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In Phys. Rev. Lett. 109, 245502 (2012), a method for retrieving the object’s three-dimensional potential
distribution by inverting the dynamical scattering was presented and validated by a reconstruction from simulated
atomic resolution transmission electron microscopy (TEM) images. In this paper, an extension to ptychography
and scanning confocal electron microscopy is demonstrated and validated with simulations. Ultimately, this
will make it possible to operate the microscope in the mode that yields the best reconstruction instead of
accommodating the microscope settings to the linear approximation to the specimen-electron interaction used in
most reconstruction algorithms. Furthermore, simultaneous estimation of the object and the unknown defocus
from simulated atomic resolution TEM images is attained. This is an important step towards experimental
reconstructions.
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I. INTRODUCTION

With the importance of nanomaterials on the rise, accurate
and precise characterization becomes more important. Trans-
mission electron microscopy (TEM) is the tool of choice if
characterization of individual particles is needed. Imaging
two-dimensional projections at atomic resolution has been
common practice for years, but making the step to a full
three-dimensional (3D) reconstruction remains challenging.

One approach to 3D characterization of the specimen is
to match a certain specimen model to the measurements. A
familiar example is the defocus-thickness tableaus generated
by many image simulation packages, allowing one to retrieve
the specimen thickness. In this manner, the specimen-electron
interaction is treated correctly by using a multislice (MS)
or Bloch wave calculation, and image effects like defocus,
spherical aberration, and partial coherence are accounted
for. This so-called quantitative approach has solved many
problems over the years.

However, since this approach does not produce a true 3D
reconstruction, deviations from the proposed model can easily
go undetected. Inversion of the image formation process,
i.e., direct retrieval of the three-dimensional object from the
observations, is therefore desirable. Such techniques do exist
in electron microscopy, examples include high angle annular
dark field scanning TEM (HAADF STEM) tomography and
scanning confocal electron microscopy (SCEM).

In HAADF STEM, the electron beam is condensed in a
probe and scanned across the sample. For each probe position
the electrons scattered to high angles are integrated, leading
to an image with gray values approximately proportional to
thickness1 and to the atomic number raised to a power of about
1.7.2 The object’s 3D density distribution is then retrieved
from projections at various object tilts through a tomographic
reconstruction algorithm.3–5 In SCEM6 the electron beam is
condensed in a probe and a second objective lens, placed
behind the specimen and steered in concordance with the
first, is focused on the beam crossover. A pinhole detector in
the image plane selects the central part of the image, thereby
yielding a vertical resolution of about 3.5 nm.7,8

However, a large part of the available information often
remains unused since little knowledge of the state of the
microscope can be included in the reconstruction algorithm.
Furthermore, the electron-specimen interaction is approxi-
mated as a simple linear transformation. This linearity often
comes at the cost of a decreased signal: For HAADF STEM
and SCEM, for instance, linearity improves with a large
detector angle and a narrow pinhole, respectively, both of
which decrease the signal and increase the noise.

Even two seminal papers that recently attained atomic
resolution tomographic reconstructions,9,10 do so without
making full use of the available prior knowledge and mainly
rely on the increased point resolution of HAADF STEM
brought forth by the recent improvements in hardware.11,12

As a result, the samples are severely irradiated and mainly
compounds very stable under the beam are investigated.

In this paper we expand the 3D reconstruction technique
that recently has been presented in Ref. 13 and that is fully
quantitative. The MS algorithm is recast as an artificial neural
network (ANN), which allows for a numerically efficient least
squares optimization. It takes into account the modulation
transfer function (MTF) of the CCD, partial spatial and
temporal coherence, inelastic scattering through an absorptive
potential, and the complete state of the microscope, like for
example the aberration coefficients. Since multiple scattering
is accounted for exactly, the technique is dubbed IDES, inverse
dynamical electron scattering.

IDES is versatile and modular and can treat any detection
geometry in TEM. While in Ref. 13, IDES was validated
with an object reconstruction from simulations of conventional
high resolution TEM (HRTEM) images, in this paper an
extension to coherent diffraction imaging,14 and more in
particular ptychography,15 and SCEM is presented. Ultimately,
this versatility will make it possible to operate the microscope
in the mode that yields the best reconstruction instead of com-
promising on the reconstruction quality by accommodating
the microscope settings to the linear approximation to the
specimen-electron interaction used in most reconstruction al-
gorithms. Furthermore, simultaneous estimation of the object
and the unknown defocus from simulated atomic resolution
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FIG. 1. Simplified ray diagram of the HRTEM geometry. The
projector lens transforms the spherical wave emanating from the
electron gun to a plane wave that illuminates the specimen.
The objective lens produces an image on the CCD.

TEM images is demonstrated. This is an important step
towards experimental reconstructions.

In Sec. II the basics of the IDES algorithm are explained
for HRTEM, while in Secs. II E and II F more imaging
effects are included and the extension to defocus estimation,
ptychography, and SCEM is treated. In Sec. III simulations
demonstrate the validity of IDES. The results and the technique
are discussed in Sec. IV and the conclusions are drawn in
Sec. V.

II. THE IDES ALGORITHM

At the core of the IDES algorithm is the MS algorithm
that describes the propagation of the electrons through the
specimen and thereby takes the dynamical scattering into
account. The key realization is that the MS algorithm can
be written as an ANN with the weights as a function of the
object potential. Then, the backpropagation (BP) algorithm,
which is a standard in the field of ANNs, can be adapted to
calculate the derivatives of an error function with respect to
the potential in each voxel of the object with just one extra
pass through the ANN. Subsequently, the object is retrieved
by gradient based optimization.

In this section the IDES algorithm is explained in detail:
The MS algorithm, the translation of MS to an ANN, and
the optimization procedure are covered. These concepts are
developed and illustrated with HRTEM in mind, the detection
geometry of which is illustrated with a ray diagram in Fig. 1.
However, to ensure an accurate and quantitative description a
wave optics approach is used in all mathematical derivations.
In Secs. II E and II F the imaging model is extended to
include defocus estimation, the MTF, incoherent aberrations,
ptychography, and SCEM.

A. The MS algorithm

The MS algorithm16–20 describes the propagation of fast
electrons through a solid, neglecting backscattering. The
specimen is divided in N slices normal to the beam direction,
each supporting a transmission function t . Step j of the MS
algorithm consists of multiplying the transmission function
with the impinging electron wave function ψ and propagating
the result to the next slice by means of Fresnel propagation:

ψj+1 = p ⊗ (ψj tj ), with tj = exp(ıσVj ), (1)

where p is the Fresnel propagator, σ is the interaction constant,
Vj is the projected electrostatic potential within slice j , and ⊗
denotes convolution. To simplify subsequent derivations, σ is
absorbed in Vj for the remainder of this paper.

For HRTEM, the impinging electron wave ψ1 is a plane
wave and the exit wave ψN+1 is transferred to the image plane
by the objective lens:

ψN+2 = LF ⊗ ψN+1, (2)

where LF is the lens function, i.e., the inverse Fourier transform
of the coherent transfer function20 characterizing the objective
lens through the aberration coefficients. An explicit expression
for LF is given in Appendix A. The final measurement is the
intensity of wave function ψN+2:

I = |ψN+2|2. (3)

The problem has to be discretized in order to be represented
in the computer. In the z direction, parallel to the optical axis,
the projected potential is sampled in intervals of �z equal to
the distance between successive transmission functions, and
indexed by the index j of Eq. (1). In the (x,y) planes normal to
the optical axis, the sampling distance is �xy in the x and y di-
rections, for notational simplicity, these data points are indexed
with a single index k. In the following, the value of the wave
function in slice j and sample point k is denoted as ψjk and
the notation ψj · is used to address the whole of slice j at once.

B. Translation to an ANN

An ANN21 consists of nodes connected through edges that
carry a certain weight, see Fig. 2. Each node represents a
function that accepts as its input the output of other nodes,
multiplied with the weight of the interconnecting edges. ANNs
are most commonly used for classification tasks, e.g., assigning
the correct letter of the alphabet to the image of a handwritten
letter. The network is trained by feeding it with a large amount
of objects of known class, updating the weights of the edges
until the classification error is minimal.

The standard way to minimize the error E is through a
derivative based optimization. However, numerically comput-
ing the derivatives of E with respect to the potential in each
voxel would require a prohibitive amount of computation time
because each derivative would necessitate a run through the
entire network. Fortunately, the backpropagation algorithm of
Sec. II C retrieves all derivatives with only one extra pass
through the network by cleverly exploiting the chain rule.

In Fig. 2(a) the ANN for HRTEM is given, the description
of other recording geometries and further imaging effects is
deferred to Secs. II E and II F. The incoming wave ψ1 is
multiplied elementwise with the first transmission function
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(a) (b)

FIG. 2. The ANN and the BP algorithm. (a) The ANN that describes the image formation in HRTEM. The incoming wave ψ1 is multiplied
with the transmission function t1. The next layer of edges and nodes encodes a real-space convolution with the Fresnel propagator p, resulting
in ψ2. This is repeated until the exit wave ψN+1 is produced. Then, a real space convolution with LF produces ψN+2, and the intensity I is
computed. The last layers compute E from the measurements J . (b) The BP algorithm. Each node contains the derivative with respect to the
node input. E is replaced with 1 and the network is run backwards with the same weights, incoming information to each node is added and
multiplied with the stored derivatives, resulting in the derivative of E with respect to that node’s input.

t1, therefore, the elements of t1 act as the weights of the first
layer of edges. The nodes in the second layer all represent the
identity function, meaning that the output of this layer equals
ψ1t1. The next layer of edges and nodes encodes a real-space
convolution with the Fresnel propagator p, resulting in ψ2.
This pattern is repeated until the exit plane of the specimen
is reached and the exit wave ψN+1 is produced. The next
layer of edges and nodes realizes a convolution with the lens
function and produces ψN+2. The following layer calculates
the intensity I = |ψN+2|2. The last layers compute the error,
which is defined as

E =
∑

k

1

2
(Ik − Jk)2, (4)

with J the measured intensity.

C. Backpropagation algorithm

The backpropagation (BP) algorithm computes the deriva-
tives of E with respect to the inputs of the nodes in only one
extra pass through the entire ANN. In this paper only the basics
of the BP algorithm are explained, for an in-depth discussion,
the reader is referred to Ref. 21.

While passing forward through the ANN, the partial
derivatives of the nodes’ functions with respect to the inputs
are evaluated at the input values and stored in the nodes,
see Fig. 2(b). In the backpropagation step, the value of E

is replaced with 1 and the network is run backwards with the
same weights as before, incoming information to each node is
added and the result is multiplied with the stored derivatives.
The resulting value at each node is the derivative of E with
respect to that node’s input.
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Although BP yields the derivatives with respect to the node
inputs, i.e., ∂E/∂(ψjktjk), for the purpose of object retrieval,
one needs the derivative with respect to the projected potential:

∂E

∂Vjk

= −2 Im

(
ψjktjk

∂E

∂ψjktjk

)
, (5)

where Im(z) takes the imaginary part of z. This result is derived
in Appendix B. In Ref. 22 a similar result is arrived upon
through a different route.

D. Optimization procedure

In this work, a so-called on-line optimization is chosen
in which E is evaluated and minimized serially for each
recorded image. Preliminary results have shown that this yields
convergence in fewer epochs23 than an off-line optimization
where E is evaluated and minimized over the complete set of
recorded images simultaneously.

The error function E is minimized with a steepest descent
algorithm. If the index i indicates the iterations of the
minimization procedure, then

V
(i+1)
jk = V

(i)
jk − d (i) ∂E

∂V
(i)
jk

. (6)

The gradient indicates the direction of steepest ascent of E,
and the scalar d (i) is the step size. In this paper, d (i) is set with
a secant line search24: The gradient of E is evaluated in V (i)

··
and in V (i)

·· − d (i−1)∂E/∂V (i)
·· , and d (i) is set to the position of

the minimum of the fitted parabola.
In the field of compressed sensing,25,26 it is common

practice to search for solutions that are maximally sparse in a
certain basis set by minimizing the �1 norm of the coefficients
of the object in that basis set, while the measurements act as
constraints. The problem at hand is too large to be dealt with
by the simplex algorithm, instead the approach of Ref. 27 is
adopted, where the error function is �1 regularized, yielding
the total error Etot, and minimized with a steepest descent
algorithm:

Etot =
∑

k

1

2

(
I

(i)
k − Jk

)2 + μ
n1n2n3

m1m2m3

∑
jk

∣∣V (i)
jk

∣∣, (7)

where μ is a user defined constant, n1 and n2 are the number
of pixels in the x and y direction of the measurements,
n3 is the number of measured images, m1 and m2 are the
number of voxels in the x and y direction of the object,
and m3 is the number of slices in the specimen. As shown
in Sec. II F, the projected potential is sparse in the voxel
basis, especially when a generalized potential is used, and
�1 regularization is therefore justified. The first term of Etot

can still be differentiated with BP, while the derivative of the
second term can be calculated from

∂|x|
∂x

= x

|x| , with |x| =
√

x2 + ε2, (8)

with ε2 a small number of typically 10−8. This redefinition of
the absolute value prevents an undefinedness at x = 0, while
having negligible influence for finite values of x.

Charge flipping (CF)28 is an ab initio structure-
determination algorithm that solves the phase problem in
x-ray crystallography with much weaker assumptions than

classical direct methods. CF iterates back and forth between
real space, containing the electron density, and reciprocal
space, containing the structure factors, by means of a Fourier
transform. With each iteration, the moduli in reciprocal space
are replaced with the observed moduli and in real space the sign
of the electron density is flipped wherever it is below a certain
positive threshold. In practice, CF has proven to successfully
solve global, nonconvex optimization problems.

In the reconstruction algorithm presented here, it is made
possible to apply flipping to the sign of the reconstructed
potential in each iteration, henceforth referred to as potential
flipping (PF). The choice of the threshold is subject to debate,
but in this work the recommendation in Ref. 28 is followed
and it is taken proportional to the standard deviation of the
potential in each iteration with a proportionality constant
of 1.1.

E. Optimization of the focus

In real life measurements the microscope parameters are
often known only approximately. In Refs. 29 and 30 it
is demonstrated that ptychographic reconstructions improve
drastically if the shape and position of the impinging probe is
estimated along with the object.

In this article, the focus values C1 of the individual images
are optimized simultaneously with the object. The derivative
of the error function with respect to the focus, i.e., ∂E/∂C1, is
derived in detail in Appendix B and can be included directly
in the optimization procedure explained in Sec. II D.

In Fig. 3 a typical error as function of the defocus displays
a 6.5 nm wide valley around the minimum, suggesting that the
starting value for the focus must be known with an accuracy
of about 3 nm. In Sec. III convergence with starting values
deviating up to 5 nm from the correct focus is attained.

To give priority to the reconstruction of the object during
the first iterations, the values of ∂E/∂C1 are multiplied with

γ (i) = 1 − 2−i/iH , (9)

where i denotes the iteration number and iH, fixed to 128 in
this paper, is the so-called half-time.

-4 -3 -2 -1 0 1 2 3 4 50

1

Defocus (nm)

).u.a(
rorre latoT

E
to

t

6.5 nm

FIG. 3. Error as a function of defocus. The correct defocus resides
in a valley of about 6.5 nm wide.
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FIG. 4. Simplified ray diagrams. (a) Ptychography. The objective
lens illuminates the specimen with a defocused electron probe and
the post-specimen projector lens images a diffraction pattern on the
CCD. (b) Conventional SCEM. The first objective lens illuminates the
specimen with a condensed electron probe and the second objective
lens images the beam crossover. The pinhole detector rejects most of
the intensity from above and below the crossover, thus creating depth
sensitivity.

F. Extensions of IDES

The scheme described so far is easily extended to different
recording modes and to include further imaging effects.

In ptychography,15 the object exit wave is retrieved from a
set of diffraction patterns recorded with a defocused electron
probe, placed such that the illuminated areas overlap, see
Fig. 4(a). In this paper the ptychographic setup is combined
with specimen tilt to retrieve the object in 3D. The incoming
wave function ψ1 is now taken as a converged beam. Since
in diffraction mode the objective lens transfers ψN+1 to the
diffraction plane, the ANN layer in question is made to encode
a Fourier transform.

In conventional SCEM6 the electron beam is condensed
in a probe and a second objective lens, placed behind the
specimen and steered in concordance with the first, is focused
on the beam crossover, see Fig. 4(b). While normally a pinhole

TABLE I. The simulation parameters for defocus estimation. U

is the acceleration voltage, C1 is the focus value, C3 is the spherical
aberration constant, αill is the illumination semiangle, �f is the
focal spread, �pix is the CCD pixel size, �xy is the size of the
horizontal dimensions of the voxels of the reconstruction, �z is the
slice thickness, and a, c, and d characterize the MTF through Eq. (12).

U C1 (nm) C3 αill �f �pix

40 kV −10.15 14 μm 0.1 mrad 1 nm 25 pm

�xy �z a c d

25 pm 210 pm 0.58 2.7 pix 3.9 pix

FIG. 5. Five typical simulated HRTEM images. From left to right,
the α tilt is −10◦, −5◦, 0◦, +5◦, and +10◦ and the β tilt equals 0◦.

detector in the image plane selects the central part of the
image, the setup in this paper collects all the electrons in the
image plane with a CCD. The incoming wave ψ1 is taken as
a converged beam produced by the objective lens in front of
the specimen. The ANN layer following the exit wave ψN+1 is
made to encode the lens function of the objective lens behind
the specimen.

Partial temporal coherence, characterized by the focal
spread �f , can be modeled approximately by a convolution
with

F−1{exp[−2(�f ν2/λ)2]} (10)

following the lens function.31 The variable ν is the radial
distance in reciprocal space, expressed in radians, and λ is
the electron wavelength.

If the spherical aberration is small—as is the case for
the aberration corrected machines assumed in this paper—
partial spatial coherence, characterized by the illumination
convergence semiangle αill, can be accounted for by an extra
convolution of the intensity32 with

F−1{ exp[−(παillC1ν/λ)2]}. (11)

The MTF33 of the CCD can be accounted for by a
convolution of the intensity with the associated point spread
function. In this paper, following Ref. 34, the MTF is modeled
by the expression

a exp(−cκ) + (1 − a) exp(−d2κ2), (12)

with κ as the radial distance in reciprocal space in units of
inverted pixel size (pix−1).

As shown in Ref. 20, small object tilts can be approximated
by shifting the Fresnel propagator between consecutive slices.

If the recorded intensities are energy filtered, inelastic
scattering events can be approximated by expanding the

0 5 10 15 20 25

−4

−2

0

2

4

Projection no.

)
mn( sucofe

D

: start defoci
: optimized
defoci

FIG. 6. The defoci at the start of the reconstruction process
(circles) and at the end (squares).
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FIG. 7. Reconstruction error with (full line) and without (dashed
line) defocus correction. After 4096 iterations, only little improve-
ment is to be expected.

potential with an imaginary term ıW .35 This so-called absorp-
tive potential causes a slight damping of the wave upon passing
the transmission function. A straightforward adaptation of
the derivation in Appendix B yields the derivative of E with
respect to the elements of W :

∂E

∂Wjk

= −2 Re

(
ψjktjk

∂E

∂ψjktjk

)
, (13)

where Re(z) takes the real part of z.
In Refs. 36,37 it is shown to be highly advantageous to

incorporate prior knowledge about the shape of the potential.

1 nm

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

j = 7 j = 8 j = 9 j = 10 j = 11 j = 12

FIG. 8. Reconstruction with defocus correction. Upper two rows:
Slices with the original potential V . Middle two rows: Reconstructed
potential V . Lower two rows: Reconstructed absorptive potential W .

1 nm

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

j = 7 j = 8 j = 9 j = 10 j = 11 j = 12

FIG. 9. Reconstruction without defocus correction, compare to
the upper two rows of Fig. 8.

Note that

Vjk + ıWjk � [V0 ⊗ vj · + ıW0 ⊗ wj ·]k, (14)

where V0 and W0 are the generalized regular and absorptive
potentials of individual atoms and v and w are approximate
arrays of Dirac δ functions centered on the atom positions. If
the specimen consists of only one element, V0 and W0 are taken
as the projected potential of the element and the semiequality
becomes exact. In the case of multiple elements a weighted
average based on the stoichiometry can be used.

The error metric can then be optimized with respect to v

and w instead of V and W , by using

∂E

∂vjk

=
[

∂E

∂Vj ·
⊗ V0,180◦

]
k

, (15)

∂E

∂wjk

=
[

∂E

∂Wj ·
⊗ W0,180◦

]
k

, (16)

where V0,180◦ and W0,180◦ equal V0 and W0 rotated over 180◦.
Since v and w are sparse by construction, this constraint can
be imposed by �1 regularization as explained in Sec. II D.

III. SIMULATIONS

The reconstruction scheme has been validated previously
in Ref. 13 on simulations of HRTEM images of a Au
nanoparticle. In this section the algorithm’s versatility is shown
with reconstructions from a set of simulated HRTEM images,
diffraction patterns, i.e., ptychography, and SCEM images.

In all cases, the test object is an Au cubeoctahedron
composed of 309 atoms arranged in an fcc lattice. Dynamical
scattering is attained by setting the acceleration voltage to
40 kV.13 The absorptive potential W is taken as one tenth of
the regular potential V .38 The projected potential for Au, as
parametrized by Ref. 20, is chosen as the generalized potentials
V0 and W0. At the start of the iterative optimization, the
potential is set to zero. Neither the fact that W = V/10, nor that
the particle has an fcc lattice, has been used as prior knowledge
in the reconstructions.

TABLE II. The simulation parameters for ptychography. θ0 is the
condenser aperture semiangle, the other quantities are explained in
Table I.

U C1 C3 θ0 �pix

40 kV 26 nm 14 μm 30 mrad 0.84 mrad

�xy �z a c d

21 pm 21 pm 0.58 3.2 pix 4.7 pix
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40 mrad

FIG. 10. Five typical diffraction patterns for ptychography, dis-
played on a logarithmic gray scale. From left to right, the α tilt is
−10◦, −5◦, 0◦, +5◦, and +10◦ and the β tilt is 0◦. Note the noise in
the higher frequencies.

The potential V of the original object is compared to V and
W of the reconstruction by displaying all slices alongside each
other on a logarithmic gray scale. The reconstructed V and W

are obtained by convolution of v and w with V0 and W0 after
intensities below the PF threshold have been set to zero.

A. Focus estimation

A series of 25 HRTEM images is simulated with tilt angles
α and β taking the values −10◦, −5◦, 0◦, +5◦, and +10◦.
In each image, the defocus was set to 0 with respect to the
Scherzer focus. The microscope and imaging parameters are
summarized in Table I.

The object consists of 320 × 320 × 12 voxels and to avoid
wrap-around artifacts, only the central part of the images, mea-
suring 160 × 160 pixels, is used for reconstruction. Poisson
noise, equivalent with a dose of 100 electrons per pixel, has
been applied to the intensity right before the MTF. A set of
five typical measurements is presented in Fig. 5.

The reconstruction uses potential flipping and the weight
μ for the �1 norm is equal to 1. The 25 starting values for the
defoci were chosen randomly between −5 and +5 nm, with a
mean absolute value of 2.2 nm. After 4096 iterations, the mean
absolute defocus is reduced to 0.27 nm, see Fig. 6, and only
little improvement in the error is to be expected, see Fig. 7.

The central part (160 × 160 pixels) of the reconstructions
of V and W are displayed in Fig. 8. Both potentials are
reconstructed faithfully and all atoms are retrieved. A finite
vertical resolution manifests itself as the intensity of the atoms

100 101 102 103
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Iteration no.
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l e
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.u
.)
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FIG. 11. The error of the ptychographic reconstruction as a
function of iteration number. After 1024 iterations, the error has
leveled off.

1 nm

j = 1 j = 2 j = 3 j = 4 j = 5

j = 6 j = 7 j = 8 j = 9 j = 10

FIG. 12. Ptychographic reconstruction. Upper two rows: Slices
with the original potential V . Middle two rows: Reconstructed
potential V . Lower two rows: Reconstructed absorptive potential W .

extending into adjacent layers. The residual defocus of 0.27 nm
on average does not result in a translation of the reconstruction,
as is demonstrated by the reconstruction of the empty upper
and lower slices.

In Fig. 9 a reconstruction with identical parameters, but
without defocus optimization, is shown. The error function
had leveled off after 1024 iterations, see Fig. 7, and the
reconstruction clearly is not physical.

B. Ptychography

The α tilt takes values −10◦, −5◦, 0◦, +5◦, and +10◦, while
the β tilt equals 0◦, and, vice versa, the β tilt takes values −10◦,
−5◦, +5◦, and +10◦, while the α tilt equals 0◦. At each tilt,
14 diffraction patterns are recorded with a defocused beam
that is placed on random but known positions, resulting in a

TABLE III. The simulation parameters for SCEM. Chi
3 , C lo

3 and
θ hi

0 , θ lo
0 are the spherical aberration constants and the aperture

semiangles of the lenses above and below the specimen. The other
quantities are explained in Table I.

U Chi
3 C lo

3 θ hi
0 θ lo

0

40 kV 0.0 μm 0.0 μm 50 mrad 50 mrad

�pix �xy �z a c d

30 pm 30 pm 210 pm 0.58 2.2 pix 3.8 pix
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1 nm

FIG. 13. Five typical SCEM measurements, displayed on a linear
gray scale. From left to right, the β tilt equals −10◦, −5◦, 0◦, +5◦,
and +10◦ and the α tilt equals 0◦.

total of 126 diffraction patterns. The microscope and imaging
parameters are summarized in Table II.

The object consists of 342 × 342 × 10 voxels and to avoid
aliasing artifacts, only the central part of the diffraction pat-
terns, measuring 160 × 160 pixels, is used for reconstruction.
Poisson noise, equivalent with a dose of 225 electrons per pixel
in the central disk, is applied to the intensity right before the
MTF. In Fig. 10 five typical diffraction patterns are shown.

Diffraction patterns have a large dynamical range and the
region outside the central disk will therefore make a negligible
contribution to the first term of the error function Etot in Eq. (7).
This term has therefore been changed to∑

k

1

2Jk

(
I

(i)
k − Jk

)2
. (17)

No potential flipping was needed for this reconstruction and
the weight μ for the �1 norm was set equal to 1. In Fig. 11
it can be seen that after 1024 iterations the error has leveled
off. The central part (160 × 160 pixels) of the reconstructions
of V and W are displayed in Fig. 12. Both potentials are
reconstructed faithfully and all atoms are retrieved. A finite
vertical resolution can be noticed as the intensity of the atoms
extends into adjacent layers.

C. Scanning confocal electron microscopy

The upper lens illuminates the specimen with a beam
defocused by 25 nm with respect to the particle, and the lower
lens is kept focused on the particle center. The specimen is
tilted: The α tilt is set to −10◦, −5◦, 0◦, 5◦, and 10◦, with the

100 101 102 103

104.2

104

103.8

Iteration no.

).u.a(
rorre  lato T

E
to

t

FIG. 14. The error of the SCEM reconstruction as a function of
iteration number. After 1024 iterations, the error has leveled off.

1 nm

j = 1 j = 2 j = 3 j = 4 j = 5

j = 6 j = 7 j = 8 j = 9 j = 10

FIG. 15. SCEM reconstruction. Upper two rows: Slices with the
original potential V . Middle two rows: Reconstructed potential V .
Lower two rows: Reconstructed absorptive potential W .

β tilt equal to 0◦. At each tilt the probe is positioned at 25
random but known positions and an image is recorded with a
CCD.

The object consists of 320 × 320 × 10 voxels and to avoid
wrap-around artifacts, only the central part of the images,
measuring 160 × 160 pixels, is used for reconstruction. The
microscope and imaging parameters are listed in Table III. A
set of five typical measurements is presented in Fig. 13 and no
noise has been added.

The weight μ of the �1 norm is set to 1 and potential
flipping is applied. In Fig. 14 it can be seen that after 1024
iterations the error has leveled off. The central part (160 × 160
pixels) of the reconstructions of V and W are displayed in
Fig. 15. Both potentials are reconstructed faithfully and all
atoms are retrieved. A finite vertical resolution is noticeable as
the intensity of the atoms extends into adjacent layers.

The authors could not find a setup that yielded a SCEM
reconstruction without allowing specimen tilt; however, it is
possible that this is evidence of an inherent ill-definedness of
the SCEM geometry, rather than of a shortcoming of the IDES
algorithm.

IV. DISCUSSION

Since the tilt range can be kept relatively low (±10◦) it could
become possible to realize the tilt electronically through a
beam tilt instead of physically through a specimen tilt. This has
the advantage of increasing the speed and accuracy of the tilts,
but the disadvantage is that this would cause larger aberrations.
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However, if these larger aberrations can be quantified, they
could be plugged in the expression for the lens function.

The number of knowns in the reconstruction problems in
Secs. III A and III C is 52% and 63% of their respective
number of unknowns. Therefore, unique solutions do not exist.
However, due to the object’s atomicity, the physically correct
solution must be sparse, and the �1 regularization does just
that: Restricting the solution space to sparse objects. In Ref. 25
an experimental reconstruction where the number of knowns
is only 39% of the number of unknowns is demonstrated.
Another successful reconstruction of a sparse object from a
limited amount of data can be found in Ref. 39.

The optimization procedure makes use of two user-defined
constants: the weight μ for the �1 norm and the threshold for
PF. In Eq. (7) the former is normalized such that for μ a value
of the order of 1 is expected. And indeed, this value yields
good results in all three simulations. The threshold for PF was
set to 1.1 times the standard deviation of the iterative solution,
as recommended in Ref. 28. Since this value readily proofed
to work well, no attempt was made to optimize it.

V. CONCLUSIONS

In this paper the workings of the IDES algorithm have
been detailed. It has been shown through simulations that the
defocus of each image in an HRTEM series can be estimated
simultaneously with the object. This is an important step
towards experimental reconstructions since in practice many
microscope parameters are known only approximately.

Arbitrary detection geometries can be modeled. Pty-
chography simulations yielded a faithful three-dimensional
reconstruction at the atomic level, even with noise in the
diffraction patterns. An atomic resolution reconstruction was
found from SCEM simulations as well. This will make it
possible to operate the microscope in the mode that yields the
best reconstruction instead of accommodating the microscope
settings to the linear approximation to the specimen-electron
interaction used in most reconstruction algorithms.

In the reconstruction, prior knowledge about the sparseness
and the positivity of the object are used by means of �1

regularization and potential flipping. This puts a heavy, yet
physically justified, constraint on the solution, allowing a
reconstruction from a limited tilt range and a limited number
of unknowns. No prior knowledge about the crystal structure
of the particle has been used; therefore, phenomena like point
defects, dislocations, or relaxation of the lattice parameters
can be detected.
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APPENDIX A: LENS FUNCTION

In this Appendix an explicit expression is given for the lens
function LF used in Eq. (2).

The aberration function χ is expressed as

χ = 1
2C1ν

2 + 1
4C3ν

4, (A1)

where ν is the radial distance in reciprocal space, in radians,
and C1 and C3 are the focus and the spherical aberration
coefficient. In Ref. 40 a complete expansion, including
noncircular symmetric terms, is given.

The coherent transfer function is defined as

CTF = exp(ı2πχ/λ), (A2)

with λ as the wavelength of the electrons. Finally, the lens
function is

LF = F−1(CTF). (A3)

APPENDIX B: DERIVATIVE OF THE ERROR FUNCTION

In this Appendix the result of Eq. (5), the derivative of E

with respect to object potential, and the derivative with respect
to the focus, is derived.

1. Derivative with respect to the object potential

Originally, the BP algorithm is formulated for real valued
networks and it has to be adapted to complex numbers. In
complex calculus, the chain rule reads as

∂E

∂Vjk

= ∂E

∂ψjktjk

∂ψjktjk

∂Vjk

+ ∂E

∂(ψjktjk)∗
∂(ψjktjk)∗

∂Vjk

, (B1)

where the asterisk denotes the complex conjugate.
Denote two artificial neural networks as ANN and ANN∗,

both have the same structure and describe the same image
formation process, but the incoming wave and the weights in
ANN∗ are the complex conjugates of those in ANN. Because
both produce the same values for the intensities and for E,
application of the BP algorithm to ANN∗ yields the derivative
of E with respect to the complex conjugates of the node inputs
of ANN. On the other hand, inspection of Fig. 2(b) shows
that the only operations O encountered in BP are addition and
multiplication, both of which obey

O(z∗) = (O(z))∗, with z ∈ C. (B2)

Hence, BP of ANN∗ yields the complex conjugate of BP of
ANN, and therefore,

∂E

∂(ψjktjk)∗
=

(
∂E

∂ψjktjk

)∗
. (B3)

Substitution of Eq. (B3) in Eq. (B1), and using the definition
in Eq. (1), yields the result in Eq. (5) through straightforward
algebra.

2. Derivative with respect to the focus

In Fig. 16 the part of the ANN between the exit wave
ψN+1,· and the wave emanating from the lens ψN+2,· is shown
in detail. The elements of ψN+1,· and ψN+2,· are indexed with
k and �, respectively. The weights uk� of the interconnecting
edges encode a real-space convolution with the lens function
LF; hence, uk� = LFk−�. To simplify further notations, define
sk� = ψN+1,kuk�.
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FIG. 16. Detail of the ANN, the weights uk� encode a convolution
of the object exit wave with the lens function LF. The elements of the
upper layer are indexed with k, those of the lower layer with �. The
weights uk� equal LFk−�.

Since each of the weights uk� depends on the focus C1, the
chain rule for complex analysis yields

∂E

∂C1
=

∑
k�

∂E

∂sk�

∂sk�

∂C1
+ ∂E

∂s∗
k�

∂s∗
k�

∂C1
(B4)

= 2 Re

(∑
k�

∂E

∂sk�

∂sk�

∂C1

)
, (B5)

where Re(z) takes the real part of z and Eq. (B5) follows from
Eq. (B3). The derivative ∂E/∂sk� results from BP and can
therefore be considered as known; furthermore, since ∂E/∂sk�

is independent of k one can set k = �,

∂E

∂C1
= 2 Re

(∑
�

∂E

∂s��

∑
k

∂sk�

∂C1

)
, (B6)

and invoking the definition for sk� yields∑
k

∂sk�

∂C1
=

∑
k

ψN+1,k

∂LFk−�

∂C1
(B7)

=
[
ψN+1,· ⊗ ∂LF·

∂C1

]
�

. (B8)

Finally, by using the definitions in Appendix A, one
can write

∂LF�

∂C1
= ıπ

λ
[F−1(ν2CTF)]�. (B9)

The dependence of the error on C1 through the partial
spatial coherence, as quantified by Eq. (11), was neglected in
this derivation. But a comparison with a numerical derivative
showed that, for the microscope and imaging parameters
given in Table I, this approximation produces a negligible
error.
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