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Interaction of itinerant electrons and spin fluctuations in electron-doped cuprates
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We performed angle-resolved photoemission and optical studies on electron-doped high-temperature
superconductors (HTSCs), and compared the results with various theoretical models. Based on the fit to the
experimental data, we conclude that itinerant electrons in the nonmagnetic phase predominantly couple to the
phase fluctuations of the remnant antiferromagnetic (AF) order, rather than to the spin excitations derived from
particle-hole pairs. Our observation naturally accounts for the pseudogap phenomenon and other experimental
facts in electron-doped HTSCs in terms of the size of the remnant moment and the AF-correlation length. We
propose a microscopic model based on the phase fluctuation scenario which leads to a d-wave pairing gap.
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I. INTRODUCTION

The parent compounds of novel superconductors such
as high-temperature superconductors (HTSCs) and heavy-
fermion (HF) and recently discovered Fe-based supercon-
ductors possess antiferromagnetism (AF) and only become
superconductors either under the application of pressure or
when carriers are doped through substitution of elements,
which concomitantly weakens AF ordering.1–3 When AF order
is absent, spin fluctuations still remain, even well into the
superconducting phase,4–7 and are believed to play a key role
in bringing on superconductivity.2,8,9 In light of such general
observation, it is of utmost importance to have a precise
characterization of the so-called spin fluctuations and establish
a quantitative connection to superconductivity. A recent such
success is the work of Dahm et al.9 which quantitatively related
the measured spin susceptibility spectrum to the transition
temperature of hole-doped HTSCs.

Spectroscopic methods such as angle-resolved photoemis-
sion (ARPES)9,10 and optical spectroscopy11 experiments have
been extensively performed to unravel the mechanism of
electron-spin fluctuation interactions in HTSCs and Fe-based
superconductors, because the observed spectral functions,
which reveal electron dynamics in the frequency domain,
should include signatures of interactions between electrons
and other excitations such as spin fluctuations,10,11 and provide
a way to find the microscopic model of the interaction
through comparison studies with model simulations. However,
interpretation of observed spectral features can be severely
hampered when there are multiple bands (as in Fe-based
superconductors) or if several excitations with comparable

energy scales coexist. In hole-doped HTSCs, superconducting
gaps and pseudogaps, phonons, and spin resonance modes all
have similar energies of several tens of meV.10

On the other hand, electron-doped HTSCs are free from
these problems as they come with a single band and well-
separated energy scales. Known energies of superconduct-
ing gap,12–15 spin resonance mode,5 ARPES kink16 and
pseudogap,17–21 are about 3, 10, 60, and 200 meV, respectively.
The kink structures in ARPES spectra at 60 meV were shown
to be due to phonons,16 while pseudogaps are believed to be
due to magnetism.6,22 The pseudogap energy is well separated
from other energy scales and the superconducting gap is
rather small. Electron-doped HTSCs, therefore, provide a
unique opportunity to examine the nature of the electron-spin
fluctuations by spectroscopic methods. Furthermore, strong
evidence for superconductivity mediated by spin fluctuations
in electron-doped HTSCs has been found recently through
doping-dependent transport studies across the superconduct-
ing dome boundary.23

Theoretical studies have been performed in order to
understand the electron-spin fluctuation interactions and the
pesudogap in electron-doped HTSCs. Mean-field calculations
for electron-doped t − t ′ − t ′′ − U and t − t ′ − t ′′ − J mod-
els show AF ground state.25,26 Local density approximation
(LDA) + dynamical mean-field theory (DMFT) calculations
also give AF ground state even with electron doping up to
about 20%,27 and the calculated ARPES spectral functions
from LDA + DMFT show clear back-folding of bands at
the antiferromagnetic zone boundary (AFZB).27 Even though
short-range AF fluctuations are additionally introduced into
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LDA + DMFT calculation,28,29 the back-folding of bands still
remains, whereas ARPES data do not show it.14,19 Many-
body calculations for the t − t ′ − t ′′ − U model beyond the
mean-field approaches give good agreement with experi-
mentally observed spin correlation length and pseudogap in
Nd2−xCexCuO4.22 It is, however, crucial to develop an effec-
tive Hamiltonian directly describing electron-spin fluctuation
interactions, since the effective Hamiltonian can give deep
insight about the electron-spin fluctuation interactions as well
as superconductivity in the electron-doped HTSCs.

In this article, we report the temperature, doping, and
material dependence of the pseudogap in the electron-doped
cuprates by ARPES and optical spectroscopy. Remarkably, all
spectroscopic data show the same size of pseudogap, regard-
less of temperature and doping concentration, but the spectral
weight fills up within the gap region, as the AF-correlation
length decreases. The pseudogap feature in the electron-doped
HTSCs is clearly beyond the

√
2 × √

2 band reconstruction
model based on long-range AF order. We propose an effective
model including the AF-phase fluctuations. This model has
only a single free parameter to fit with ARPES and optical
conductivity data and reproduces our spectroscopic data very
well.

II. EXPERIMENTAL DETAILS

Single crystals of Nd2−xCexCuO4 (NCCO, x = 0.15),
Sm2−xCexCuO4 (SCCO, x = 0.10, 0.15, 0.18) and Eu2−x

CexCuO4 (ECCO, x = 0.15) were grown by the traveling-
solvent floating-zone method. The crystals were annealed in
Ar for 48 hours at about 900 ◦C to induce superconductivity.
Superconducting transition temperatures, which are measured
by magnetic susceptibility measurements, are 24, 13, 10, and
below 2 K for NCCO, SCCO (x = 0.15), SCCO (x = 018),
and ECCO, respectively.

The ARPES data of NCCO and SCCO were obtained at the
beamline 5-4 of Stanford Synchrotron Radiation Laboratory
and beamlines 7.0.1 and 10.0.1 of the Advanced Light Source.
Photon energies of 16.5, 55, and 85 eV were used. Samples
were cleaved in situ. The base pressure was better than
5 × 10−11 torr. The experimental temperature for SCCO and
ECCO was kept at 10 K while that for NCCO was varied
between 10 and 280 K. The total energy resolution used for the
presented data was typically 14 meV and the angular resolution
was 0.25◦.

The infrared conductivity data from NCCO, SCCO, and
ECCO were obtained through normal-incidence in-plane re-
flectivity measurements with Bruker 113v and Bruker 120HR
Fourier-transform infrared spectrometers. The single-crystal
samples were coated with Au in situ for reference measure-
ments and the resulting data were converted into conductivity
via a Kramers-Kronig analysis. The temperature was varied
from 10 to 300 K by placing the samples within an optical
cryostat.

III. RESULTS AND DISCUSSION

A. Experimental results

Figure 1(a) shows a plot of AF-correlation length, repro-
duced from previous neutron scattering work on NCCO.6

Moving away from AF order (by increase either temperature
or doping) causes a rapid decrease in the correlation length.
On the other hand, μSR experiments showed that replacing
Nd by Sm and Eu in NCCO progressively enhances the
spin ordering.24 Therefore, one may investigate the effect
of AF-correlation length on the electronic spectral functions
through systematic variation of temperature, rare-earth ele-
ment substitution, and doping.

We first look at optical conductivities of electron-doped
materials, where the pseudogap feature is manifested as a
dip in the frequency-dependent conductivity.21 Figure 1(b)
plots rare-earth element and temperature dependent optical
conductivities. The temperature-dependent data show that the
pseudogap feature gradually disappears as the temperature
increases. Optical conductivity of optimally doped NCCO
shows a very weak, if any, pseudogap feature as reported
earlier.21 Then, substitution of Nd by Sm makes the pseudogap
feature in the optical conductivity stronger (and by Eu even
stronger). In combination with previous reports on the doping-
dependent pseudogap effect,21 these experimental findings
point to the pseudogap effect growing stronger with enhanced
AF correlations. However, there is little difference in the
pseudogap size [the peak position indicated by the arrows in
Fig. 1(b)], in spite of a large variation in the overall pseudogap
effect.

In ARPES, pseudogap features are observed as the suppres-
sion of spectral weights at the Fermi energy at the momentum
space locations where the original Fermi surface (FS) crosses
the AFZB17 (also known as hot spots). Figures 1(c)–1(e) show
FS maps of SCCO (x = 0.15) and NCCO (x = 0.15). For the
10 K data, a clear suppression of spectral weight is observed in
both SCCO and NCCO. Comparison of the SCCO and NCCO
data taken at 10 K show that the pseudogap effect is smaller
for NCCO. Increase of temperature results in even smaller
pseudogap effect, seen as a more connected FS in the NCCO’s
280 K data. The trend in the pseudogap effect with varying
temperature and rare-earth element substitution is consistent
with that in the optical data in Fig. 1(b).

One may further investigate the pseudogap effect by looking
at the AFZB cut as marked by the solid arrow in Fig. 1(c).
AFZB data from SCCO and NCCO are plotted in Figs. 1(f)–
1(h). There are two parallel bands along this direction as
reported earlier.19 These split bands can be roughly accounted
for by an extra

√
2 × √

2 order.18,19 In addition, the pseudogap
effect (spectral weight suppression at the arrows) becomes less
prominent as the doping increases or as Sm is replaced by Nd.

Energy distribution curves (EDCs) reveal more detailed
information on the pseudogap effect. Rare-earth, doping, and
temperature-dependent EDCs from a hot spot [shown by
the circle in Fig. 1(d)] are plotted in Figs. 1(i)–1(k). The
NCCO data in Fig. 1(i) show a stronger Fermi edge than the
SCCO data while the peak position in the EDC more or less
stays near 0.15 eV. The same trend is there for the doping
dependence depicted in Fig. 1(j). The Fermi edge grows with
the doping while the peak position does not change as much.
Doping-dependent data from NCCO also show similar
results.20 The most convincing evidence for such behavior
comes from the temperature dependence. Unlike doping and
rare-earth substitution, which affect various parameters in ad-
dition to the AF-correlation length,30 temperature-dependent
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FIG. 1. (Color online) (a) AF-correlation length as functions of doping and temperature reproduced from Motoyama et al. (Ref. 6).
(b) Rare-earth and temperature-dependent optical conductivity from electron-doped HTSCs. Optical conductivity for SCCO (middle) is
reproduced from Park et al. (Ref. 19). The arrows indicate the pseudogap energy scale. For clarity, only the conductivity above the phonon
energy is presented. (c) FS map of SCCO. (d) and (e) FS maps of NCCO at 10 K and 280 K, respectively. The dotted lines depict the AFZB.
The empty circle indicates hot spot in (d). (f) ARPES spectra along the AFZB cut for SCCO (x = 0.15), (g) for SCCO (x = 0.18), and (h) for
NCCO (x = 0.15). Hot spot EDCs are plotted for (i) different rare-earth elements and (j) dopings. (k) Temperature-dependent hot spot EDCs.
A(k,ω) divided by the Fermi function is plotted instead of A(k,ω) for clarity.

studies offer a more direct approach to the investigation of
the AF correlations. Temperature-dependent EDCs from hot
spots are divided by the Fermi Dirac distribution function to
remove the thermal broadening effect and plotted in Fig. 1(k).
The most striking aspect of the data is that the pseudogap
size (arrow in the figure) remains insensitive to temperature.
Instead, the pseudogap is gradually filled up with increasing
temperature. The temperature dependence of the pseudogap
evolution is independent of measurement procedures.

To summarize, our ARPES and optical conductivity exper-
iments show that weakened AF correlations in electron-doped
HTSCs result in filling up of the pseudogap instead of closing,
and leaves the pseudogap energy scale nearly intact.

B. Comparison with a long-range AF order model

As mentioned above, the overall experimental band disper-
sion is roughly compatible with the band structure due to an
extra

√
2 × √

2 order arising from long-range AF order.25,26

One expects that the AF order will cause both band folding
about the AFZB and formation of a folded Fermi surface.
However, as one can see in Fig. 1(c) (for example, see where
an open diamond is), the intensity of folded FS is much weaker
than what is expected within such a model. More seriously,

our data show that bands do not fold back at the AFZB but
extend beyond it. Figures 2(a) and 2(b) show experimental
data from NCCO (x = 0.15) and SCCO (x = 0.15) along the
dashed arrow cut in Fig. 2(d). Even though two bands are
observed as expected in the model, the lower band extends
beyond the AFZB (dashed line). This is in sharp contrast to
the simulation result in Fig. 2(c) in which bands are folded
about the AFZB. Yet another discrepancy is the finite Fermi
energy spectral weight at the hot spot [Figs. 1(i)–1(k)]. This is
forbidden in a long-range AF model due opening of a full gap.
These observations point out the inadequacy of a long-range
AF order model in interpreting the pseudogap features.

C. Comparison with a spin-fermion model

The main problem with the long-range AF order scenario
is its inability to account for the fluctuations. One may thus
instead look at the spin-fermion model,31–33 commonly used
to explain non-Fermi-liquid behavior and the d-wave super-
conducting order parameter of electron-doped cuprates.34,35

The spin-fermion model assumes electronic spin coupling to
the bosonic-spin-fluctuation mode Sq in the form31–33 Hsf =
gsf

∑
k,q c

†
k+q,α(σ )αβck,β · Sq . The strength of spin-fermion

coupling gsf is typically assumed constant independently of
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FIG. 2. (Color online) Experimentally observed spectral func-
tions of (a) NCCO (x = 0.15) and (b) SCCO (x = 0.15) along dashed
red arrow in (d). Spectral function for SCCO is reproduced from Park
et al. (Ref. 19). (c) Spectral function from

√
2 × √

2 reconstruction
model along the dashed red arrow in (d). (d) Schematic FS of
electron-doped cuprates in a quarter of the Brillouin zone. Dotted
lines in (a)–(d) indicate the AFZB.

the scattering momenta involved. Electron creation (annihila-
tion) operators are c

†
k (ck) and σ is the Pauli matrix. In our

work, we assume isotropy of the scattering channels among
the x, y, and z directions and keep only one boson species
Sx

q ≡ aq and analyze the Hamiltonian

H =
∑
kσ

εkc
†
kσ ckσ +

∑
q

ωqa
†
qaq

+ gsf

∑
q

[(c†k+p,↓ck,↑+c
†
k+p,↑ck,↓)aq + H.c.]. (1)

The band electronic dispersion and the spin spectrum are
denoted εk and ωq , respectively.

The electronic Matsubara Green’s function G(k,iω) for
momentum k and imaginary frequency iω after one-loop
self-energy correction from the spin-fermion coupling reads

G(k,iω) = 1/
(
εk − iω − �(k,iω)

)
,

�(k,iω) = g2
sf

∑
p,iν

(Gk+p(iω + iν)Dp(iν)

+Gk−p(iω − iν)Dp(iν)). (2)

The propagator for the bosonic mode at momentum q and
imaginary frequency iν is Dq(iν). For the noninteracting
bosons with the propagator Dq(iν) = ωp − iν, the frequency

sum can be carried out to obtain the self-energy

�(k,iω) = g2
sf

(∑
p

B(ωp) + F (εk+p)

εk+p − ωp − iω

+
∑

p

B(ωp) + F (−εk+p)

εk+p + ωp − iω

)
. (3)

The Bose and Fermi factors are introduced: B(x) =
1/(eβx − 1), F (x) = 1/(eβx + 1). In the zero-temperature
limit all the Bose factors vanish, and F (x) reduces to the step
function, F (x) = θ (−x):

G−1(k,ω) = εk−ω−i
−g2
sf

∑
p

(
θ (εk+p)

εk+p + ωp − ω − i


+ θ (−εk+p)

εk+p − ωp − ω − i


)
. (4)

The retarded Green’s function above is obtained above with
the rotation iω → ω + i
. Here 
 reflects the self-energy
effects from impurities. The spin-fluctuation-mediated effects
are only found in the self-energy part proportional to g2

sf . For
comparison with the ARPES data, the frequency of interest is
on the negative side, ω < 0, and both εk and εk+Q are negative
as well. With this in mind, the first term in the self-energy
drops out:

G−1(k,ω) ≈ εk − ω − i
 − g2
sf

∑
p

θ (−εk+p)

εk+p − ωp − ω − i

.

(5)

A neutron scattering experiment on Pr0.88LaCe0.12CuO4−δ

(Ref. 36) suggests the existence of a localized magnon
excitation ωp where p is narrowly confined to Q = (π,π ) and
furthermore ωp does not disperse very much with variations
in the momentum p − Q. Based on that experimental result,
we follow the approach of Harrison et al.,37 and introduce a
statistical distribution for the momentum p:

ρ(p) = K

ξ−2 + (p − Q)2
,∫

dpxdpy

(2π )2
ρ(p) ≡

∫
dpρ(p) = 1. (6)

The Green’s function in Eq. (5) becomes

G−1(k,ω) ≈ εk − ω − i
 − g2
sf

×
∫

dpρ(p)
θ (−εk+p)

εk+p − ωp − ω − i

. (7)

The spectral function is the imaginary part of the retarded
Green’s function, A(k,ω) = (1/π )Im[G(k,ω)].

The dispersion εk in the Green’s function is taken from the
tight-binding fit of the ARPES data obtained from SCCO.
We previously found that the nearest-, next-nearest- and
next-next-nearest-neighbor hopping matrices are t = 0.238,
t ′ = 0.06, and t ′′ = 0.025 eV, respectively.19 The chemical
potential used gives the average electron doping of 15%.19

We have used a momentum (p) independent spin excitation
energy ωp ≈ 5 meV although the final results turned out to
be insensitive to the choice of the resonance energy within a
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FIG. 3. (Color online) Simulated spectral functions within spin-
fermion models. (a) Feynman diagram evaluated in the spin-fermion
model with q the momentum of the spin excitation. (b) Calculated
optical conductivity based on the spin-fermion model for various
AF-correlation lengths. Calculated ARPES spectral functions based
on the spin-fermion model are shown in panels (c)–(h). (c) FS map,
(d) nodal cut [N, dotted line in panel (c)] and (e) antinodal cut [AN,
solid line in panel (c)] for ξ = 16a. For ξ = 4a, (f) FS map, (g) N
cut, and (h) AN cut are plotted.

few meV window. The impurity broadening 
 is typically
chosen very small to minimize the extrinsic effect in the
spectral function calculation. With only one fitting parameter
gsf left, we adjust the strength of spin-fermion coupling until
a maximal fit of the ARPES spectral data to the calculated
spectral function is achieved.

In this way, we find gsf ≈ 0.1 eV which is much smaller
than the bandwidth of the electrons. It is then expected that a
fully self-consistent approach9 will yield similar results as the
non-self-consistent calculation carried out here. Temperature,
doping, and chemical substitution dependence of the antifer-
romagnetic correlation length is reflected in the momentum
broadening factor, �p = ξ−1.

It is straightforward to calculate optical conductivity from
A(k,ω). The real part of optical conductivity tensor (σ 1

αβ) in
the linear response theory reads

σ 1
αβ(ω) = π

ω

∑
k

vα
k v

β

k

∫ ∞

−∞
dx〈Ak(x)〉〈Ak(x + ω)〉

× [F (x) − F (x + ω)]. (8)

The velocity vα
k is obtained as the momentum derivative of the

bare dispersion εk in the absence of ordering, vα
k = ∂εk/∂kα .

F (ε) is the Fermi function of energy ε. Averaging over x and
y directions gives σ 1(ω) = σ 1

xx(ω) + σ 1
yy(ω).

The calculated optical conductivity plotted in Fig. 3(b)
lacks the characteristic dip-hump feature (so conspicuous in
the experimental data for large AF-correlation length).31 In
addition, there occurs spectral weight transfer from the Drude
peak to the higher energy region between 0.05 and 0.2 eV in the
simulated conductivity as the correlation length decreases (cor-
responding to temperature going up) even though such feature
is absent in the experiments. Single-particle spectral functions
depicted in Figs. 3(c)–3(h) show strong discrepancies as well.
Calculated FSs in Figs. 3(c) and 3(f) for AF-correlation
lengths ξ = 16a and ξ = 4a (where a is the lattice constant)
look quite different from the experimental FSs plotted in
Fig. 1. For example, the calculated FS for ξ = 4a shows very
weak spectral weight near (π/2,π/2) in sharp contrast to the
experimental one plotted in Fig. 1(e). In addition, the nodal
cuts in Figs. 3(d) and 3(g) as well as the antinodal cuts in
Figs. 3(e) and 3(h) do not show any folding effect about the
AFZB. The overall effect from spin-fermion coupling appears
as suppression of spectral weights, leaving little vestige of
the

√
2 × √

2 reconstruction. These observations lead us to
conclude that coupling between electron and spin excitation
in the sense of the spin-fermion model cannot account for the
pseudogap effects seen in electron-doped HTSCs.

D. Comparison with an AF-phase fluctuation model

As discussed above, known models of electron-spin interac-
tion fall short of capturing the observed quasiparticle spectral
features in electron-doped HTSCs. A proper model accounting
for the experimental features should realize two elements: (i) a
robust pseudogap energy scale, which originates from local AF
order and persists well into the magnetically disordered region,
and (ii) fluctuations of localized moments. The interaction
of itinerant electrons with such fluctuating local moments is
expressed in the Hamiltonian

H =
∑
ijσ

tij c
+
iσ cjσ + λ

∑
i

mi · Si, (9)

where c+
iσ (ciσ ),tij , and λ are electron creation (annihilation)

operator with spin σ = ↑,↓, hopping energy, and a coupling
constant, respectively. The spin Si at site i is formed from
the electron operators as S+

i = c+
i↑ci↓,S−

i = c+
i↓ci↑, and Sz

i =
1
2 (c+

i↑ci↓ − c+
i↓ci↑), and is coupled to the local magnetic mo-

ment mi . Here, we assume that spins are localized. This is not
an unreasonable assumption for electron-doped cuprates, since
itinerant spin-based calculations fail to reproduce experimen-
tally observed spin excitations in electron-doped cuprates,38

and the character of spin excitations in electron-doped cuprates
does not change from underdoped to overdoped electron-
doped cuprates, which is in clear contrast with holed-doped
cuprates.7 When both the magnitude and the orientation of
AF ordered mi are frozen, one obtains the long-range AF
model. We introduce phase fluctuations from AF order to treat
short-range AF correlations.

It is convenient to consider the magnetic moment axis
lying in the xy plane when discussing the influence of
phase fluctuations on electronic structure. This is a reasonable
assumption, as the magnetic moment axis of electron-doped
HTSCs was found to be in the xy plane.39 Then one can rewrite
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the Hamiltonian (9) as

H =
∑
ijσ

tij c
+
iσ cjσ + λ

∑
i

(m+
i c+

i↓ci↑ + m−
i c+

i↑ci↓), (10)

where m+
i = (mx

i + im
y

i )/2. Now the AF fluctuating moment
is conveniently parameterized as m+

i = (−1)imeiφi with a
space-time dependent phase φi . The correlation length ξ de-
termines the spatial decay of the phase correlator, 〈ei[φi−φj ]〉 ∝
e−rij /ξ , where rij measures the distance between sites. We
assume that the time part of the phase φi is constant or so slowly
varying that the local magnetic moments can be considered
static within the time scale of photoemission process.41

To understand the effect of nonzero φi in a transparent
manner, we first treat the case of a uniform momentum p

shift φi = 2p · ri .40 Then, m+
i is expressed as (−1)ime2ip·ri ,

and Eq. (10) can be solved exactly after first carrying out
the spin-dependent gauge transformation ciσ → e−iσp·ri ciσ in
Eq. (10). The mean-field Hamiltonian, Eq. (10), in the new
fermion basis becomes

H =
∑

k

′ (
c
†
k↑ c

†
k+Q↓

) (
εk+p �

� εk+Q−p

)(
ck↑

ck+Q↓

)

+
∑

k

′ (
c
†
k↓ c

†
k+Q↑

) (
εk−p �

� εk+Q+p

) (
ck↓

ck+Q↑

)

(11)

over the reduced Brillouin zone
∑′ in momentum space. The

bare band structure in the absence of ordering and phase
fluctuations is εk , and � = λm gives the gap opening due
to AFM order at Q = (π,π ). After diagonalization, we obtain
the Hamiltonian

H =
∑
kσ

′
E+

kσ u
†
kσ ukσ +

∑
kσ

′
E−

kσ d
†
kσ dkσ (12)

with the set of energies

E±
k↑ = 1

2 (εk+p+εk+Q−p)±
√

�2+ 1
4 (εk+p−εk+Q−p)2,

(13)
E±

k↓ = 1
2 (εk−p+εk+Q+p)±

√
�2+ 1

4 (εk−p−εk+Q+p)2.

Keeping in mind that the electron operator is written in
the composite form ciσ eiσp·ri , one can derive the spectral
function as the imaginary part of the retarded Green’s function
Ak(ω,p) = (1/π )Im[Gk(ω + iδ,p)] for a given phase shift p

as

Ak(ω,p) = cos2 θk−p,↑δ(E+
k−p,↑−ω) + sin2 θk−p,↑δ(E−

k−p,↑−ω)

+ cos2 θk+p,↓δ(E+
k+p,↓−ω)

+ sin2 θk+p,↓δ(E−
k+p,↓−ω), (14)

along with the form factors

cos 2θk−p,↑ = εk−εk+Q−2p√
(εk−εk+Q−2p)2 + 4�2

,

(15)
cos 2θk+p,↓ = εk−εk+Q+2p√

(εk−εk+Q+2p)2 + 4�2
.

FIG. 4. (Color online) Calculated (a) FS maps and (b) spectral
functions along blue arrow in (a) with various correlation lengths
within AF-phase fluctuation model. (c) Hot spot EDCs for various AF
phase correlation lengths. (d) Calculated optical conductivity within
AF-phase fluctuation model for various AF phase correlation lengths.

The p-averaged spectral function 〈Ak(ω)〉 is obtained as the
weighted average of the above Ak(ω,p) with the distribution
ρ(p) = (ξ/π )(p2ξ 2 + 1)−1:

〈Ak(ω)〉 =
∫

ρ(p)Ak(ω,p)d2p = ξ

π

∫
Ax(ω,p)

p2ξ 2 + 1
d2p.

(16)

The correlation length ξ is thought to depend on temperature,
doping, and chemical substitution. We note that ξ is a quantity
measurable by neutron scattering experiments, as shown in
Fig. 1(a). The only free parameter in this equation to fit our
ARPES and optical conductivity is λm, which is equal to �

(a half of pseudogap size).
Calculated single-particle spectral functions convoluted

with experimental resolutions and optical conductivities for
various AF-correlation lengths are plotted in Fig. 4. We used
a tight-binding model with the nearest (t = 0.238 eV), the
second nearest (t ′ = 0.06 eV), and the third nearest neighbor
hopping (t ′′ = 0.025 eV) for the bare electron energy (εk).19

We extracted λm of 0.1 eV through fitting to our data.
Figure 4(a) shows the FS maps for ξ = 8a and 4a, where a is
the lattice constant. One observes that the FS contour gets more
connected as the correlation length becomes shorter. Moreover,
spectral functions along the antinodal (AN) cut near the
antinodal region in Fig. 4(b) show that, for short AF-correlation
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lengths, the bands are not folded at the AFZB but extend
into the next zone as was observed in the experimental data
[Figs. 2(a), 2(b)].

To see the pseudogap behavior more clearly as a function of
the AF-correlation length, we plot the EDCs at the hot spot for
various AF-correlation lengths in Fig. 4(c). The peak around
0.12 eV is the position of the lower band at the hot spot. Unlike
the experimental data, it appears peaky because simulation
results do not have the typical background that exists in the
experimental data. As the correlation length becomes shorter,
the spectral weight at the Fermi energy grows and fills up the
pseudogap, as was experimentally observed. The pseudogap
size (twice the distance between the peak and the Fermi
energy) does not change appreciably until the correlation
length becomes very short and two bands eventually merge
together, becoming one band at the Fermi energy.

We also test the validity of the model against experimental
optical conductivity data. Calculated optical conductivities for
various AF-correlation lengths are presented in Fig. 4(d). Opti-
cal conductivity for long correlation length (low temperature)
shows the characteristic dip-hump feature around 0.15 and
0.23 eV, respectively. The spectral shape is strikingly similar to
the low-temperature experimental data. As the AF-correlation
length decreases, the dip-hump feature becomes weaker and
eventually disappears.

An analogous behavior can be seen in the electronic states
of lattice-ordered materials upon melting. The short-range
correlations in atomic position persist above the melting
temperature, and the band gap of the material becomes filled up
(rather than closing).42 This has been experimentally observed
in thin films of lead just above the melting temperature.42

Is the microscopic origin of the AF-phase fluctuations an
extrinsic or intrinsic property? It may be mainly an intrinsic
property of electron-doped HTSCs in the sense of that the
temperature-dependent AF-correlation length and pseudogap
calculated from the t − t ′ − t ′′ − U model give good agree-
ment with experimental observations22 (although it is not
straightforward to find origins of the itinerant electrons and
the localized magnetic moments within the t − t ′ − t ′′ − U

model). However, we believe that extrinsic properties such as
defects should be taken into account as well, since pseudogap
and the AF-correlation length strongly depend on rare-earth
elements as well as temperature (Fig. 1). Defects in the Cu-O
plane are inevitable during the oxygen-reducing process in
electron-doped HTSCs.43–45 Densities of the defects should
be different for the different rare-earth elements. The defects
may cause AF phase decoherence, which gives finite size of the
AF-correlation length, and are the origin of rare-earth element
dependence of AF-correlation length.

E. d-wave superconductivity from AF-phase fluctuations

As we have seen, many phenomenological features of
electron-doped cuprates agree well with the model of phase-
fluctuating local moments interacting with the spin of itinerant
electrons. We now also ask whether the phase fluctuations can
be the origin of superconductivity with dx2−y2 symmetry order
parameter. Here, we assume that the phase fluctuations, which
are treated static in Sec. III D, also exist dynamically in spin
excitations (essentially, spin excitations such as magnons, but

with short correlation length). Indeed, broad peaks of inelastic
magnetic neutron scattering in momentum space36,46 support
the phase fluctuation scenario at finite energy scale.

In order to derive the paring interaction mediated by
the phase fluctuations, we will first parametrize the phase
fluctuations as m+

i = meiφi . After carrying out the spin-
dependent gauge transformation as in the previous section,
we find the phase field dependent hopping Hamiltonian,

Hh =
∑
i,j

tij e
−i[φi−φj ]/2c

†
i,↑cj,↑ +

∑
i,j

tij e
i[φi−φj ]/2c

†
i,↓cj,↓.

(17)

The remaining Hamiltonian responsible for local magnetic
order, i.e., terms proportional to λ in Eq. (9), is dropped in the
consideration of pairing interaction.

The effective interaction is obtained by expanding Eq. (17)
with respect to the small angle difference φi − φj , and then
integrating out the phase field. The energy dispersion of the
phase field is taken as

ωq =
√

c2
sw[sin2(qx − Qx) + sin2(qy − Qy)] + ω2

0. (18)

The resulting effective interaction among electrons is

V =
∑
k �=k′

Vk,k′c
†
k′,↑c

†
−k′,↓c−k,↓ck,↑, (19)

where

Vk,k′ = κ(εk − εk′)2

4ω2
k+k′

. (20)

Here the parameter κ comes from the interaction between
amplitude fluctuations of the localized moments. Through
the canonical conjugate relationship between amplitude fluc-
tuations and phase fluctuations, the phase field acquires
dynamics parameterized by κ after integrating out amplitude
fluctuations.

For simplicity we neglect retardation effects. The onset of
superconductivity is analyzed within the standard BCS gap
equation framework. We define the BCS gap function by

�k = 1

�

∑
k′(�=k)

Vk,k′ 〈c−k′,↓ck′,↑〉, (21)

with � the area of the system. The mean-field Hamiltonian is

Hmf =
∑

k

(
c
†
k,↑ c−k,↓

) (
ξk �k

�∗
k −ξk

) (
ck,↑
c
†
−k,↓

)
, (22)

with ξk = εk − μ. This Hamiltonian is diagonalized by the
following Bogoliubov transformation:(

ck,↑
c
†
−k,↓

)
=

(
uk −vk

vk uk

)(
γk,↑
γ
†
−k,↓

)
, (23)

where uk = (Ek + ξk)/
√

2Ek(Ek + ξk) and vk =
�k/

√
2Ek(Ek + ξk) with Ek =

√
ξ 2
k + |�k|2. The onset

of superconductivity is analyzed within the standard BCS gap
equation framework. In the linearized form, the equation has
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FIG. 5. (Color online) Superconducting gap function �k from
phase fluctuation model at 10% electron doping showing dx2−y2

symmetry.

the form of an eigenvalue problem,

�k = −η
∑
k′ �=k

Vk,k′

2|εk′ − μ| tanh

(
β|εk′ − μ|

2kBT

)
�k′, (24)

where the gap function �k is the eigenvector and η is the
eigenvalue which becomes unity at the transition temperature.
We assumed csw/a = 0.5t , κ = 0.3t , and ω0 = 0.3t in solving
the eigenvalue problem and used a 50 × 50 k-point mesh for
the sum. With these parameters and at 10% electron doping,
the transition temperature was found at Tc/t = 0.03. The gap
function shown in Fig. 5 clearly shows that the gap symmetry
is predominantly dx2−y2 .

The exercise carried out in this subsection is not meant to
convince the reader that the origin of d-wave superconductivity
is also the phase fluctuations, treated dynamically, of the
magnetic order parameter. The point here is to merely
emphasize that our proposed scenario of phase-disordered

magnetic order parameter is consistent with the known d-wave
pairing of superconductivity in electron-doped cuprates. It
is reassuring, though, that d-wave pairing emerges naturally
from our model as well as from other theories of pairing
in electron-doped cuprates. Our observations of ARPES and
optical conductivity can be fully understood within the context
of static phase fluctuations of AF order.

IV. SUMMARY AND CONCLUSIONS

In summary, we showed that many aspects of temperature,
doping, and rare-earth dependent ARPES spectral functions
and optical conductivities in electron-doped HTSCs can be
consistently accounted for by assuming interaction of electrons
with the static phase fluctuations of AF order. A similar
pseudogap phenomenon due to fluctuations of the phase
degree of freedom occurs in other systems such as the liquid
phase in the lead monolayer.42 In our interpretation, the local
moment size, proportional to the pseudogap energy, remains
nearly constant although the degree of phase fluctuations
as embodied in the correlation length depends sensitively
on temperature, doping, and chemical substitution. Pairing
of dx2−y2 symmetry is derived within the phase fluctuation
scheme in spin excitations. We propose this phase fluctuation
scenario as a self-consistent scheme for the phenomenology
of electron-doped HTSCs.
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