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Thermal valence-bond-solid transition of quantum spins in two dimensions
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We study the S = 1/2 Heisenberg (J ) model on the two-dimensional (2D) square lattice in the presence of
additional higher-order spin interactions (Q) which lead to a valence-bond-solid (VBS) ground state. Using
quantum Monte Carlo simulations, we analyze the thermal VBS transition. We find continuously varying
exponents, with the correlation-length exponent ν close to the Ising value for large Q/J and diverging when
Q/J approaches the quantum-critical point (the critical temperature Tc → 0). We identify the transition with a
class of conformal field theories with charge c = 1 and critical exponents varying between those of the 2D Ising
model and the Kosterlitz-Thouless (KT) fixed point. We find explicit evidence for KT physics by studying the
emergence of U (1) symmetry of the order parameter at T = Tc when Tc → 0.
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The S = 1/2 Heisenberg model on the two-dimensional
(2D) square lattice can host a quantum phase transition
between a Néel antiferromagnet (AFM) and a valence-bond-
solid (VBS) when other interactions are added.1 This transition
between two different ordered ground states has been the
subject of a large body of work.2 In the J -Q model,3 the
pair exchange J is supplemented by products of two or more
singlet projectors on adjacent links, with strength Q. For
large Q/J the correlated singlets destroy the AFM order, lead-
ing to the VBS crystallization of singlets. Unlike geometrically
frustrated systems, on which research on VBS states and the
AFM-VBS transition were focused for a long time,4–7 the J -Q
model is amenable to large-scale quantum Monte Carlo (QMC)
simulations8 and its AFM-VBS transition has been studied
extensively.3,9–18 The model may realize the unusual (“non-
Landau”) deconfined quantum-critical (DQC) point proposed
by Senthil et al.,19,20 where both order parameters arise out
of emergent spin-1/2 objects (spinons), which at criticality
are described by a CP 1 gauge-field theory. Other, less exotic
scenarios have also been put forward, however.11,21,22

The putative DQC point is a manifestation of quan-
tum effects, due to Berry phases and emergent topological
conservation laws20,23 that potentially are at play in many
strongly correlated quantum systems. Amenable to unbiased
QMC simulations, J -Q models offer unique opportunities to
examine the DQC proposal in detail from various angles. Here
we present results for the paramagnet–VBS transition at finite
temperature (T > 0), discussing its universality, relationship
to conformal field theory (CFT), and the emergent U (1)
symmetry20 associated with the DQC point when approached
at T > 0.

Universality of the VBS transition. The square-lattice
columnar VBS obtaining with the standard J -Q model breaks
Z4 symmetry and thus it should exist T > 0. Thermal 2D
Z4-breaking transitions normally do not have fixed critical
exponents, but belong to a universality class of CFTs with
charge c = 1 exhibiting continuously varying exponents.24,25

Realizations of these transitions include the standard XY model
with a field h cos(4θi) (with spin angles θi),26,27 the Ashkin-
Teller (AT) model,28,29 and the Ising model with nearest- and
next-nearest-neighbor interactions (the J1-J2 model).30,31 The
deformed XY model has a critical line connecting Ising and
Kosterlitz-Thouless (KT) fixed points,32,33 while the critical

lines of the AT and J1-J2 models connect Ising and four-state
Potts points. It is interesting to ask if any of these scenarios
are realized by the T > 0 paramagnet–VBS transition of the
J -Q model. In this Rapid Communication we present strong
evidence for an Ising-KT critical line, with the KT transition
obtaining when Q/J approaches its quantum-critical value
and the critical temperature Tc → 0. This agrees with the DQC
U (1) gauge-field description, where the nature of the VBS
state is dictated by a dangerously irrelevant operator,2,19,20

which implies that the VBS fluctuations should cross over
from Z4 to U (1) symmetric as the DQC point is approached.
This has been observed in ground-state studies of the VBS
fluctuations of J -Q models.3,11,12 We here study the emergent
U (1) symmetry along the critical line when Tc → 0.

The T > 0 VBS transition was previously studied by
Tsukamoto et al.34 by QMC simulations of the J -Q2 model,
where the Q2 interaction is a product of two singlet projectors.
The results showed puzzling deviations from the “weak
universality” applying to the transitions discussed above,
where the critical correlation-function exponent η = 1/4 but
other exponents depend on system details. Instead, η ≈ 0.5
was obtained.34 Here we consider the J -Q3 model,12 where the
Q3 terms consist of stacked bond-singlet projectors on three
adjacent lattice links. This model has a more robust T = 0
VBS for large Q3, while the J -Q2 model is near critical even
for Q2/J → ∞. With the J -Q3 model we can systematically
study the T > 0 transition both far from the DQC point and
close to it. We find η = 1/4 to high precision.

Model and methods. We next discuss the QMC calculations
and data analysis on which we base our conclusions. The J -Q3

Hamiltonian is defined as

H = −J
∑
〈i,j〉

Pij − Q3

∑
〈ijklmn〉

PijPklPmn, (1)

where Pij is a nearest-neighbor bond-singlet projector;

Pij = 1
4 − Si · Sj , (2)

here on the square lattice with L2 sites. We define the coupling
ratio q = Q3/J . The point separating the AFM and VBS
ground states is qc = 1.500(2).12 We use the stochastic series
expansion (SSE) QMC method with loop updates35–37 to com-
pute quantities useful for extracting the critical temperature
and exponents of the T > 0 VBS transition for q > qc.
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We define the VBS correlation length using the J -term
(bond) susceptibility,

χb1,b2 =
∫ β

0
dτ

〈
Pb2 (τ )Pb1 (0) − 〈Pb〉2

〉
, (3)

where Pb is a singlet projector (2), with b a bond connecting
sites ib,jb. The susceptibilities can be computed easily with the
SSE method, because the projectors are terms of the Hamil-
tonian and thus appear in the sampled operator sequences.
With n(b) denoting the number of J operators on bond b, the
susceptibility is38

χb1,b2 = 〈n(b1)n(b2) − 〈n(b)〉2 − δb1,b2n(b1)〉/β. (4)

This estimator works well when q is not too large. When
q > 10 the measurements become noisy due to the low density
of J operators.

To detect columnar VBS order, we consider the bonds b1

and b2 oriented in the same (x or y) lattice direction and
denote by χα(r), α = x,y, the spatially averaged distance-
dependent susceptibility. The VBS susceptibility χx

VBS is the
q = (π,0) Fourier transform of χx(r) (and analogously for y).
The columnar VBS breaks the lattice rotational symmetry,
and we can define two correlation lengths. Using the x

susceptibility and defining q0 = (π,0), q1 = (π + 2π/L,0),
and q2 = (π,2π/L), we have the correlation lengths parallel
and perpendicular to the x bonds for an L × L lattice,

ξx
1 = L

2π

√
χx

VBS(q0)

χx
VBS(q1)

− 1, ξ x
2 = L

2π

√
χx

VBS(q0)

χx
VBS(q2)

− 1, (5)

and analogously for y. The average values of x,y quantities
are denoted in the following without a superscript.

Critical temperature. To illustrate how Tc is determined,
Fig. 1(a) shows ξ1/L vs T at q = 5 for several system sizes.
According to finite-size scaling theory,39 ξ1/L for different L

graphed vs T should cross at Tc when L → ∞. Due to scaling
corrections, the crossing point Tc(L1,L2) between two system
sizes, which we here take as L and 2L, drifts slowly with L and
converges as the system size increases. We use the crossing
point for both ξ1 and ξ2 to extract Tc and check the consistency
of the two results.
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FIG. 1. (Color online) Extraction of Tc for systems at q = 5.
Shown in (a) are, in order of higher to lower curves on the left
side, results for ξ1/L vs T for system sizes L = 96, 48, 24, and
12. Crossing points giving Tc(L) estimates are shown vs 1/L in (b),
using both ξ1 and ξ2 with size pairs (L,2L). The data were fit to the
form Tc(L) = Tc(∞) + a/Lw in the range 1/L ∈ [0,0.08] (ξ1) and
[0,0.06] (ξ2), yielding Tc = 0.249(3) in the case of χ1. For the ξ2 fit,
Tc(∞) = 0.249 was fixed.

Figure 1(b) shows two sets of Tc(L) points obtained
from ξ1 and ξ2. Both curves can be fitted with the form
Tc(L) = Tc(∞) + a/Lw but the parameters are different. The
two curves approach Tc from different directions. The ξ1 data
have large deviations from the fitted function only for small
systems (L � 12), while ξ2 shows corrections extending up
to larger L and the size dependence is nonmonotonic. The
data nevertheless extrapolate consistently to a common Tc in
the thermodynamic limit. To demonstrate this, we show in
Fig. 1(b) a fit to the ξ1 data, giving Tc = 0.249(3) (which has
a smaller statistical error than the value from ξ2). We also
show a fit to the ξ2 data, where Tc(∞) is fixed at the result
from ξ1.

Results for other q points were extracted in the same
way, making sure that ξ1 and ξ2 data extrapolate consistently
and using the ξ1 results (which always have smaller errors)
for further analysis. This procedure becomes increasingly
challenging as the quantum-critical point qc is approached
and Tc → 0. The corrections to the asymptotic form became
more profound and larger systems have to be used. In addition,
the SSE calculations become more time consuming, since
L � 1/T is required for the simulated effective classical
system to be firmly in the 2D limit. The largest system was
L = 192 at q = 5/3. The extracted Tc is shown versus q

in Fig. 2(a).
Critical exponents. We next present an analysis of the

scaling behavior of the VBS susceptibility, which exactly at
Tc should follow the form

χVBS(Tc) ∼ Lγ/ν, (6)

where γ /ν = 2 − η. Here we can use Tc extracted above from
the correlation-length scaling. Alternatively, we can adjust the
temperature until the best power-law scaling is obtained. If
sufficiently large system sizes are used, the two methods should
of course deliver consistent results. This is indeed the case,
as shown in Fig. 2(a). An example of the best power-law
scaling is shown for q = 5 in Fig. 3(a). Here the corrections
to scaling appear to be very small (i.e., a straight line can be
well fitted on the log-log scale even when systems as small
as L = 10 are included) and the temperature, T = 0.253, is
only an error bar off the Tc value extracted from ξ1/L. A series
of fits with a bootstrap analysis to estimate the errors yielded
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FIG. 2. (Color online) (a) The critical temperature extracted from
ξ1/T (open circles). Also shown are results (solid circles) where the
VBS susceptibility exhibits the best scaling behavior when γ = 7/4
is fixed. (b) The exponent ν vs q. The vertical dashed lines in both
panels mark the quantum-critical ratio qc (Ref. 12). The curves are
guides to the eye.
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FIG. 3. (Color online) (a) Scaling behavior of the critical VBS
susceptibility for systems at q = 5. Here T was adjusted to give
the best linear scaling on the log-log plot, giving γ /ν = 1.750(1).
(b) The size-scaled susceptibility under the assumption η = 1/4 vs
T for several system sizes. The crossing point is consistent with Tc

extracted from the correlation length.

γ /ν = 1.750(1), or η = 0.250(1). We find consistency with
η = 1/4 at a similar level of precision for all q values studied.

Figure 3(b) demonstrates a different way to analyze the
susceptibility and test the assumption η = 1/4, by graphing
χVBSL

−7/4 vs T is for different system sizes. All curves cross
essentially at the same point, which confirms the scaling power
γ /ν = 7/4 in Eq. (6). The remarkable absence of drift in the
crossing points of χVBSL

−7/4 (in contrast to the significant
drift found for the normalized correlations lengths) makes this
quantity a perfect candidate for carrying out a finite-size data
collapse to extract correlation-length exponent ν, which we
consider next.

Shown in Fig. 4 are data sets for system sizes L = 48–112
at q = 10/3, graphed versus tL1/ν , where t is the reduced
temperature, t = (T − Tc)/Tc, and the critical temperature
was determined in the manner described above to be Tc =
0.217. The correlation-length exponent ν was adjusted to give
the best data collapse, as measured with respect to a polynomial
fitted simultaneously to all data points for L = 80, 96, 112
in the range tL1/ν ∈ [−0.5,3]. A zoom-in on this window
is shown in the inset. The fit was restricted to the larger
sizes in order to minimize the effects of neglected scaling
corrections, and the window of tL1/ν values was chosen to
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FIG. 4. (Color online) Data collapse of the VBS susceptibility for
systems at q = 10/3. The inset shows data for L = 80, 96, 112 in the
range tL1/ν ∈ [−0.5,3] for which the fitting procedure was carried
out. The main part shows data in a larger window and including also
smaller systems. The fit yielded ν = 1.70(5).

obtain a statistically sound fit. This procedure, along with an
analysis of the statistical errors, gave ν = 1.70(5). When q is
tuned towards qc, larger system sizes are required to achieve
good collapse due to more pronounced scaling corrections, as
already mentioned above. As an example, at q = 5/3, we used
system sizes L = 112, 128, 160, 192.

All our results for Tc and ν vs q are shown in Fig. 2. Tc

clearly decreases when q approaches qc and ν grows rapidly,
changing from 1.065(5) at q = 10 to 2.7(1) at q = 5/3.
The behavior suggests that ν diverges when q → qc, which
would mean that the critical line corresponds to the c = 1
Ising-KT scenario, with the KT universality applying in the
limit q → q+

c and 2D Ising universality (ν = 1) applying in
the extreme limit far from the quantum-critical point (which
cannot strictly be achieved within the J -Q3 model, but ν

is already close to the Ising value for q = 10, the largest
q studied here). This scenario is also supported by the fact
that there is no specific-heat peak at Tc, i.e., the exponent
α < 0.

Emergent U(1) symmetry. The varying critical exponents
are related to evolving critical VBS fluctuations. We investigate
these by following the distribution of the components (Dx,Dy)
of the VBS order parameter. The columnar VBS operator for
x bonds are defined as

D̂x = 1

N

∑
r

(−1)xPr,r+x̂, (7)
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FIG. 5. (Color online) Dimer-order distribution P (Dx,Dy) for
system sizes L = 32 (left) and L = 64 (right) in the close vicinity
of Tc. The coupling ratios (temperatures) are as follows: q = 10
(T = 0.29) in (a), (b); q = 10/3 (T = 0.218) in (c), (d); q = 5/3
(T = 0.08) in (e), (f). In (f) the distributions are somewhat affected
by unequal sampling (due to long QMC autocorrelation times) in
different angular sectors.
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and D̂y is defined analogously. An SSE-sampled configuration
can be assigned definite “measured” values (Dx,Dy) by the
operator-counting procedure discussed above in the context
of the susceptibility (3). We accumulate the probability
distribution P (Dx,Dy), which reflects the nature of the VBS
fluctuations. In analogy with XY models with dangerously
irrelevant Z4 perturbations,40 one would expect the fourfold
symmetric VBS distribution to develop signatures of U (1)
symmetry. This has previously been observed when approach-
ing the quantum-critical point at T = 0. We now approach
this point by following the T > 0 critical line. Figure 5 shows
results for several combinations of the system size and the
coupling ratio. While clearly fourfold symmetric distributions
apply for large q, the histograms become more circular as
the quantum-critical point is approached. As at T = 0,12 one
can expect the distribution to be effectively U (1) symmetric
when L (or some other the course-graining scale) is less than a
length scale , with  → ∞ as q → qc. For the system sizes
studied, L <  at q = 5/3, while for the larger q in Fig. 5
the system sizes exceed . These observations provides direct
evidence for U (1)-symmetric VBS fluctuations, leading to the
large ν found here that is close to qc.

Discussion. All our calculations show consistently that
the thermal VBS transition in the J -Q3 model has critical
exponents varying in a range expected in a particular subclass
of c = 1 CFTs. The exponent η is constant at η = 1/4,
in agreement with weak universality, and ν grows rapidly
as the quantum-critical point is approached, indicating an
emergent U (1) symmetry of the VBS order parameter and

a KT transition obtaining in the limit Tc → 0+. We expect that
the same behavior should apply also in the J -Q2 model, but
that crossover behaviors associated with the proximity to the
quantum-critical point for all Q2/J in that model may make
it difficult to extract the exponents there.34 Since microscopic
details should not matter, by universality our results should
apply to VBSs in a wide range of systems.

The significance of establishing the nature of the T > 0
critical line is that it puts the phase diagram of the J -Q model
firmly within an established CFT. For T → 0+, the effective
(2 + 1)-dimensional system, obtained in a quantum-classical
mapping through the path integral, is still finite in the “time”
dimension, and thus the KT scenario can apply. Exactly at
T = 0 the effective system is fully 3D and a different criticality
must apply (presumably that of the proposed DQC point20).
While we cannot strictly rule out a change of behavior to a
first-order transition for very low temperatures11,14,22 (i.e., the
c = 1 CFT mapping may in principle hold only down to some
low temperature), there are no indications of this in any of
our results. Note, in particular, that in finite-size scaling at a
first-order transition one should see ν = 1/d,41 where d is the
dimensionality (i.e., d = 2 in our case when Tc > 0). Instead,
at the lowest Tc reached here, ν ≈ 3.

The noncommutability of the limits L → ∞ and 1/T →
∞ is also associated with interesting crossovers, which we
have observed here but not studied in detail. Further investi-
gations of this aspect of the VBS transition are warranted.
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