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We examine the influence of the main approximations employed in density functional theory descriptions
of the solid phase of molecular hydrogen near dissociation. We consider the importance of nuclear quantum
effects on equilibrium properties and find that they strongly influence intramolecular properties, such as bond
fluctuations and stability. We demonstrate that the combination of both thermal and quantum effects make a
drastic change to the predicted optical properties of the molecular solid, suggesting a limited value to dynamical,
e.g., finite-temperature predictions based on classical ions and static crystals. We also consider the influence of
the chosen exchange-correlation density functional on the predicted properties of hydrogen, in particular, the
pressure dependence of the band gap and the zero-point energy. Finally, we use our simulations to make an
assessment of the accuracy of typically employed approximations to the calculation of the Gibbs free energy of
the solid, namely the quasi-harmonic approximation for solids. We find that, while the approximation is capable
of producing free energies with an accuracy of 210 meV, this is not enough to make reliable predictions of the
phase diagram of hydrogen from first principles due to the small free energy differences seen between several
potential structures for the solid; direct free energy calculations for quantum protons are required in order to

make definite predictions.
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I. INTRODUCTION

Hydrogen at high pressure, being the most abundant
element in the universe, plays a prominent role in many
scientific fields, notably in modeling of the giant planets. Its
simplicity, i.e., being comprised of a single proton and electron
per atom, makes it a unique system from a theoretical and
computational standpoint. Thus, considerable attention has
been devoted to understanding hydrogen both experimentally
and theoretically, as has been recently reviewed.!

Numerous exciting experimental breakthroughs have re-
cently been made in the low-temperature solid phase of
molecular hydrogen, including a controversial observation of
metallization” as well as the discovery of a new phase, Phase
IV.3 Despite these advances, many open questions remain,
such as whether metallization has actually been achieved* and
the structure of this new phase.®* Computational predictions
have accompanied these results.>® However, the agreement of
these predictions with experiment is not perfect, and have not
resolved these questions.

To help resolve these discrepancies, a careful examine
of the approximations made in such simulations is needed.
For example, in almost all studies of hydrogen reported to
date, especially in the solid phase, many properties have been
calculated for perfect lattices,” with a finite-temperature
description based on classical protons,'®!! or within a quasi-
harmonic calculation.>%!>!3 While such procedures would be
justified if both nuclear quantum effects (NQEs) and thermal
fluctuations were small, such is not the case for hydrogen
at the high pressures under consideration. Notice that even
at temperatures below 7' = 100 K, the kinetic energy of the
protons in the crystal is on the order of ~1000 K, because of
proton zero point energy (ZPE). While some progress has been
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made in the direct treatment of NQEs in hydrogen from first
principles recently,'*!7 and these calculations already show
strong differences between classical and quantum description
of high pressure hydrogen (e.g., different structures in the
solid as well as strong modifications to melting), there is still
considerable work to be done.

Another major approximation arises in density functional
theory (DFT) studies of hydrogen, namely the choice of the
approximate exchange-correlation density functional (DF).
Local or semilocal DFs, such as that of Perdew-Burke-
Ernzerhof (PBE),'® have been the standard choice in DFT
simulations over the last decade. However, it has recently
been demonstrated, at least at higher temperature in the liquid
phase,15 that the use of nonlocal functionals, such as that by
Heyd-Scuseria-Ernzerhof (HSE)," which contains a fraction
of exact exchange or one with an improved description of dis-
persion interactions, such as vdW-DF2, significantly improve
the description of the dissociation process. Recent calculations
on the molecular solid using the optB88-vdW functional,?
another version of the vdW-DF functional that accounts for
dispersion interactions, produced zero temperature enthalpies
in disagreement with PBE at pressures around 200 GPa.!”
Since the neglect of NQEs and the deficiencies of the PBE
DF partially compensate each other in many situations,'
most calculations to date have made the assumption that
this cancellation is accurate. As we show below, accurate
and predictive simulations of hydrogen, in particular in the
region where molecular dissociation and metallization occur,
require a more rigorous treatment of electronic exchange and
correlation effects (i.e., beyond those provided by typical
semilocal functionals like PBE).

The main purpose of this article is to examine the effect
of these approximations in first-principles simulations of
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crystalline molecular hydrogen, in order to improve the
accuracy of the method. We focus our study on the influence
of NQEs and the choice of DF on the orientational order in the
crystal and on band gaps. We also make a critical assessment
of some common approximations, such as the quasiharmonic
approximation applied to the prediction of the relative energies
of competing structures. We begin in Sec. II by providing the
computational details for the results that follow in Sec. IIL.
Section IV provides a brief discussion of the results, and Sec. V
concludes.

II. COMPUTATIONAL DETAILS

We performed first-principles simulations of hydrogen
using DFT. Three DFs were considered: the semilocal PBE
DE,'® the HSE DE,"? containing a fraction of exact-exchange,
and the vdW-DF2 DF,>'~2* capable of treating van der Waals
(vdW) interactions. Simulations using HSE were performed
with a modified version of VASP,?> while those with PBE and
vdW-DF2 were performed with a modified version of QUAN-
TUM ESPRESSO (QE).?® A Troullier-Martins norm-conserving
pseudopotential®’ with a core radius of . = 0.5 a.u. was used
to replace the bare Coulomb potential of hydrogen in the
QE simulations, and a PAW?® was used in VASP. Plane-wave
cutoffs of 1224 and 350 eV were used in these simulations,
respectively.

Path-integral molecular dynamics (PIMD) simulations
were employed via the accelerated method of Ceriotti et al.,”’
based on a generalized Langevin dynamics (GLE) and the
Born-Oppenheimer (BO) approximation, which we indicate
as PI+ GLE. The use of the PI 4+ GLE method was carefully
tested under the relevant pressure and temperature conditions,
in order to guarantee proper convergence.’’ A time step
of 8 (a.u.)”' was used in all simulations, and the PIs
were discretized with a Trotter time step no larger than
0.0003125 K~!. After an equilibration period of ~0.25 ps,
statistics were gathered for simulation times of ~1.25-1.75 ps,
corresponding to ~6500-9000 time steps. This was found
to be long enough to obtain well converged thermodynamic
properties across the entire pressure and temperature range
studied. A 2 x 2 x 2 Monkhorst-Pack grid of k points was
used in all simulations with the PBE and vdW-DF2, while
a 1x2x2 grid was used in all simulations with HSE.3!
Finite-temperature effects on the electrons were taken into
account using Fermi-Dirac smearing.?

We performed both classical nuclei and quantum simula-
tions for all DFs of three of the primary candidate structures
for the high-pressure molecular phases (in the region of
~300 GPa):'?> C2c, Cmca-12, and Pbcn. All calculations
were performed in the NV T ensemble, where N is the number
of particles and V is the volume. Simulation cells contained
144 atoms at temperatures between 200 and 500 K with
pressures from 200-550 GPa. Note that below, we use the
term BOMD to refer to simulations that treat the protons as
classical particles, while PIMD refers to those including a full
path integral treatment of the protons (except for quantum
statistics of the protons). Band gaps, at finite temperature,
were calculated by performing excited-state calculations on
15 statistically-independent proton configurations sampled
from the trajectories. Since semilocal DFs are well known to

PHYSICAL REVIEW B 87, 184107 (2013)

underestimate the band gap,>” unless otherwise stated, the HSE
functional was used to calculate band gaps. In other words,
the trajectories and optical properties were not necessarily
calculated using the same DF, and for simplicity, in our
descriptions, the label refers to the DF used to generate the
trajectories.

III. RESULTS

A. Orientational order

We begin by considering perhaps the property of prime
importance, the crystal structure of the solid at finite tempera-
ture. In particular we look at its orientational order. Since most
studies to date have employed PBE in DFT studies,' we use
this choice initially to examine NQEs, but later we will assess
the influence of other DFs.

Figure 1 shows comparisons of the pair correlation func-
tions (PCFs) of hydrogen computed with BOMD and PIMD
in the C2c, Cmca-12, and Pbcn phases. A marked disagree-
ment between classical and quantum results is clearly seen;
while classical simulations produce PCFs with considerable
structure, including the existence of molecules with different
bond lengths (as previously reported>%33-3¢), the quantum
simulations are seen to have much less structure.

Another interesting feature of Fig. 1 is the overlap between
neighboring molecules when NQEs are included. In the case
of classical simulations, there is a clear separation between
close molecules with almost no overlap with the closest shell.
With the inclusion of NQEs though, not only is the height
of the molecular peak dramatically reduced, but the first
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C2¢-BOMD -+

Pbcn-PIMD——
Pbcn-BOMD -

Cmcal2-PIMD ——
Cmca12-BOMD -

Pair Correlation Function

r(a.u.) r(a.u.) r(a.u)

FIG. 1. (Color online) The proton-proton PCFs for the C2c¢ (left),
Cmca-12 (center), and Pbcn (right) structures of hydrogen for
BOMD (dashed blue) and PIMD (solid red) simulations, using the
PBE DF. From top to bottom the PCFs correspond to pressures of
p ~ 350, 300, 250, and 200 GPa. All simulations were performed at
T =200 K.
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FIG. 2. (Color online) Lindemann ratio (top) and orientational
order parameter (bottom) of various structures of solid molecular
hydrogen from BOMD (solid symbols) and PIMD (open symbols)
simulations, using the PBE DF. All the simulations were performed
at a temperature of 7' = 200 K. Squares correspond to C2c, circles
to Cmca-12, and triangles to Pbcn.

minimum disappears above pressures of ~300 GPa. While
this might suggest the dissociation of molecules (i.e., since
there is no clear separation between the intramolecular distance
and the nearest-neighbor separation), a further examination
of the trajectories suggests stable molecules at all pressures
considered.

Figure 2 shows the Lindemann ratio of the molecular center
of mass and the orientational order parameter for both BOMD
and PIMD simulations. There are several ways to measure
orientational order;>’ we measure the deviation of a molecule
i during the simulation with respect to the perfect static lattice
orientation é:

1 < ’
0= [ﬁ D P -éi)} : M

i=1
where P, is the Legendre polynomial. One obtains (O) = 1
in the static lattice, while a solid devoid of orientational
order (e.g., Phase I of hydrogen') gives (O) = 0. While the
Lindemann ratio depends on structure, as expected, it is fairly
insensitive to pressure in the studied range: The molecules
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are stable and the crystals do not melt. Note that (0) is
also insensitive to pressure in this range. NQEs are seen
to have a moderate effect in the Lindemann ratio of the
molecular centers, which suggests that the marked differences
observed in the PCFs come largely from strong NQEs on bond
fluctuations.

Notice that there is a significant difference in the amount
of orientational order between the Cmca-12 structure and the
other two considered when NQEs are included. Molecules in
the Cmca-12 structure largely retain the crystalline orientation
even at the temperature investigated. In this case, NQEs are
quite consistent, reducing the order parameter by roughly 20%.
In the other two structures though, the amount of order of the
perfect crystal is much more reduced by temperature already,
while NQEs play less of a role (a further reduction of only
~5-10%). This result suggests that NQEs influence structures
in different ways and with different magnitudes.

Having established the importance of NQEs, it is also
important to consider the influence of DF. Figure 3 shows
a comparison of the PCFs between PBE, HSE, and vdW-DF2,
all obtained from PIMD simulations.

Several prominent features are clear. On the one hand, vdW-
DF2 simulations result in structures with more pronounced
molecular features, while those with PBE lead to the structures
with less molecular features. Although, at high pressures,
the molecular peak becomes very weak, molecules do not
show any tendency to dissociate. Similar to the results shown
in Fig. 2, this can be seen in the Lindemann ratio of the
molecules and the orientational order parameter, shown in
Fig. 4 for the simulations with vdW-DF2. A somewhat large,
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FIG. 3. (Color online) PCFs for the C2c¢ (left), Cmca-12 (center),
and Pbcn (right) structures of hydrogen from PIMD simulations
using PBE (solid red), HSE (dotted blue), and vdW-DF2 (dashed-
dotted black). From top to bottom, the PCFs correspond to pressures
of approximately p ~ 350, 300, 250, and 200 GPa. All simulations
were performed at 7 = 200 K.
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FIG. 4. (Color online) Lindemann ratio (top) and orientational
order parameter (bottom) for solid molecular hydrogen from PIMD
simulations using vdW-DF2. Note that all the simulations were
performed at 7 = 200 K. Squares correspond to C2c, circles to
Cmeca-12, and triangles to Pbcn.

but stable, Lindemann ratio can be seen for Pbcn at the two
lowest pressures, with similar behavior for C2¢ at the higher
pressures. This suggests a distortion in these structures at finite
temperature, however, the molecules stay intact.

Note also that the orientational order parameter goes to
zero at pressures below ~200 GPa in both the Pbcn and
C2c structures, suggesting a possible transition to Phase I
somewhere between 200 and 250 GPa. A precise prediction of
the location of the I-III phase boundary requires the treatment
of bosonic exchange, which we are not considering here.

B. Band gaps

Having established the influence of NQEs and DFs on the
finite-temperature structure, we now turn to their influence on
the band gap. Figure 5 shows a comparison of the pressure
dependence of the electronic band gap for C2c¢ at 200 K,
for simulations using PBE. The band gap is seen to be
dramatically affected by NQEs, not only in its magnitude,
but also in its pressure dependence. While calculations on
static crystals result in band gaps in reasonable agreement
with experiment, the proper inclusion of NQEs leads to
conditions where the band gap closes at pressures as low as
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FIG. 5. (Color online) Band gap of C2c using PBE. Red squares
are the band gaps for the static crystal, green circles are band gaps for
classical nuclei at 200 K, and blue triangles are band gaps for quantum
nuclei at 200 K. Cyan crosses are recent experimental measurements
from Goncharov et al.** Only one set of experimental results is shown,
in order to provide a scale that allows a clear comparison between the
BOMD and PIMD simulations. See Fig. 7 for a more complete set of
experimental results.

p ~ 200 GPa. Furthermore, for PIMD simulations using PBE,
the band gaps of all three structures close below 250 GPa.
Note that these results are in disagreement with experimental
measurements. >384

While we have already established a strong influence of the
DF, the same behavior is observed in all structures considered
and regardless of the DF. Figures 6 and 7 show a comparison of
the pressure dependence of the band gap for PIMD simulations
performed with HSE and vdW-DF2; note that results using

PBE are not shown, since, as just discussed, the band gap
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FIG. 6. (Color online) Band gap as a function of pressure. Filled
symbols correspond to PIMD simulations with HSE, while empty
symbols correspond to experimental results; lines represent guides to
the eye. Red squares, green circles, and blue triangles are theoretical
results for the C2¢, Cmca-12, and Pbcn structures, respectively. The
experimental results correspond to: orange pentagrams, Loubeyre
et al.;*® brown diamonds, Zha et al.;¥* cyan asterisks, Goncharov
et al.;** and downward black triangles, Howie et al.?
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FIG. 7. (Color online) Band gap as a function of pressure. Filled
symbols correspond to PIMD simulations with vdW-DF2. See the
caption of Fig. 6 for additional details.

goes to zero between 200 and 250 GPa in all structures. Some
experimental results are also shown in these figures. Several
points are worth emphasizing. On the one hand, the use of
HSE does not lead to a significant improvement compared
to PBE, since, while the band gaps are finite, they are still
considerably below the experimental ones. On the other hand,
results obtained with vdW-DF2 agree very well, both the
magnitude of the band gap and its pressure dependence. These
results suggest that C2¢ or Pbcn are more suitable structures
in the investigated pressure range and at 7 = 200 K.

C. Energetics

While the previous discussion shows the dramatic influence
of NQE:s on the structural and optical properties of the solid, it
is important to emphasize that no attempt was made to correct
our BOMD data for quantum effects, as is typically done
for other properties such as pressures and free energies. The
common approach, especially in the study of high-pressure
hydrogen, is to use the quasiharmonic approximation (QHA)
for solids*! to incorporate ZPE corrections to an otherwise
classical treatment of the nuclei. While this method is fairly
accurate in many materials, leading to reasonable predictions
when compared to experiment,*’ its applicability to light
elements at high pressure is problematical. In the case of
solid molecular hydrogen, the combination of orientational
order, large amplitude fluctuations, and large anharmonic
effects (both classical and quantum) make the application
of this approach questionable, when taking into account the
accuracy required for the correct determination of crystal
structures.'?

Figure 8 shows a comparison of the temperature de-
pendence of the total energy of Cmca-12 at ~265 GPa
between PIMD results using vdW-DF2 and the QHA. A clear
discrepancy in the overall temperature dependence is apparent.
While the PIMD results show a clear linear dependence in the
regime studied, the QHA results show a very small effect
up to ~200 K. The linear temperature dependence of the
energy in this regime can be understood by considering the
fact that a hydrogen molecule has a rotational constant of
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FIG. 8. (Color online) Internal energy of Cmca-12, as a function
of temperature, at a density of r;, & 1.38. Red squares correspond to
PIMD simulations with vdW-DF2, the solid blue curve corresponds
to QHA results (also using vdW-DF2) and the dashed black curve
corresponds to the energy of an isolated quantum rotor, displaced to
match the PIMD energy at 200 K and with a rotational constant of an
isolated hydrogen molecule of ®gy ~ 87 K.

approximately ®grq & 87 K. This implies that the rotational
component to the heat capacity acquires its classical value of
CR' = kg above ~100 K in the case of distinguishable nuclei
considered here.*’ Figure 8 also shows the energy of an isolated
quantum rotor (again assuming distinguishable particles),
displaced to match the PIMD energy at 200 K. Notice the
excellent agreement in the resulting temperature dependence,
supporting the fact that molecular rotations behave classically
in this regime. On the other hand, both intramolecular and
center-of-mass vibrations show strong quantum behavior in
this regime. The results obtained with the QHA, on the other
hand, do not capture this behavior, resulting in an incorrect
temperature dependence of the energy. These results put into
question the recent predictions of the transition lines between
Phases III and IV in molecular hydrogen based on QHA
calculations.®

Figures 9 and 10 show a comparison between PIMD and
the QHA of the combined thermal and quantum contributions
to the internal energy and to the pressure component of
the enthalpy (PV) using PBE. Only results for C2¢ and
Cmca-12 are considered, since the ground state structure
of Pbcn displays imaginary phonons at 7 = 0 K. For any
thermodynamic quantity A, we define its thermal and quantum
contribution as AAx(T) = Ax(T) — Acrysial, X TEpresents
either PIMD or QHA, and Ay is the property calculated
at 0 K. Note also that the PIMD results at 0 K are an
estimation of the ZPE using the quantum rotor model, as
shown in Fig. 8. While, as it has been demonstrated above,
PBE is not expected to provide a good description of solid
molecular hydrogen close to the metallization; these results
provide a useful benchmark to measure the expected accuracy
of the QHA. Unfortunately though, there is a considerable
discrepancy between PIMD and the QHA, with the latter
producing a large overestimate of the zero-point contribution
to both energies and enthalpies.
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FIG. 9. (Color online) Comparison between PIMD and the QHA
of the thermal and quantum contribution to the internal energy of
hydrogen in C2¢ and Cmca-12 at 0 K (top) and 200 K (bottom).
Symbols represent results with PIMD and lines the QHA. Note that
in both cases, PBE was used.

Figure 11 shows a comparison of the thermal and quantum
contribution to the internal energy of the structures from PIMD
simulations, as a function of volume at 200 K. Note that, in

130
120 + \7
110 -
o 7
E ol 7 7
S}
: 7 ’ ©1
E 80 E
70 + ) 7
®
60 C2c-PIMD —F— -
= Cmca-12 - PIMD  —&—
507 C2c-QHA —— 1
Cmca-12 - QHA -
40 ‘ | ‘ ‘
9 9.5 10 10.5 11 i

Volume (a.u./atom)

FIG. 10. (Color online) Comparison between PIMD and the QHA
of the thermal and quantum contribution to the pressure component
of the enthalpy in C2c and Cmca-12. Symbols represent results with
PIMD and lines with the QHA. Note that in both cases, PBE was used.
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FIG. 11. (Color online) Thermal and quantum contribution to the
energy of hydrogen from PIMD simulations. From top to bottom the
results correspond to: HSE, vdW-DF2, and PBE. Red squares, black
circles, and blue triangles correspond to results for C2¢, Cmca-12,
and Pbcn, respectively. Insets show the error of the QHA, if it were
to be employed.

addition, the error of the results if the QHA were to be used
is presented in the inset. Notice that the magnitude of the
energy is dependent on DF, with PBE producing the smallest
contribution and HSE the largest. Also notice that the QHA
error is dependent on both structure and functional, which
eliminates the possibility of combining results (e.g., ground-
state energies and ZPE estimates) with different DFs to reduce
the expense of the computations. In fact, the difference in
energies between DFs is considerably larger than that between
structures, for any given DF.

While free-energy calculations have not been attempted
in this work, the results presented nonetheless allow for a
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FIG. 12. (Color online) Enthalpy of several structures of hydro-
gen at 200 K, relative to a polynomial fit to that of C2¢. Symbols
represent PIMD simulations with vdW-DF2 and lines results from
the QHA.

comparison of the enthalpy of solid at finite temperature, and
also to assess the relative accuracy of the QHA with vdW-DF2.
Figure 12 shows the enthalpy of all three structures calculated
using PIMD with vdW-DF2, along with results using the QHA.
Enthalpies are plotted relative to a polynomial fit to that
of C2c¢. From these calculations, one cannot distinguish
between the C2c¢ and the Pbcn structure, since their en-
thalpies are within error bars of each other; also, one needs
the relative entropies to determine the stable structure. In
addition, Cmca-12 has a higher enthalpy over the considered
temperature and density range. The relative accuracy of the
QHA on the enthalpy is only around 5-10 meV. While this
is sufficient to establish a small list of candidate structures,
it is not enough to make a definite prediction of the phase
diagram.

According to Fig. 4, the Cmca-12 structure has a lower
Lindemann ratio and higher orientational order than the other
two structures, a fact which signals a lower entropy for
Cmca-12. Although a precise statement about the relative
stability of the considered structures can only be based on a
free-energy calculation, a lower entropy together with a higher
enthalpy (see Fig. 12) suggests the Cmca-12 structure to be
less favorable than the others over the entire pressure range
considered.

IV. DISCUSSION

The results above clearly show that in order to produce
an accurate first-principles description of solid molecular
hydrogen, especially close to metallization, not only does
one need to take into account the quantum nature of the
protons, but one also needs to go beyond standard semilocal
descriptions of the electronic structure in DFT. The large ZPE
of the protons increases the magnitude of molecular vibrations
to the point that many structural features that are prominent
in classical treatments end up being “washed out.” This can
be understood by considering that the proper inclusion of
NQE:s leads to nuclear kinetic energies of ~1000 K, even at
temperatures of only 200 K or lower, which are not taken
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into account in classical simulations. In other words, the
classical picture of a molecular bond at low temperatures is
very different from the quantum description; this can lead
to artificially low displacements in such simulations. While
the magnitude of the ZPE can be estimated from the QHA,
its effects on the dynamical properties of the solid and its
stability are not easy to estimate accurately with perturbative
methods.

The results also show the failure of PBE in the correct
description of molecular hydrogen close to dissociation. While
it has been known for some time that PBE underestimates the
band gap in excited state calculations, there remains a wide-
spread expectation that the nuclear distribution produced by
this DF should be nonetheless accurate. It is also believed that
calculations with PBE should produce an accurate description
of the optical properties of hydrogen, as long as a more
accurate method, like hybrid functionals or GW, is used to
calculate the gap. This has, in fact, been used to predict
excellent agreement in calculated band gaps.**** This is shown
in Fig. 5 where a good agreement for the band gap of a perfect
crystal predicted by PBE-DF AIRSS is obtained. However,
this agreement is accidental as we have shown; even the use of
HSE to sample the ionic distribution leads to poor results. Only
by incorporating nonlocal correlation capable of describing
dispersion interactions provides a reasonable description of
the optical properties of the solid obtained. Note that this is
consistent with recent calculations performed in the liquid."
Unfortunately, the band gaps of both C2¢ and Pbcn were very
similar, which does not allow us to use these results to suggest
any insight into the actual structure of Phase III or IV. This is
a topic of future work.

Finally, the need to go beyond the QHA to estimate
the impact of NQEs was demonstrated. While the QHA
significantly reduces the magnitude of the errors compared
to a purely classical description of the protons, its accuracy
is probably not enough to provide predictive results in some
cases, e.g., the phase diagram. The relative energy differences
between competing structures using the QHA is very small,
with up to half a dozen structures separated by energies below
10 meV.'> While this approximation is certainly useful in
identifying potential candidate structures, our results show
that it is incapable of producing results with an accuracy
of ~10 meV; in some cases the error is larger. The careful
study of the anharmonic contribution to NQEs presented in
this article has been enabled, in part, by the use of the
effective acceleration technique of Ceriotti et al.,”® through
his PI + GLE approach. While a full AI-PIMD study, based
on the primitive approximation, would be considerably more
expensive, the PI + GLE method offers an accurate treatment
of NQEs at a much reduced cost.

Looking forward, since most of the work done to date
in the field of high-pressure hydrogen has employed PBE
and the results above suggest that vdW-DF2 produces the
best description of solid molecular hydrogen among the DFs
considered in this work, it is important not only to revisit the
problem of structure prediction using vdW-DF2, but it is also
important to rigorously assess its accuracy by comparison to
more accurate many-body methods, such as quantum Monte
Carlo.'"#7 In addition, a careful study that includes accurate
free-energy methods for quantum nuclei is needed in order to
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make accurate predictions of the correct structure ordering at
finite temperature.

V. SUMMARY AND CONCLUSIONS

In summary, the results shown in this article clearly
illustrate two important limitations of current practices in
the theoretical study of hydrogen: On the one hand, standard
semilocal DFs like PBE lead to a poor description of high-
pressure hydrogen,'> and, on the other hand, the neglect of
NQEs leads to predictions with very limited validity. While
it has been recognized in the past that both approximations
should influence results in opposite directions, leading to a
partial cancellation of errors, it is clear that the degree of
cancellation depends on the thermodynamic conditions. Hence
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reliance on this cancellation leads to predictions of limited
validity.
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