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van der Waals interaction in iron-chalcogenide superconductors
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We demonstrate that the inclusion of van der Waals dispersive interaction sensibly improves the prediction of
lattice constants by density functional theory in iron-chalcogenides (FeCh) superconductor compounds, namely
FeSe and FeTe. We show how generalized gradient approximation (GGA) for the exchange correlation potential
overestimates the out-of-plane lattice constants in both compounds when compared with experiments. In addition,
GGA predicts a too weak bonding between the neutral FeCh layers, with a sensible underestimation of the bulk
modulus. van der Waals corrected simulations completely solve both problems, reconciling theoretical results with
experiments. These findings must be considered when dealing with theoretical predictions in FeCh compounds.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in
iron pnictides (FePn)1,2 raised a strong interest in searching
for new superconducting materials which contain Fe and share
common structural features with FePn superconductors. For
example, superconductivity was found in the iron chalcogenide
(FeCh) FeSe and its alloys when Se is partially substituted by
Te.3 The structure of FeCh is characterized by stack of neutral
layers tetrahedrally coordinating Fe ions with chalcogens
(Ch), similar in structure with respect to the FeAs layer in
FePn’s which, on the contrary, are negatively charged due
to the presence of intercalates and oxides layers.4 Despite
lower critical temperature, the Fe1+ySexTe1−x family has a
simpler crystal structure compared to those of FePn. For these
reasons, the FeCh alloys can be considered as useful prototype
systems to investigate the fundamental aspects of structural,
electronic, magnetic, and superconducting properties in Fe-
based superconductors.

Moreover, FeCh alloys show exceptional physical proper-
ties originating from the competing magnetic and supercon-
ducting orders. In particular, FeSe is superconductor with a
transition temperature of Tc ∼ 8 K at ambient pressure,5 which
grows up to 37 K when the pressure reaches 9 GPa,6 suggesting
that the lattice plays a fundamental role in the superconducting
transition. On the contrary, the parent FeTe crystal is not
superconductor.7,8 However, it was shown that 90-nm-thick
films under tensile strain become superconductors with onset
temperature at 13 K, confirming a sensible role of the lattice.9

First principles density functional theory (DFT) is con-
sidered a fundamental theoretical and computational tool
to investigate the structural and electronic properties of the
normal state of Fe-based superconductors.10,11 Indeed, it was
able to interpret the experimentally observed topology of the
Fermi surfaces (FSs), the magnetic phases, and the structural
distortion observed at low temperature.

In the early period of research, a strong interest was
devoted to understanding the predicting power of DFT in both
local density (LDA) and generalized gradient approximations
(GGA),12 showing the importance of magnetic correlation in
the prediction of lattice constants. It was found that geometry
optimizations performed considering a static Fe magnetic
moment (although much higher than the measured one) gener-
ally mimic the magnetic fluctuations and correlations,13 thus

predicting crystal lattice constants in acceptable agreement
with experiments.14

However, a notable exception exists: ab initio DFT in both
LDA and GGA approximation fails in predicting the lattice
constants of FeCh crystal structures, in particular of the out-of-
plane lattice constant.14 Indeed, at present, most calculations
have focused on the study of electronic properties considering
the experimental measured lattice parameters with the only
optimized quantity being the Ch height (hCh) with respect
to the Fe-atoms plane.3,10,15 However, it must be emphasized
that, due to the very simple layered structure, the equilibrium
volume and hCh critically affect the electronic structure. Then,
in order to predict the details of electronic properties of
FeSe, FeTe, and their alloys from first principles in different
physical conditions (alloys, pressure effect, surfaces, etc.), it
results fundamental to properly solve the theoretical problems
affecting the out-of-plane interaction between layers.

Although widely recognized,16 the role of dispersive van
der Waals (vdW) interactions between neutral FeSe and FeTe
layers was not properly investigated.

It is well known that a general drawback of all common
exchange and correlation functionals is that they do not
properly describe long-range electronic correlations, as the
vdW interaction.17–19 In fact, computational investigations
using DFT are not simply interpretable when studying systems
in which vdW dispersion plays a crucial role due to nonlocal
correlation effects.

Recently, a large effort was devoted to take into account
vdW interactions and very interesting works were dedicated
to point out the state-of-the-art in advanced materials.20 For
example, Hyldgaard, in an extensive review,20 evaluated and
established the limits and ranges of applicability of many
different computational approaches developed to account for
vdW on a large family of materials ranging from insulators,
semiconductors, and metals.

In the present work, we show how first principles DFT
successfully describe the crystal structure of FeSe and FeTe,
with unprecedented agreement compared with experiments,
once corrected to include the nonlocal vdW interaction,
improving the calculation of out-of-plane lattice constant,
interlayer binding energy, and bulk modulus. In addition, we
show the effect of corrected lattice parameters in the electronic
properties (band structure and Fermi surface) in both FeSe and
FeTe.
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II. COMPUTATIONAL DETAILS

The calculations were performed using the Vienna Ab-
Initio Simulation Package (VASP)21,22 within the general-
ized gradient approximation (GGA).23 The Perdew, Burke,
and Ernzerhof (PBE)24 functional was used to calculate
the exchange-correlation potential. The GGA approximation
correctly predicts the ground state magnetic phase for FeSe15

and FeTe.25 Winiarski et al.26 showed that LDA estimates
more precisely FeSe lattice constants than GGA; however,
the calculations were performed in the PbO-type tetragonal
nonmagnetic phase, neglecting fundamental structural distor-
tions and magnetic effects. However, the relative success of
the LDA in predicting the high temperature lattice parameters
is merely due to an accidental cancellation of errors between
the correlations and exchange energies.27

In this paper, we used projected augmented-wave (PAW)
pseudopotentials28 for all the atomic species involved and in
order to achieve a satisfactory degree of convergence the 3p6

3d6 4s2 states of Fe, 4s2 4p4 of Se, and 5s2 5p4 states of
Te were treated as valence electrons with an energy cutoff
up to 550 eV. Integrations over the Brillouin zone (BZ) were
performed considering different uniform Monkhorst and Pack
grids29 depending on lattices: 13 × 13 × 9 and 14 × 7 × 9 for
magnetic collinear stripe (AFM1) FeSe (a

√
2 × b

√
2 × c unit

cell) and magnetic bicollinear double stripe (AFM2) FeTe (a ×
2b × c crystal unit cell), respectively. For the tetragonal (a ×
a × c) paramagnetic (PM) phase, which contains two Fe and
two Ch atoms, we used 20 × 20 × 15 and 15 × 15 × 9 k-grid
for FeSe and FeTe, respectively.

The vdW interaction is considered using the DFT-D2
Grimme’s semiempirical force-field correction30,31 and the
so-called vdW-optB86b functional as implemented in the
VASP code.32 The two functionals were chosen for their
simplicity (DFT-D2) and high accuracy (vdW-optB86b).

Due to the high accuracy required in the calculations,
we previously checked the pseudopotential quality with all-
electron full potential linear augmented plane-wave method
in the FLAIR implementation.33,34 In Fig. 1 we show the
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FIG. 1. Pseudopotential (open circles) and all-electron (full tri-
angles) energy curves calculated for FeSe AFM1 phase as a function
of c lattice constant. The in-plane a and b lattice constants are kept
fixed at the experimental values.35 The solid black line is a guide for
the eyes.

TABLE I. Structural parameters and magnetic moments for FeSe
and FeTe. Available experiments are also reported.

Expt. T (K) a (Å) b (Å) c (Å) hCh (Å) α (deg)

FeSe35 7 3.7646 3.7540 5.479 1.4621 90.00
FeTe36 2 3.8312 3.7830 6.264 1.7540 89.17

GGA a (Å) b (Å) c (Å) hCh (Å) α (deg)

FeSe PM 3.68 3.68 6.26 1.39 90.00
FeTe 3.81 3.81 6.52 1.59 90.00

FeSe AFM 3.75 3.71 6.32 1.45 90.00
FeTe 3.87 3.63 6.90 1.78 86.60

DFT-D2 a (Å) b (Å) c (Å) hCh (Å) α (deg)

FeSe PM 3.64 3.64 5.42 1.40 90.00
FeTe 3.77 3.77 6.03 1.59 90.00

FeSe AFM 3.67 3.61 5.53 1.46 90.00
FeTe 3.81 3.61 6.42 1.77 88.53

c-axis relaxation, fixing the in-plane lattice parameter to
experimental values (see below and Table I for all details and
references) on AFM1 FeSe for VASP and FLAIR simulations.
The pseudopotential energy curve nicely agrees with the
all-electron one in a wide range of c lattice constant, giving
equilibrium c of 6.30 and 6.25, respectively. This is a
fundamental consistence check due to the already discussed
issues related to the comparison between all-electron within
the well converged pseudopotentials.12

III. RESULTS AND DISCUSSION

Having tested the accuracy of pseudopotentials, we calcu-
lated the energy-volume phase diagrams for FeSe and FeTe
in both PM and AFM configurations with and without the
vdW correction. The results (with available experimental
measurements) are presented in Table I and Figs. 2 and 3.

Since the PM calculations neglect magnetic interactions,
fundamental to reproducing experiments, we will mainly focus
our attention on AFM phases.

In both FeSe and FeTe the GGA curves show a very weak
interaction between the layers, predicting a too large lattice
c constant when compared with experiments. As we can see,
for FeSe (FeTe) the GGA gives a ∼15% (10%) deviation from
experiments for the out-of-plane c lattice constant, while the
in-plane a and b parameters are in good agreement with a
deviation lower than 1% (4%).

On the contrary, the interlayer bonding energy, corrected
with the semiempirical DFT-D2 vdW dispersion potential,
shifts the minimum of the total energy indicating an increased
interaction between FeCh layers, shrinking all the lattice
parameters with respect to GGA. In FeSe and FeTe a and
b remain consistent with experimental values in a range of
∼0%–5%, depending on material, while along the c axis, there
is a sensible improvement: the theoretical value is corrected
within 1%–3% with respect to experiments. Moreover, it is
very interesting to note that, for the FeTe AFM phase, the
DFT-D2 improve also the monoclinic α angle.

We have fitted the curves with a Birch-Murnaghan equation
of state,37 and compare the equilibrium volumes and the bulk
moduli (shown in Table II) with available experiments.
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FIG. 2. FeSe energy-volume curves for GGA (open circles) and
vdW DFT-D2 (full squares) in the PM (upper panel) and AFM1 (lower
panel) phases. Volume and energies refer to the conventional unit cell.
Solid lines are the fitted Birch-Murnaghan equation of state.37

The most evident result is the striking disagreement
between GGA and experimental bulk moduli for both FeSe and
FeTe. In fact, as evident from Figs. 2 and 3, the out-of-plane
interaction is too weak resulting in a very low B0. This behavior
is dependent on the magnetic phase considered. Interestingly,
we observe that the vdW correction completely changes the
physics and chemistry of the out-of-plane interaction thus
resulting in a much better agreement with experiments. We
note that, even in this case, both PM and AFM phases are
corrected in the same way. The overall satisfactory agreement
indicates that the vdW interlayer interaction is fundamental to
correctly reproducing the properties of FeCh compounds.

As evident from our results, and as already well discussed
in review articles (see, for example, Refs. 17, 18, and 20),
the main effect of the vdW interaction is the c lattice constant
reduction and the consequent increase of B0, an effect common
to other layered materials.

In recent reviews,20 it was shown as different approaches
to include the vdW interaction can lead to different cal-
culated lattice constants. The DFT-D2 is a semiempirical
method, very efficient, but relies on the optimization of
four semiempirical parameters,30 previously fitted on different
classes of materials.31 In order to further investigate vdW
functionals, we used the so-called vdW-optB86b,32,40 which
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FIG. 3. FeTe energy-volume curves for GGA (open circles) and
vdW DFT-D2 (full squares) in the PM (upper panel) and AFM2 (lower
panel) phases. Volume and energies refer to the conventional unit cell.
Solid lines are the fitted Birch-Murnaghan equation of state.37

includes the nonlocal vdW interaction in the exchange and
correlation energy functionals. This method was demonstrated
to have a wide range of applicability and excellent agreement

TABLE II. Equilibrium volumes and bulk moduli of the conven-
tional cell calculated for paramagnetic (PM) and antiferromagnetic
(AFM: AFM1 and AFM2 for FeSe and FeTe, respectively) phases
with and without vdW correction.

Expt. T (K) Veq (Å3) B0 (GPa)

FeSe38 50 77.56 33
FeTe39 300 91.98 36

GGA Veq (Å3) B0 (GPa)

FeSe PM 84.95 5.28
FeTe 94.73 9.81

FeSe AFM 87.82 3.37
FeTe 96.65 9.71

DFT-D2 Veq (Å3) B0 (GPa)

FeSe PM 71.73 37.57
FeTe 85.53 36.46

FeSe AFM 73.18 34.67
FeTe 88.08 38.99
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FIG. 4. AFM1 FeSe (upper panel) and AFM2 FeTe (lower panel)
c-relaxed total energy GGA (open circles) and DFT-D2 (full squares)
curves. The solid lines are shown as guides for the eyes.

with experimental results on different solids in terms of
lattice constants, bulk moduli, and atomization energies.
We performed lattice parameters and internal coordinates
optimization varying independently a and c and compared the
results with DFT-D2 method. The results show the complete
consistency of the two approaches.
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FIG. 5. FeSe band structure calculated using the GGA (dashed
lines) and DFT-D2 (solid lines) lattice constants.
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FIG. 6. FeTe band structure calculated using the GGA (dashed
lines) and DFT-D2 (solid lines) lattice constants.

The use of the corrected c lattice constant has a strong
effect on band structure and FS near the Fermi energy. In
order to understand this effect on electronic properties, we
calculated the band structure and FSs for AFM FeSe and
FeTe considering both GGA and DFT-D2 relaxed c lattice
constants. To disentangle the (small) differences in the in-plane
lattice parameters (see Table I), we calculated the equilibrium
c constant fixing both a and b ones to experimental values.
This is a well justified procedure to predict interlayer distance
widely used in literature in the case of layered crystals in which
the strongest vdW correction comes from the out-of-plane
interaction.17,18

Figure 4 shows the theoretical results obtained in this way
for AFM FeSe and FeTe phases which are compatible with
experiments in a range around 2% and 0.1% for the FeSe and
FeTe, respectively.
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FIG. 7. FeSe and FeTe Fermi surfaces (upper and lower panel,
respectively) calculated using GGA (dashed line) and DFT-D2 (solid
line) lattice constants.
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In Figs. 5 and 6 we show the band structures calculated
for the FeSe and FeTe using the above lattice constants, and
in Fig. 7 the relative FSs. Considering the GGA c parameter,
we observe in FeSe a hole pocket at the � point and two
very small electron ones along the �X direction. In particular,
these two pockets are related to the presence of a Dirac-like
point just below the Fermi energy. A nearly Dirac point is also
present on the c∗/2 plane, along the ZR line. The electronic
states change sensibly using the predicted c lattice constant
with vdW correction: the hole pocket at the � point is now
completely filled, while the Dirac point along the �X line
shifts nearer EF , closing all FSs in the �XM plane.

In FeTe we observe that hole and electron pockets along the
�X for the GGA c lattice constant transforms in the electron
pocket completely filling the hole one, once vdW parameters
are considered.

In conclusion, we studied the effect of the vdW correction
on the calculation of lattice constants and bulk modulus of

FeCh superconductors. We showed that the vdW correction
is fundamental in order to predict lattice structure and bulk
moduli in agreement with the experiments, having a large
effect on the out-of-plane bonding between the Ch-Fe-Ch
layers.

These results are important in view of computational
experiments within first-principles DFT methods on Fe-based
superconductors and can also be extended to predict the
effect of substitutions, intercalations, high pressure, strain,
and surface effects on the structural, electronic, and magnetic
properties of these compounds.
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