## Magnetoelectric hysteresis loops in Cr<sub>2</sub>O<sub>3</sub> at room temperature

Ayato Iyama and Tsuyoshi Kimura

Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan (Received 22 April 2013; revised manuscript received 6 May 2013; published 28 May 2013)

We revisit the room-temperature linear magnetoelectric effect in  $Cr_2O_3$  single crystals. It was found that the temperature dependence of dielectric constants in a magnetic field *H* shows a  $\lambda$ -shaped peak at the Néel temperature ( $\approx$ 307 K) and that electric polarization induced by applying *H* is reversed with a hysteresis by sweeping an electric field *E*. Similar reversal and hysteretic behaviors were also observed in the *H* dependence of magnetization induced by applying *E*. These results imply that  $Cr_2O_3$  behaves as a typical ferroelectric (ferromagnet) in finite *H* (*E*) even at room temperature. We discuss the ferroic behaviors observed in the linear magnetoelectric system in the context of recent studies on multiferroics.

DOI: 10.1103/PhysRevB.87.180408

PACS number(s): 75.85.+t, 75.47.Lx, 75.60.-d

The linear magnetoelectric (ME) effect, in which electric polarization P (magnetization M) is induced in proportion to an applied magnetic field H (electric field E), was first observed in  $Cr_2O_3$  a half century ago<sup>1-3</sup> and is expressed by  $P_i = \alpha_{ij}H_j$  or  $M_i = \alpha_{ij}E_j$ .<sup>4,5</sup> Whether the proportionality coefficient  $\alpha_{ii}$  (termed the ME tensor) is finite or zero is determined by the phenomenological symmetry requirement.<sup>6</sup> As a consequence, the linear ME effect is allowed only in materials in which both space-inversion and time-reversal symmetries are broken. Since the first observation of the linear ME effect,<sup>2</sup> Cr<sub>2</sub>O<sub>3</sub> has long been attracting attention in terms of its ME<sup>7-9</sup> and related magneto-optical properties such as second harmonic generations<sup>10</sup> and nonreciprocal optical rotation.<sup>11</sup> Cr<sub>2</sub>O<sub>3</sub> has a corundum structure with the space group  $R\bar{3}c$  and shows an antiferromagnetic (AFM) order below  $T_{\rm N} \approx 307 \ {\rm K}^{12}$  [see the inset of Fig. 1(a)]. This AFM ordering makes its magnetic symmetry  $\bar{3}'m'$ , breaks both the space-inversion and time-reversal symmetries, and then allows the diagonal linear ME effect in which  $\alpha_{ii}$  (i = j) can be finite.<sup>1</sup> To explain the linear ME effect microscopically, several models were proposed in the early stage of ME research.<sup>13–16</sup> Furthermore, recent extensive studies on multiferroics have brought renewed attention to the understanding of the linear ME effect in Cr<sub>2</sub>O<sub>3</sub>. Lately, several groups tackled this classical problem by utilizing modern theoretical techniques such as the first-principles calculations.<sup>17-21</sup> These recent theoretical studies discussed the spin-lattice, spin-electronic, and orbital contributions to the linear ME effect. However, the origin is still under debate.

Moreover,  $Cr_2O_3$  with  $T_N \approx 307$  K is not only the first ME compound but also a rare example showing the ME effect at *room temperature*. In spite of recent extensive research activities on multiferroics, room-temperature ME operation has been achieved only in a few systems (e.g.,  $Sr_3Co_2Fe_{24}O_{41}$ ).<sup>22</sup> This rare characteristic, that is, room-temperature ME operation, has driven recent research on  $Cr_2O_3$  for future applications.<sup>23,24</sup> However, detailed experimental data of ME properties in the vicinity of  $T_N$  have been lacking (e.g., the temperature dependence of dielectric constants around the phase boundary). Besides, it is beneficial to discuss the linear ME effect from the viewpoint of multiferroics, which can promote the understanding of the two relevant phenomena. In this Rapid Communication, we provide various experimental results on magnetoelectric properties, i.e., *E*-induced *M* 

and *H*-induced *P*, in  $Cr_2O_3$  around room temperature, and demonstrate that the linear ME system exhibits ferroic natures, i.e., phase transition and domain switching in its electric and magnetic properties in the presence of applied *H* and *E*, respectively.

Single crystals of Cr<sub>2</sub>O<sub>3</sub> were grown from Bi<sub>2</sub>O<sub>3</sub> flux in a similar way to that described in Ref. 25. The obtained crystals were in plate shapes ( $\sim 2 \times 1 \times 0.1 \text{ mm}^3$ ) with the largest faces perpendicular to the c axis (hexagonal setting). Silver electrodes were vacuum deposited onto the largest faces for measurements of dielectric constant along c ( $\varepsilon_c$ ), electric polarization along c ( $P_c$ ), and magnetization along c $(M_c)$ . An *LCR* meter, an electrometer, and a vibrating sample magnetometer were used for the measurements of  $\varepsilon_c$ ,  $P_c$ , and  $M_c$ , respectively. To measure  $M_c$ , a homemade insert which allows the application of E was installed in the magnetometer. The respective measurements of  $P_c$  and  $M_c$  were carried out after cooling the samples from a temperature above  $T_N$  in the presence of both E and H (ME-field-cooling procedure). In Cr<sub>2</sub>O<sub>3</sub> with the magnetic symmetry  $\bar{3}'m'$ , the ME tensor components  $\alpha_{11}$  (= $\alpha_{22}$ ) and  $\alpha_{33}$  can be finite. In this study, however, H and E were applied only along the c axis during the ME field cooling and the measurements, which means that only  $\alpha_{33}$  was investigated.



FIG. 1. (Color online) The relative dielectric constant along c as functions of (a) temperature and (b) magnetic field applied along c. Schematic crystal and magnetic structures are shown in the inset.



FIG. 2. (Color online) (a) Temperature dependence of the electric polarization along c in selected magnetic fields applied along c. (b) The difference of the electric polarization measured at 9 T and 0 T as a function of the electric field. The data of (b) were taken at 300 and 308 K.

Figure 1(a) shows the temperature (*T*) dependence of  $\varepsilon_c$ measured at 1 kHz in the vicinity of  $T_N$ . At  $\mu_0 H = 0$  T (where  $\mu_0$  is the magnetic permeability of vacuum),  $\varepsilon_c$  is almost *T* independent in this *T* range, and the absolute value ( $\varepsilon_c \approx 11$ ) is consistent with that in previous results.<sup>26,27</sup> However, by applying *H*,  $\varepsilon_c$  shows a  $\lambda$ -shaped peak at  $T_N$ . The  $\lambda$ -shaped anomaly in the *T* profiles of  $\varepsilon_c$  is reminiscent of a second order ferroelectric phase transition. This anomaly

## PHYSICAL REVIEW B 87, 180408(R) (2013)

is not observed without an applied *H*, meaning that it is relevant to *H*-induced *P* through the linear ME effect. With increasing *H*, the peak feature becomes more pronounced, and the peak position shifts towards lower *T* in accordance with a decrease of  $T_N$  in higher *H*. The *H*-dependent  $\varepsilon_c$  gives rise to a distinct magnetocapacitance, as shown in Fig. 1(b). This magnetocapacitive effect is prominent around a phase boundary between paramagnetic and antiferromagnetic ME states, and represents the fluctuation of  $P_c$  induced by *H* in the vicinity of the transition point. The magnetocapacitance defined as  $[\varepsilon_c(H) - \varepsilon_c(0)]/\varepsilon_c(0)$  exceeds 20% at T = 307.5 K and  $\mu_0 H \approx 7.5$  T.

Figure 2(a) shows T dependence of  $P_c$  in selected magnetic fields. Although no net  $P_c$  was observed at 0 T in all the T range,  $P_c$  develops below  $T_N$  by applying H. The T dependence of  $P_c$  is reminiscent of that of the staggered magnetization  $G_c$  obtained by a neutron scattering measurement.<sup>28</sup> This suggests that an order parameter of the in-field ferroelectricity originates from  $G_c$ , which is consistent with Ref. 18 because the magnetic susceptibility along  $c(\chi_c)$ is almost constant in this T range. The induced  $P_c$  is nearly proportional to an applied H. Thus, the H-induced  $P_c$  below  $T_{\rm N}$  (Fig. 2) as well as the dielectric anomaly around  $T_{\rm N}$  (Fig. 1) is ascribed to the linear ME effect. From the H dependence of  $P_c$  at 300 K, we obtained  $\alpha_{33} = 2.8 \text{ ps/m}$ , which is comparable to the latest previous result (see Ref. 9 in which  $\alpha_{33}$  is 2.7 ps/m at 300 K). Figure 2(b) shows the *E* dependence of  $P_c(9 \text{ T}) - P_c(0 \text{ T})$ . No change in  $P_c(9 \text{ T}) - P_c(0 \text{ T})$  was observed at 308 K (> $T_N$ ), while that at 300 K (< $T_N$ ) is reversed



FIG. 3. (Color online) Temporal evolution of magnetization along  $c(M_c)$  responding to periodically applied electric fields along  $c(E_c)$  at T = 300 K and  $\mu_0 H = 0$  T. Top panels of (a) and (b) show applied  $E_c$  as a function of time. Middle and bottom panels display the corresponding  $M_c$  data. Prior to the measurements of the middle and bottom panels, the ME field cooling was done at  $\mu_0 H_c = 7$  T with E = 1 MV/m and -1 MV/m, respectively. The inset of (b) shows  $M_c$  as a function of  $E_c$  and represents the linear relationships between  $M_c$  and applied  $E_c$ .

with a hysteresis by sweeping *E*. The result demonstrates that  $Cr_2O_3$  shows a typical ferroelectric behavior at room temperature in the presence of *H*. This ferroelectric behavior, i.e., the *E* reversal of  $P_c$ , is ascribed to a switching of the antiferromagnetic domains<sup>29,30</sup> because a change in the sign of  $G_c$  leads to a sign reversal of  $P_c$ .<sup>18</sup>

Next, we investigated the inverse ME effect, that is, the effect of *E* on *M*, around room temperature. Figure 3(a) shows our experimental demonstration of the *E*-induced magnetization reversal without altering *H* at 300 K. Prior to the measurement shown in the middle panel of Fig. 3(a), the sample was cooled at  $E_c = 1$  MV/m and  $\mu_0 H_c = 7$  T from a temperature above  $T_N$  (ME field cooling). After the sample was set at 300 K, both *E* and *H* were removed. Subsequently,  $E_c = 0, +1$ , and -1 MV/m were applied periodically [top panel of Fig. 3(a)]. As seen in the middle panel of Fig. 3(a),  $M_c$  is induced by applying *E*. In addition, as the sign of *E* is reversed, *E*-induced  $M_c$  is also reversed. When the ME field cooling was done,  $E_c = -1$  MV/m and  $\mu_0 H = 7$  T, the sign of the *E*-induced  $M_c$  is reversed [compare the middle and bottom panels of Fig. 3(a)].

Furthermore, the magnitude of *E*-induced  $M_c$  linearly depends on the applied *E*. Figure 3(b) displays temporal evolution of  $M_c$  (middle and bottom panels) responding to various applied *E* (top panel) at T = 300 K in  $\mu_0 H = 0$  T. Prior to the measurements, the sample was cooled at  $E_c = +1$  MV/m (middle panel) or -1 MV/m (bottom panel) in  $\mu_0 H_c = 7$  T. As evidently seen in the inset of Fig. 3(b), the *E*-induced  $M_c$  is proportional to the applied *E*. These results originate from the inverse linear ME effect. Indeed, the ME tensor estimated from  $dM_c/dE$  is  $\alpha_{33} = 2.9$  ps/m, which is equivalent to the value obtained from an independent measurement of *H*-induced *P*. These experimental results clearly demonstrate that the sign and the magnitude of *M* can be finely controlled only by applying *E* in Cr<sub>2</sub>O<sub>3</sub> at room temperature.

In the inset of Fig. 2, we presented a P-E hysteresis curve, i.e., a ferroelectric characteristic, in the presence of H. Since the ME tensor is totally symmetric between electric and magnetic properties, ferromagnetic behaviors can also be expected in E. Figure 4(a) represents the T dependence of  $M_c$ in selected  $E_c$  after ME field cooling at 7 T and the selected  $E_c$ . Although  $M_c$  is zero without  $E_c$ ,  $M_c$  arises below  $T_N$  in  $E_c$ similarly with the  $P_c$ -T curve shown in Fig. 2. The E-induced  $M_c$  is reversed by applying the opposite  $E_c$  after the same ME-field-cooling procedure as seen in Fig. 4(b). Figure 4(f)shows the difference of  $M_c$  at 2.3 MV/m and  $M_c$  at 0 MV/m  $[\Delta M_c(2.3 \text{ MV/m}) = M_c(2.3 \text{ MV/m}) - M_c(0 \text{ MV/m})]$  as a function of applied H. The measurement protocol is as follows. First, we cooled the sample at both E = 2.3 MV/mand  $\mu_0 H = 1$  T to 290 or 308 K from ~320 K. Second,  $M_c$ was measured with applying E as a function of time. After 2 min, E was turned off, and subsequently  $M_c$  was measured for the following 2 min [Fig. 4(c)]. Then, we obtained the average and the standard deviation of  $\Delta M_c(2.3 \text{ MV/m})$  at a selected H. Next, we turned on E, and changed H to the next point. This procedure was repeated with changing H to various values ( $-7 \text{ T} \leq H \leq 7 \text{ T}$ ). As examples, the experimental data obtained at -2 and -6 T during H sweeping to -7 T are shown in Figs. 4(d) and 4(e), respectively. In this way, we obtained  $\Delta M_c(2.3 \text{ MV/m}) - H$  curves at 290 and 308 K.

## PHYSICAL REVIEW B 87, 180408(R) (2013)



FIG. 4. (Color online) Temperature dependence of the magnetization along c in (a) selected electric fields and in (b) the opposite electric fields applied along c. Time dependence of (c) the applied electric field and the magnetization in (d) -2 T and (e) -6 T at 290 K. First, we applied an electric field for 2 min during the measurement. After that, we turned off the electric field, and measured magnetization for the following 2 min. (f) The difference of the magnetization measured at 2.3 MV/m and 0 V/m as a function of the magnetic field. Black open and red solid circles denote the data obtained at 308 and 290 K, respectively.

At 308 K (> $T_N$ ), no substantial change in  $\Delta M_c$ (2.3 MV/m) was observed in all the *H* [black open circles in Fig. 4(f)]. In contrast, a clear hysteresis loop was observed at 290 K [red solid circles in Fig. 4(f)]. Namely, *E*-induced  $M_c$  is reversed with a hysteresis by sweeping *H* at 290 K. This result demonstrates that Cr<sub>2</sub>O<sub>3</sub> behaves as a ferromagnet with a large coercive field (~4.5 T) in the presence of E = 2.3 MV/m at room temperature.

From our experimental results, it is obvious that  $Cr_2O_3$ shows ferroelectric behaviors in *H* and ferromagnetic behaviors in *E* at room temperature. First, we discuss its ferroelectric nature in *H* in the context of that in spin-driven ferroelectrics in which the appearance of ferroelectricity is ascribed to the development of an order parameter arising from a complex magnetic ordering. For example, the order parameter in one of the most famous spin-driven ferroelectrics, TbMnO<sub>3</sub>, is the so-called vector spin chirality which resides in a noncollinear spiral spin ordered state.<sup>31</sup> Thus, in spin-driven ferroelectrics, their order parameters inside the systems make them polar. On the other hand, the ME effect in  $Cr_2O_3$  has been explained by a recent phenomenological theory<sup>18</sup> in which the *H*-induced *P* along *c* is expressed as  $P_c (=\alpha_{33}H_c) \propto \lambda \chi_c G_c H_c$ . Here  $\lambda$  is

## AYATO IYAMA AND TSUYOSHI KIMURA

the coupling strength. Following this model, the combination of the staggered magnetization  $G_c$  (order parameter inside the system) and the applied magnetic field  $H_c$  (external field) make the system polar in Cr<sub>2</sub>O<sub>3</sub>. Based on the symmetry argument, this is the only difference between spin-driven ferroelectrics and the linear ME  $Cr_2O_3$ . As a consequence, in H,  $Cr_2O_3$ shows similar ferroelectric behaviors with spin-driven ferroelectrics such as TbMnO<sub>3</sub> (pseudoproper ferroelectricity in this case<sup>32</sup>). This is probably because H corresponds to the frozen order parameter  $S_3$  which has been already activated at high temperature, and  $G_c$  corresponds to the order parameter  $S_2$  at the multiferroic phase transition described in Ref. 32, which explains that ferroelectric P in TbMnO<sub>3</sub> is proportional to the order parameters  $S_2S_3$ . Indeed,  $\varepsilon$  and P in H of  $Cr_2O_3$ behave in a similar way with those of TbMnO<sub>3</sub>. In this manner, the linear ME effect (and the behavior of  $\varepsilon$  around the phase transition) is naturally understood.

Next, we briefly discuss what induces a hysteresis in the same context. In TbMnO<sub>3</sub>, the sign of vector spin chirality determines the sign of ferroelectric polarization. On the other hand, in Cr<sub>2</sub>O<sub>3</sub>, the signs of  $G_c$  and  $H_c$  determine the sign of  $P_c$ . In the *P*-*E* hysteresis measurement (Fig. 2), we applied *H* and swept *E*. When the *H*-induced *P* is reversed, it should be accompanied by a reversal of  $G_c$ , as mentioned above, because

we fixed *H* during the measurement. Therefore, the reversal of  $G_c$  induces a hysteresis, and this situation is the same in an *M*-*H* hysteresis measurement. This is, in fact, consistent with previous studies<sup>29,30</sup> because ME domains are identical with antiferromagnetic domains in Cr<sub>2</sub>O<sub>3</sub>.

To summarize, we revisited the classical linear ME effect in  $Cr_2O_3$  by measuring magnetocapacitance, electric polarization (*P*) induced by a magnetic field (*H*), and magnetization (*M*) induced by an electric field (*E*) at room temperature. Our experimental results revealed that the first ME compound  $Cr_2O_3$  shows ferromagnetic and ferroelectric behaviors in *E* and *H*, respectively, by properly confirming a  $\lambda$ -type anomaly in the dielectric constant at the Néel temperature and hysteresis loops in *M*-*H* and *P*-*E* curves. Furthermore, we experimentally demonstrated *M* switching only by *E* at room temperature. The observed in-field ferroic natures in the linear ME compound are similar to those in some multiferroics such as spin-driven ferroelectrics, and can provide an appropriate contribution to a comprehensive understanding of the classical linear ME effect and recent studies on multiferroics.

We thank Y. Yamaguchi for his help in experiments. This work was supported by KAKENHI (Grant No. 24244058) and the Global COE Program (Program No. G10), MEXT, Japan.

- <sup>1</sup>I. E. Dzyaloshinskii, Zh. Exp. Teor. Fiz. **33**, 881 (1959) [Sov. Phys. JETP **10**, 628 (1960)].
- <sup>2</sup>D. N. Astrov, Sov. Phys. JETP **11**, 708 (1960).
- <sup>3</sup>G. T. Rado and V. J. Folen, Phys. Rev. Lett. 7, 310 (1961).
- <sup>4</sup>M. Fiebig, J. Phys. D: Appl. Phys. **38**, R123 (2005).
- <sup>5</sup>T. H. O'Dell, *The Electrodynamics of Magneto-Electric Media* (North-Holland, Amsterdam, 1970).
- <sup>6</sup>R. R. Birss, *Symmetry and Magnetism* (North-Holland, Amsterdam, 1964).
- <sup>7</sup>E. Kita, A. Tasaki, and K. Siratori, Jpn. J. Appl. Phys. **18**, 1361 (1979).
- <sup>8</sup>Y. F. Popov, A. M. Kadomtseva, D. V. Belov, G. P. Vorob'ev, and A. K. Zvezdin, JETP Lett. **69**, 330 (1999).
- <sup>9</sup>P. Borisov, A. Hochstrat, V. V. Shvartsman, and W. Kleemann, Rev. Sci. Instrum. **78**, 106105 (2007).
- <sup>10</sup>M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev, Phys. Rev. Lett. **73**, 2127 (1994).
- <sup>11</sup>B. B. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and V. N. Gridnev, Phys. Rev. Lett. **76**, 4628 (1996).
- <sup>12</sup>T. R. McGuire, E. J. Scott, and F. H. Grannis, Phys. Rev. **102**, 1000 (1956).
- <sup>13</sup>G. T. Rado, Phys. Rev. Lett. **6**, 609 (1961).
- <sup>14</sup>M. Date, J. Kanamori, and M. Tachiki, J. Phys. Soc. Jpn. **16**, 2589 (1961).
- <sup>15</sup>S. Alexander and S. Shtrikman, Solid State Commun. **4**, 115 (1966).
- <sup>16</sup>R. Hornreich and S. Shtrikman, Phys. Rev. **161**, 506 (1967).

- <sup>17</sup>J. Íñiguez, Phys. Rev. Lett. **101**, 117201 (2008).
- <sup>18</sup>M. Mostovoy, A. Scaramucci, N. A. Spaldin, and K. T. Delaney, Phys. Rev. Lett. **105**, 087202 (2010).
- <sup>19</sup>E. Bousquet, N. A. Spaldin, and K. T. Delaney, Phys. Rev. Lett. 106, 107202 (2011).
- <sup>20</sup>A. Malashevich, S. Coh, I. Souza, and D. Vanderbilt, Phys. Rev. B **86**, 094430 (2012).
- <sup>21</sup>A. Scaramucci, E. Bousquet, M. Fechner, M. Mostovoy, and N. A. Spaldin, Phys. Rev. Lett. **109**, 197203 (2012).
- <sup>22</sup>Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Nat. Mater. 9, 797 (2010).
- <sup>23</sup>P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, Phys. Rev. Lett. **94**, 117203 (2005).
- <sup>24</sup>X. He, Y. Wang, N. Wu, A. N. Caruso, E. Vescovo, K. D. Belashchenko, P. A. Dowben, and C. Binek, Nat. Mater. 9, 579 (2010).
- <sup>25</sup>G. Garton, S. H. Smith, and B. M. Wanklyn, J. Cryst. Growth **13-14**, 588 (1972).
- <sup>26</sup>P. H. Fang and W. S. Brower, Phys. Rev. **129**, 1561 (1963).
- <sup>27</sup>H. B. Lal, R. Srivastava, and K. G. Srivastava, Phys. Rev. **154**, 505 (1967).
- <sup>28</sup>E. J. Samuelsen, M. T. Hutchings, and G. Shirane, Physica 48, 13 (1970).
- <sup>29</sup>T. J. Martin and J. C. Anderson, IEEE Trans. Magn. 2, 446 (1966).
- <sup>30</sup>C. A. Brown and T. H. O'Dell, IEEE Trans. Magn. 5, 964 (1969).
- <sup>31</sup>S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
- <sup>32</sup>P. Tolédano, Phys. Rev. B **79**, 094416 (2009).