) ≡ 4π exp

[−α
(
r2 + r2

i

)]
ιl(2αrri)Y

∗
lm(r̂i).

The overlap between an atomic environment (unprimed)
and a rotated environment (primed) is

S(R̂) ≡ S(ρ,R̂ρ ′) =
∫

dr ρ(r)ρ ′(R̂r)

=
∑
i,i ′

∑
l,m

l′,m′,m′′

Dl′
m′m′′ (R̂)

∫
dr ci∗

lm(r)ci ′
l′m′(r)

∫
d r̂ Y ∗

lm(r̂)Yl′m′′ (r̂)

=
∑
i,i ′

∑
l,m,m′

Ĩ l
mm′ (α,ri,ri ′)D

l
mm′(R̂) =

∑
l,m,m′

I l
mm′D

l
mm′(R̂),

where the integral of the coefficients is

Ĩ l
mm′(α,ri,ri ′)

= 4π exp
[−α

(
r2
i + r2

i ′
)/

2
]
ιl (αriri ′) Ylm(r̂i)Y

∗
lm(r̂i ′)

and

I l
mm′ ≡

∑
i,i ′

Ĩ l
mm′ (α,ri,ri ′ ). (33)

The rotationally invariant kernel with n = 2 then becomes

k(ρ,ρ ′) =
∫

dR̂ S∗(R̂)S(R̂)

=
∑

l,m,m′λ,μ,μ′

(
I l
mm′

)∗
I λ
μμ′

∫
dR̂ D∗(R̂)lmm′D(R̂)λμμ′

=
∑

l,m,m′

(
I l
mm′

)∗
I l
mm′ , (34)

where we used the orthogonality of the Wigner matrices.
Although in practice we always use n = 2, it is easy to derive
the kernel for any arbitrary order n using the Clebsch-Gordan
series in Eq. (18). For n = 3, using the fact that S as defined
in Eq. (29) is real and positive,

k(ρ,ρ ′) =
∫

dR̂ S(R̂)3,

which can be shown to be

k(ρ,ρ ′) =
∑

I
l1
m1m

′
1
I

l2
m2m

′
2
I l
mm′C

lm
l1m1l2m2

Clm′
l1m

′
1l2m

′
2
. (35)

Raising a positive-definite function to a positive integer power
yields a function that is similarly positive definite. In our
context, raising k to some power ζ � 2 has the effect of ac-
centuating the sensitivity of the kernel to changing the atomic
positions, which we generally found to be advantageous in
experiments. Therefore, following normalization by dividing
by

√
k(ρ,ρ)k(ρ ′,ρ ′), we define the general form of what we

call the SOAP kernel as

K(ρ,ρ ′) =
(

k(ρ,ρ ′)√
k(ρ,ρ)k(ρ ′,ρ ′)

)ζ

, (36)

where ζ is any positive integer.

B. Radial basis and relation to spectra

Note that I l
mm′ needs to be computed for each pair of

neighbors, which can become expensive for a large number of
neighbors. If we expand Eq. (32) using radial basis functions
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gn(r), the atomic neighbor density function becomes

ρ(r) =
∑

i

exp(−α|r − ri |2) =
∑
nlm

cnlmgn(r)Ylm(r̂), (37)

and similarly, the ρ ′ environment is expanded using coeffi-
cients c′

nlm. If the radial basis functions form an orthonormal
basis, i.e., ∫

dr gn(r)gn′(r) = δnn′ ,

the sum in Eq. (33) becomes

I l
mm′ =

∑
n

cnlm(c′
nlm′)∗. (38)

The significance of this result becomes apparent when substi-
tuting Eq. (38) into (34) to obtain

k(ρ,ρ ′) =
∑

n,n′,l,m,m′
cnlm(c′

nlm′ )∗(cnlm)∗c′
n′lm′

≡
∑
n,n′,l

pnn′lp
′
nn′l (39)

since

pnn′l ≡
∑
m

cnlm(cn′lm)∗ (40)

is exactly the power spectrum [cf. Eq. (26)] and, analogously,
p′

nn′l is the power spectrum of the primed environment.
Furthermore, the kernel in Eq. (39) is the dot product of the
power spectra [cf. Eq. (2)]. Analogously, the kernel for n = 3,
defined in Eq. (35), can be expressed as

k(ρ,ρ ′) =
∑

n1,n2,n

l1,l2,l

bn1n2nl l1l2b
′
n1n2nl l1l2

, (41)

where

bn1n2n l1l2l ≡
∑

cn1l1m1cn2l2m2 (cnlm)∗Clm
l1m1l2m2

[cf. Eq. (21)], and b′ is analogously the bispectrum of the
primed environment. In Fig. 7, we show the convergence of
the similarity kernel (39) with increasing number of angular
and radial basis functions in the expansion.

In this section, we started out by taking a different approach
to the problem of comparing neighbor environments, defining
the SOAP similarity kernel (36) directly, rather than going
via a descriptor. Equations (39) and (41), however, reveal the
relation between SOAP and the SO(3) power spectrum and
bispectrum: SOAP is equivalent to using the SO(3) power or
bispectrum descriptor together with Gaussian atomic neighbor
density contributions and a dot-product covariance kernel. The
advantage of SOAP over the previous descriptors is that it
eliminates some of the ad hoc choices that were needed before,
while retaining control over the smoothness of the similarity
measure using α, the width of the Gaussians in defining the
atomic neighborhood density in Eq. (32) and its sensitivity
using the exponent ζ in Eq. (36).

V. NUMERICAL RESULTS

We have derived methods to transform atomic neighbor-
hoods to descriptors that are invariant under the required
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FIG. 7. Convergence of the similarity kernel K(ρ,ρ ′) of two
arbitrary atomic environments with 15 neighbors at different sizes
of basis expansion. We used the parameters α = 0.4 and ζ = 1.0,
and the converged kernel is K(ρ,ρ ′) = −0.842 735. The top panel
shows the convergence of the kernel, evaluated according to Eq. (34),
with increasing number of spherical harmonics functions. The bottom
panel shows the convergence of the kernel, evaluated according to
Eq. (39), with increasing number of radial basis functions, while
keeping lmax = 16.

symmetry operators, however, their relative merit for fitting
potential energy surfaces remains to be seen. The faithfulness
of the representation, i.e., that no genuinely different config-
urations should map onto the same descriptor, is of particular
interest. As the inverse transformation from the descriptor
to atomic coordinates, apart from the simplest cases, is not
available, we describe numerical experiments in which we
attempt to reconstruct atomic coordinates from descriptors, up
to rotations, reflections, and permutations. Descriptors which
severely fail in this test are unlikely to be good for fitting
potential energy surfaces because entire manifolds of neighbor
environments that are genuinely different with widely varying
true energies will be assigned the same descriptor, resulting
in fitted PES with many degenerate modes. We compare and
test the performance of the various descriptors by generating
potential energy surfaces for silicon clusters and the bulk
crystal using our GAP framework.8

A. Reconstruction experiments

Recall that the elements ri · ri ′ of � defined in Eq. (5) are
an overcomplete set of basic invariants, which, in the case of
atoms scattered on the surface of a unit sphere (|ri | = 1), are
the cosines of the bond angles θii ′ . Thus, the angular parts
of all descriptors in Sec. III are permutationally invariant
functions of the basic invariants in �, and depending on the
actual number of descriptor elements used, they may form an
incomplete, complete, or overcomplete representation of the
atomic environment. In practice, one would like to use as few
descriptors as possible, partly due to computational cost, but
also because descriptors that use high exponents of the angles
are likely to lead to less smooth PESs, as will be shown below.
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Given N neighbors, the number of independent degrees of
freedom in the neighborhood configuration is 3N − 3, so we
need at most this many algebraically independent descriptor
elements. But, because the algebraic dependency relationships
between the descriptor elements are in general complicated, it
is unclear how many descriptor elements are actually needed
in order to make the descriptor complete and thus able to
uniquely specify an atomic environment of the N neighbors.
However, it is possible to conduct numerical experiments in
which we compare the descriptors of a fixed target with that of
a candidate structure and minimize the difference with respect
to the atomic coordinates of the candidate. In this way, we
determine if a representation is likely to be complete or not, and
in the latter case to characterize the degree of its faithfulness.

1. Descriptor matching procedure

The global minimum of the descriptor difference between
the target and the candidate is zero and is always attained on a
manifold due to the symmetries built into the descriptors, but
for an incomplete descriptor, many inequivalent structures will
also appear equivalent, thus enlarging the dimensionality of the
global minimum manifold. Furthermore, it can be expected
that the descriptor difference function has a number of local
minima.

In our experiments, we tried to recover a given target
structure after randomizing its atomic coordinates. For each
n (4 � n � 19) we used 10 different Sin clusters as targets,
obtained from a tight-binding59 molecular dynamics trajectory
run at a temperature of 2000 K. For each target cluster, we
selected one atom as the origin, randomized the positions of
its neighbors by some amount, and then tried to reconstruct
the original structure by minimizing the magnitude of the
difference between the descriptors of the fixed target and
the candidate as the atomic positions of the latter were
varied.

In contrast to a general global minimum search problem,
we have the advantage of knowing the target value of the
objective function at the global minimum. Also, the motivation
of our experiments is to find at least one configuration,
if it exists, that is genuinely different from the target, but
where the descriptors match within a predefined numerical
tolerance. Thus, it is sufficient to perform local, gradient-based
optimizations starting from random configurations, and reject
all local minima (by noting the small gradient of the objective
function while the value of the objective function is not small)
until we find one where the objective function (the difference
in the descriptors) is less than than the specified tolerance. If
the configuration thus obtained is genuinely different from the
target, the descriptor is shown to be incomplete.

In order to assess the success of the reconstruction pro-
cedure (i.e., whether the target and candidate configurations
are genuinely different or not) we employed the reference
measures defined in Eqs. (7) and (8). However, in some cases
it was difficult or impossible to find the right rotation R̂ in (8),
whereas dref in (7) proved reliable. For each dref , an initial
P was generated by ordering the atoms according to their
distances from the central atom, then the optimal permutation
was found using a simple random search in the space of
permutations.
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FIG. 8. Two Si8 clusters that differ by dref = 4.1 Å
2
. The black

atoms are taken as the origin in each environment, i.e., the centers
of rotations. In terms of Parrinello-Behler–type descriptors, the
difference

∑
α(Gα − G′

α)2 between the two atomic environments is
6 × 10−7. The bond lengths are shown in Ångströms.

We minimized the difference between the target and
candidate descriptors in the space of atomic coordinates of
the latter using the conjugate gradients algorithm, stopping the
minimization when either the gradient or the reference distance
dref became smaller than 10−8 Å2 and 10−2 Å2, respectively.
In order to ensure that structures deemed nonequivalent by
dref > 10−2 Å2 were genuinely different, we cross checked
them by noting the value of � from Eq. (8) and also employing
the atomic fingerprints suggested by Oganov and Valle.42 To
give a sense of the typical magnitude of the dref measure, the
actual difference in terms of atomic distances between two
example structures is shown in Fig. 8.

In the first set of reconstruction experiments, in order to
provide a fair comparison, the truncation of the formally
infinite set of descriptors was chosen in such a way that the
finite descriptors had roughly equal numbers of components:
51 in total for the SO(3) bispectrum and PB descriptors and 50
for the AFS and SO(3) power spectrum. This corresponds to a
truncation of the SO(4) bispectrum with 2jmax = 5 (the factor
of 2 on account of the half-integer nature of j ), the SO(3)
bispectrum with lmax = 4 and nmax = 3, the PB descriptor
with its published parameters,57 and the AFS and SO(3) power
spectrum using lmax = 9 and nmax = 5. We note that in the case
of the PB descriptor, the band limit of the angular descriptors
(corresponding to our lmax or jmax) was ζmax = 16 and only the
values ζ = 1,2,4,16 are used.

Figure 9 shows the quality of reconstruction for different
cluster sizes, based on the PB, AFS, SO(3) power spectrum,
SO(3) bispectrum, and SO(4) bispectrum as given by the ref-
erence distance dref achieved, averaged over 10 reconstruction
trials for each cluster size n. The general trend is the same
for all descriptors: as the number of neighbors increases,
the average dref increases, and thus the faithfulness of the
reconstruction decreases. Noting that the stopping criterion
for the reconstruction process was dref < 10−2 Å2, larger
randomization of the initial atomic coordinates (bottom panel)
reveals the poor representation power for all descriptors using
this parameter set for n > 10, and the neighbor configuration
becomes impossible to determine from the descriptor.

The poor quality of representation is partly attributable
to the decrease in sensitivity to the positions of atoms near
the cutoff. For example, Fig. 10 shows two Si8 clusters for
which none of the descriptors lead to perfect reconstructions
(resulting in the observed peak on Fig. 9). The atom marked
A in the figure is within the 6-Å cutoff, but close to it. In
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tures after randomization by 1.6 Å and minimization, as a function
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to the different descriptors are the same as in Fig. 9.

order to separate out this effect, we repeated the reconstruction
experiments with a radial cutoff of 9 Å (omitting the PB
descriptor now since there is no published parameter set for
this cutoff). The results are shown in Fig. 11 for the larger
initial randomization. The peak near n = 8 is now absent, and
the transition from faithful reconstruction [for n � 9 for the
SO(3) power spectrum and AFS, and for n � 12 for the SO(4)
bispectrum] to failure for larger n is much clearer.

Since all the descriptors are likely to be overcomplete
when the infinite series of the basis set expansion is not
truncated, the reconstruction quality is expected to increase
with increasing descriptor length. To verify this, Fig. 12
shows the reconstruction quality of the AFS descriptor for
varying truncations of the angular part of the basis set.
The representation becomes monotonically better for higher
angular resolutions. However, this comes at the price of
introducing ever more highly oscillating basis functions, which
might be less and less suitable for fitting generally smooth
potential energy surfaces.

Figure 12 also shows the achieved reference values when
using the SOAP similarity measure. In this case, rather than
minimizing the difference between descriptors, we optimized
the candidate structure until its normalized similarity to the
target as given by Eq. (36) was as close to unity as possible. In
contrast to the other descriptors, SOAP with the modest band
limit of lmax = 6 performs perfectly for all structures, without
showing any degradation for larger numbers of neighbors.

To verify that the above results are not affected by artifacts
of the minimization procedure, e.g., getting stuck, Fig. 13
shows the convergence of the reference measure dref during
a minimization as well as the corresponding convergence
of the target function (the difference between the target and
candidate descriptors). There was no difficulty in converging
the target function to zero (the global minimum) for any of
the complete (or overcomplete) descriptors or SOAP, while
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the reference similarity converged to a nonzero value for
incomplete descriptors.

B. Gaussian Approximation Potentials

Our main motivation for assessing different approaches to
representing atomic neighbor environments is to determine
their efficacy for generating interatomic potentials. Therefore,
as a final test, we fitted a series of interatomic potentials
for Si3−19, based on different descriptors, using our GAP
framework.8 The training and the testing configurations were
obtained from tight-binding59 molecular dynamics trajectories
run at the temperatures between 500 and 2000 K. We
used four sets of cluster configurations, containing 2000,
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FIG. 13. Convergence of reference distance measure during a
typical reconstruction procedure. The inset shows the value of the
minimization target approaching zero, i.e., descriptor equivalence,
for all of the descriptors.

4000, 6000, and 8000 atomic environments for the training,
corresponding to a total of 180, 360, 540, and 720 unique
cluster configurations, respectively. The test set contained
12 000 atomic environments, independent from those used in
the fitting procedure.

We tested AFS, the SO(3) power spectrum, and the SO(4)
bispectrum using the squared exponential covariance kernel (4)
as well as SOAP for potential fitting. The accuracy of the
resulting potential energy surfaces is shown in Table III as
a function of the angular band limit, and in Fig. 14 as a
function of the database size. Both demonstrate that SOAP
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FIG. 14. Quality of GAP potentials constructed using different
descriptors, as a function of the size of the database used for the fit,
with all configurations drawn from Sin clusters with 3 � n � 19. The
angular band limit was lmax = 12 in all cases [equivalent to 2jmax = 12
for the SO(4) bispectrum].
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TABLE III. Quality of the GAP potential energy surface using
different descriptors and angular band limits, as measured by the root
mean square (RMS) energy and force errors. The fitting database
contained 8000 atomic neighborhoods in Sin clusters with 3 � n �
19. The units of the RMS errors of the energy and force are meV/atom
and eV/Å, respectively.

Angular band limit RMS (e) RMS (f )

lmax

6 50.0 0.37
AFS 8 47.0 0.35
nmax = 6 10 45.7 0.34

12 44.7 0.34
2jmax

6 27.6 0.28
SO(4) BS 8 22.8 0.26
r0 = 4

3 rcut 10 20.2 0.25
12 19.2 0.26
lmax

6 41.5 0.36
SO(3) PS 8 37.1 0.34
nmax = 6 10 35.7 0.33

12 35.0 0.32
lmax

2 21.4 0.23
SOAP 4 17.6 0.21
α = 2, ζ = 4 6 17.0 0.21

8 15.3 0.22

outperforms the other descriptors. As can be expected from
the reconstruction tests (cf. Fig. 12), the fit gets better with all
descriptors when a larger angular resolution is used, with the
error not yet saturated for lmax = 12. Similarly, increasing the
database size makes the fit more accurate, and one can expect
improvement if even more than 8000 atomic environments are
used (this corresponds to, on average, just 40 configurations
for each cluster size).

Perhaps contrary to initial expectations, making all the
descriptors more faithful by using a larger angular band
limit is not necessarily beneficial. Descriptor components
corresponding to high angular momentum channels involve
angular basis functions that are highly oscillatory, and can thus
degrade the fitted potential energy surface. To demonstrate
this, we constructed a GAP model for bulk silicon using a
database of configurations with randomly displaced atoms in
randomly distorted unit cells, containing two atoms. Figure 15
shows the elastic constants of the GAP fits as a function of
the angular band limit for SOAP and the SO(4) bispectrum
descriptor (which performed the best in our reconstruction
and cluster PES tests compared to the other descriptors). In
the case of the bispectrum, the elastic constants of the model
improve up to 2jmax = 8, but then deteriorate dramatically,
irrespective of the database size. SOAP does not show this
behavior, and leads to reasonable elastic constants using the
smaller database, and is already well converged for lmax = 6
using the larger database. Given the view of SOAP as an
SO(3) power spectrum, it appears that the benefit comes from
the combination of building the atomic neighborhood density
from smooth Gaussians and using the dot-product kernel,
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FIG. 15. Elastic constants C11, C12, and C0
44 of GAP models for

bulk silicon using the SO(4) bispectrum and SOAP, as a function of
the angular band limit lmax (for SOAP) or jmax (for the bispectrum).
The top and bottom panels correspond to a database size of 100 and
500 configurations. The dashed line indicates exact values of the
tight-binding model which was used to generate the database.

both directly linked to the construction of SOAP as a smooth
similarity measure, in contrast to using Dirac-delta functions
for the density and a squared exponential kernel for the other
descriptors.

VI. CONCLUSION

In this paper, we discussed a number of approaches to rep-
resenting atomic neighbor environments within a finite cutoff
such that the representation is a continuous and differentiable
function of the atomic positions and is invariant to global rota-
tions, reflections, and permutations of atoms. We showed that
the Steinhardt bond-order parameters are equivalent to certain
elements of the SO(3) angular power spectrum and bispectrum.
To incorporate radial information, and therefore provide a full
description of the atomic neighbor environment, we reviewed
the construction of the SO(4) power spectrum and bispectrum
as an alternative to introducing explicit radial basis functions.
We also demonstrated that all these constructs, as well as
the descriptors suggested by Parrinello and Behler, use very
similar terms and form part of a general family that is based on
the bond angles. In practice, when the expansion is truncated,
the faithfulness of the descriptors decreases as the number of
neighbors increases, leading to a tunable tradeoff between the
size of the descriptor and its faithfulness in terms of its ability to
represent the atomic environment uniquely up to symmetries.
With typically used parameters, however, the faithfulness of
the descriptors is quite different, and all descriptors fail for Si
clusters with more than 13 atoms. In order to improve on this,
we therefore introduced a similarity measure between atomic
neighbor environments called SOAP, which does not suffer
from these difficulties and demonstrates excellent faithfulness
for any number of neighbors. We also tested the performance
of the descriptors for fitting models of small silicon clusters
and bulk silicon crystal and found that SOAP leads to a more
accurate and much more robust potential energy surface.
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Lett. 104, 136403 (2010).

9D. Tromans, Hydrometallurgy 48, 327 (1998).
10J. Ischtwan and M. A. Collins, J. Chem. Phys. 100, 8080 (1994).
11M. A. Collins, Theor. Chem. Acc. 108, 313 (2002).
12T.-S. Ho, T. Hollebeek, H. Rabitz, L. B. Harding, and G. C. Schatz,

J. Chem. Phys. 105, 10472 (1996).
13G. G. Maisuradze, D. L. Thompson, A. F. Wagner, and M. Minkoff,

J. Chem. Phys. 119, 10002 (2003).
14Y. Guo, A. Kawano, D. L. Thompson, A. F. Wagner, and

M. Minkoff, J. Chem. Phys. 121, 5091 (2004).
15X. Huang, B. J. Braams, S. Carter, and J. M. Bowman, J. Am.

Chem. Soc. 126, 5042 (2004).
16X. Zhang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 124,

021104 (2006).
17T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, J. Chem.

Phys. 103, 4129 (1995).
18H. Gassner, M. Probst, A. Lauenstein, and K. Hermansson, J. Phys.

Chem. A 102, 4596 (1998).
19S. Lorenz, A. Groß, and M. Scheffler, Chem. Phys. Lett. 395, 210

(2004).
20A. Brown, B. Braams, K. Christoffel, Z. Jin, and J. Bowman, J.

Chem. Phys. 119, 8790 (2003).
21X. Huang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122,

044308 (2005).
22S. Manzhos and T. Carrington, J. Chem. Phys. 125, 194105 (2006).
23S. Manzhos, X. Wang, R. Dawes, and T. Carrington, J. Phys. Chem.

A 110, 5295 (2006).
24C. Handley and P. Popelier, J. Chem. Theor. Comput. 5, 1474

(2009).
25H. Partridge and D. W. Schwenke, J. Chem. Phys. 106 4618 (1997).
26R. H. Tipping and A. Forbes, J. Mol. Spectrosc. 39, 65 (1971).
27W. Cencek, K. Szalewicz, C. Leforestier, R. v. Harrevelt, and

A. v. d. Avoird, Phys. Chem. Chem. Phys. 10, 4716 (2008).
28E. Sanville, A. Bholoa, R. Smith, and S. D. Kenny, J. Phys.:

Condens. Matter 20, 285219 (2008).
29M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld,

Phys. Rev. Lett. 108, 058301 (2012).
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