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We consider the linear and nonlinear electromagnetic responses of a nanowire connecting two bulk
superconductors. The Andreev states appearing at a finite phase bias substantially affect the finite-frequency
admittance of such a wire junction. Electron transitions involving the Andreev levels are easily saturated, leading
to the nonlinear effects in photon absorption for the subgap photon energies. We evaluate the complex admittance
analytically at an arbitrary frequency and arbitrary, possibly nonequilibrium, occupation of the Andreev levels.
Special care is given to the limits of a single-channel contact and a disordered metallic weak link. We also
evaluate the quasistatic fluctuations of admittance induced by fluctuations of the occupation factors of the
Andreev levels. In view of possible qubit applications, we compare properties of a weak link with those of a
tunnel Josephson junction. Compared to the latter, a weak link has smaller low-frequency dissipation. However,
because of the deeper Andreev levels, the low-temperature quasistatic fluctuations of the inductance of a weak
link are exponentially larger than of a tunnel junction. These fluctuations limit the applicability of nanowire
junctions in superconducting qubits.
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I. INTRODUCTION

The search for longer coherence times of superconducting
qubits brought the study of finite-frequency electromagnetic
properties of mesoscopic superconductors to the forefront of
experimental research.1–6 The majority of experiments until
recently was performed on structures using Josephson junc-
tions as “weak” superconductors, and substantial progress in
recognizing the coherence-limiting mechanisms was achieved.
One may view a number of mechanisms causing energy
or phase relaxation as extrinsic ones. These involve, e.g.,
imperfections in the tunnel barriers comprising junctions,7

charge trapping,8 and interaction with stray photons.9,10 Along
with them, there are intrinsic mechanisms associated with the
kinetics of quasiparticles in the superconductors.11–13 These
mechanisms provide fundamental limitations to the coherence.
The majority of effects of quasiparticles on the finite-frequency
properties of Josephson junctions can be derived12,14 from
the electromagnetic admittance of the junction Y (ω). This
property was extensively studied theoretically, starting from
the seminal phenomenological paper of Josephson15 and
microscopic evaluation16,17 based on the BCS theory.

The use of weak superconducting links instead of Josephson
junctions in qubits was proposed recently as a way to avoid
extrinsic decoherence mechanisms (such as imperfections of
the tunnel barriers).18 An apparent observation of a coherent
phase slip in a conducting weak link19 may be viewed as an
incipient experimental step in that direction. That makes the
question about the intrinsic mechanisms of decoherence in
weak links important. Like with Josephson junction devices,12

this question is directly related to the finite-frequency ad-
mittance of a weak link. Surprisingly, this property has
received relatively little attention. The admittance of a short
superconductor/normal metal/superconductor (SNS) contact
was investigated, mostly numerically, in recent papers.20,21

Some qualitative aspects of the ac response of a single-channel
point contact can be extracted from two other papers devoted
to the theory of enhancement of supercurrent by microwave
radiation.22,23

Here, we perform a fully analytical evaluation of the
admittance of a weak link connecting two bulk supercon-
ductors, valid at an arbitrary frequency ω, a quasiparticle
distribution function, and a normal-state conductance of the
link. Compared to the Josephson junction case, the dissipative
part of the weak link admittance exhibits a number of new
thresholds in its frequency dependence, associated with the
presence of the Andreev levels. The complex admittance
close to these new threshold frequencies is sensitive to the
occupation of the discrete Andreev states. Fluctuations of
the equilibrium or nonequilibrium occupation factors result
in fluctuations of the admittance. We analyze the average
values and fluctuations of the linear electromagnetic response,
giving special attention to the practically important limits
of a single-channel contact24 and a disordered metallic
wire.3,25

The discrete nature of the Andreev states is responsible for
a low threshold for the nonlinear absorption. In the nonlinear
regime, we find a suppression of the absorption coefficient in
a disordered metallic link at radiation frequency ω � 2�/3,
while at higher ω dissipation power depends nonlinearly on
the radiation intensity (here, � is the BCS gap in the leads).

The paper is organized as follows. The model used in
the derivation of the admittance of a point contact with an
arbitrary transmission coefficient is formulated in Sec. II.
The linear response theory for the ac perturbation of the
point contact is developed in Sec. III. In Sec. IV, we discuss
the results for the admittance of the point contact at zero
temperature and no quasiparticles present. In Sec. V, we
study the changes in the admittance caused by the arbitrary
distribution of quasiparticles in the junction. These results
are used in Sec. VI to find the admittance of a disordered
weak link. The fluctuations of the admittance are analyzed
in Sec. VII, both for the case of a point contact and of a
weak link. In Sec. VIII, we consider the absorption rate in
a nonlinear regime for the radiation frequencies close to the
Andreev level resonance. We conclude with the final remarks
in Sec. IX.
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II. POINT CONTACT HAMILTONIAN

We start by considering a point contact between two leads.
It can be described by the tunnel Hamiltonian

Ĥ = ĤL + ĤR + ĤT , (1)

where ĤL(R) are the BCS Hamiltonians of the left (right) leads:

ĤL =
∑

k

ξkc
†
kck + �L

∑
k

c
†
kc

†
k̄
+ �∗

L

∑
k

ck̄ck , (2)

ĤR =
∑

p

ξpc†pcp + �R

∑
p

c†pc
†
p̄ + �∗

R

∑
p

cp̄cp , (3)

and

ĤT = w
∑
kp

(c†kcp + c†pck) + w
∑
k1k2

c
†
k1

ck2 + w
∑
p1p2

c†p1
cp2 (4)

is the tunneling term. Here, ck(p) and ck̄,(p̄) are electron
operators in the left (right) lead corresponding to states k(p)
and its time-reversed pairs k̄(p̄), and �L(R) = �eiφL(R) are the
BCS gap functions. The last two terms in Eq. (4) describe
the back-scattering processes in the left and right leads,
respectively. The validity of the Hamiltonian description of
the point contact systems was discussed in Refs. 26 and 27,
where the real-space counterpart of the Hamiltonian (1) was
studied.

The tunneling amplitude w is assumed to be momentum
independent near the Fermi level. It is related to the transmis-
sion coefficient, τ = (2πν0w)2/[1 + (2πν0w)2], where ν0 is
the normal-state density of states. Keeping the back-scattering
terms in Eq. (4) allows for a consistent description of the
unitary limit, τ → 1, which corresponds to the strong tunnel-
ing, w → ∞. The conductance of the junction G in the normal
state is proportional to τ (hereinafter, we set h̄ = 1). A point
contact between superconducting leads hosts a single Andreev
level28,29 with energy EA(τ,φ) depending on G:

G = e2τ/π , EA(τ,φ) = �(1 − τ sin2 φ/2)1/2 ; (5)

here, the phase difference between the leads order parameters,
φ = φR − φL, is assumed to be time independent.

III. LINEAR RESPONSE TO AC PERTURBATION

We may account for an applied small, time-dependent
voltage V (t) by modifying φL → φL + 2φ1(t) in Eq. (2), with
φ̇1 = eV (t), and adding the term −eV (t)N̂L to Eq. (1):

H = Ĥ (t) − eV N̂L , N̂L =
∑

k

c
†
kck . (6)

We want to find the current 〈Î 〉,
Î = eṄL = −iew

∑
kp

(c†kcp − c†pck) , (7)

induced by an applied voltage to a linear order in V and at
an arbitrary transmission τ . The validity of linear response
in V requires at least the smallness of the perturbation
to the dynamics of the system, |φ1| = |eV/ω| � 1, where
ω is the frequency of perturbation. Further limitations on
the parameters, which may come from the effect of V on
occupation factors, will be discussed later.

It is convenient to do the gauge transformation ck → cke
iφ1

before performing the perturbation theory. This moves the φ1

dependence to the tunneling terms. Using the Kubo formula
for linear response, we get

〈Î (t)〉 = IJ +
∫ ∞

−∞
dt ′χ (t − t ′)φ1(t ′) . (8)

Here, IJ is the Josephson current, which is present even
without applied voltage:

IJ = ewIm

〈∑
kp

c
†
kcp

〉
. (9)

The response function χ (t) is given by

χ (t) = iew2θ (t)
∑
k1p1

∑
k2p2

〈[
c
†
k1

(t)cp1 (t) − c†p1
(t)ck1 (t),

c
†
k2

(0)cp2 (0) − c†p2
(0)ck2 (0)

]〉 − ewδ(t)Re

〈∑
kp

c
†
kcp

〉
. (10)

Averages 〈. . .〉 are taken over the Gibbs ensemble of the
original Hamiltonian H . We can use the Wick’s theorem to
evaluate averages. They can be expressed in terms of the
Green’s functions of the unperturbed system. The Green’s
functions satisfy a system of linear integral equations, but
the corresponding kernels are separable due to the form of the
tunneling term (4). Therefore that system reduces to a system
of algebraic equations, which can be solved exactly. This
response function is related to the admittance in a frequency
domain:

Y (ω) = i
e

ω
χ (ω) . (11)

It is convenient to split the admittance into a sum:

Y =
5∑

i=1

Yi + i

ωLJ

, (12)

each term of which has a clear physical origin. The purely
inductive term LJ comes from the ω → 0 response of the
condensate,

1

LJ

= 2e
∂IJ

∂φ
. (13)

The other five parts of Eq. (12) originate from the quasipar-
ticles transitions. To better understand the structure of these
parts, recall that ReY (dissipative part of admittance) is related
to the linear absorption rate W of the radiation by

W = φ2
1

2e2
|ω|ReY (ω) . (14)

The elementary processes leading to the absorption are
depicted in Fig. 1. The Y1(ω) term corresponds to a process
in which two quasiparticles are created in the band, leading to
the energy threshold 2�. The contribution Y2(ω) in Eq. (12)
comes from creating one quasiparticle in the bound state
and one in the band; the corresponding threshold energy is
� + EA. Creation of a pair of quasiparticles in the bound
state,30 which costs energy 2EA, leads to the term Y3(ω). In
addition to these three contributions, which exist even in the
absence of quasiparticles, there are two more associated with
the promotion of an existing quasiparticle to a higher energy
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FIG. 1. Schematic representation of contributions to the admit-
tance, Eqs. (17)–(21), (26), and (28). Horizontal bars are energy
levels and arrows depict possible excitations. The picture shows
that Y4 = Y5 = 0 in the absence of quasiparticles. Since ReY (ω)
is proportional to the absorption rate, we see that ReY1,2,3,5 will
have threshold frequencies of 2�, � + EA, 2EA, and � − EA,
respectively.

in the absorption process: Y4 is the intra-band contribution and
Y5 corresponds to an ionization of an occupied Andreev level.

IV. ADMITTANCE OF A SINGLE-CHANNEL JUNCTION
AT T = 0 (EQUILIBRIUM STATE WITH NO

QUASIPARTICLES)

Evaluating averages in Eq. (9) for system at zero tempera-
ture one gets31 for the Josephson current:

I
(0)
J = πG

�2 sin φ

2eEA(φ)
, (15)

in agreement with the result one obtains29 from Eq. (5) by
differentiating energy over φ, i.e., I

(0)
J = −2e∂EA/∂φ. Using

the above expression for I
(0)
J and Eq. (13), we find the inductive

term at zero temperature:

1

L
(0)
J

= πG�
cos φ + πG

e2 sin4 φ

2(
1 − πG

e2 sin2 φ

2

)3/2 . (16)

Evaluating averages in Eq. (10), we find the contributions
Y

(0)
i to the admittance. With no quasiparticles present, there can

be no processes of type 3 or 4 in Fig. 1. Therefore Y
(0)
4 (ω) =

Y
(0)
5 (ω) = 0. The contribution Y

(0)
1 (ω) comes from the creation

of pairs of quasiparticles in the band (two excitations of type
1 in Fig. 1), and its real part is given by

ReY (0)
1 (ω)

G
= θ (ω − 2�)

ω

∫ ω−�

�

dερ(ε)ρ(ω − ε)|zε,ω|2 ,

(17)

where ρ(ω) is the density of states in the continuum normalized
to the normal-state density of states ν0:

ρ(ε) = ε
√

ε2 − �2

ε2 − E2
A

, (18)

and the matrix element z is given by

|zε,ω|2 = 1 − �2 cos φ + �2 − E2
A

ε(ω − ε)
. (19)

We assume ω > 0 throughout this section. The result for
negative frequencies can be found using the fact that ReY (0)(ω)

is an even function. The θ function in Eq. (17) shows that there
can be no creation of pairs in the continuum for frequencies
less than 2�.

The Y
(0)
2 (ω) term comes from processes in which one

quasiparticle is created in the band and another one in the
Andreev level. These processes are represented by one arrow
of type 1 and one of type 2 in the Fig. 1. The real part of Y

(0)
2 (ω)

is given by

ReY (0)
2 (ω)

G
= πθ (ω − EA −�)

√
�2 − E2

A

ω
ρ(ω − EA)|zEA,ω|2,

(20)

and it vanishes for ω < � + EA, as for these frequencies the
processes “1 + 2” are energetically not allowed.

Finally, there are processes in which two quasiparticles on
the Andreev level are created. Those are represented by two
excitations of type 2 in Fig. 1. In this case, the frequency must
be equal to 2EA. The Y

(0)
3 (ω) term comes from such processes

and its real part is given by

ReY (0)
3 (ω)

G
= π2

(
�2 − E2

A

)(
E2

A − �2 cos2 φ

2

)
2E3

A

δ(ω − 2EA) .

(21)

Note that the right-hand side of Eqs. (17)–(21) depend on G

and φ through EA, see Eq. (5).
The admittance exhibits nonanalytical behavior at threshold

frequencies ω = 2EA, � + EA, and 2�. For ω ≈ 2�, we
have ReY (0)

1 ∝ (ω − 2�)2θ (ω − 2�) according to Eq. (17).
Similarly, for frequencies ω ≈ � + EA, we get ReY (0)

2 ∝√
ω − (� + EA)θ [ω − (� + EA)] from Eq. (20).
The imaginary parts of Yi(ω)’s can be obtained from

their real parts using Kramers-Kronig relations since Y (ω)
is analytic in the upper half of the complex ω plane. The
complete expression for ImY (ω) is given in Appendix A. At
threshold frequencies, ImY (ω) exhibits nonanalytical behav-
ior, which parallels threshold behavior of ReY (ω). At ω ≈
2�, the nonanalytical contribution behaves as ImY

(0)
1 ∝ (ω −

2�)2 ln |ω − 2�|, and at ω ≈ � + EA, it behaves as ImY
(0)
2 ∝√

(� + EA) − ωθ [(� + EA) − ω)]. The coefficients omitted
from the asymptotes of ReY (0)(ω) and ImY (0)(ω) equal
each other, confirming that the complex function Y (0)(ω) is
analytical.

V. ADMITTANCE OF A SINGLE-CHANNEL JUNCTION
IN THE PRESENCE OF QUASIPARTICLES

The admittance changes once there are quasiparticles
present. Each term in Eq. (12) acquires an additional factor
depending on the quasiparticle occupation numbers. We
introduce occupation factors p0, p↑, p↓, and p2 denoting
probabilities of having zero, one or two quasiparticles in
the bound state; p0 + p↑ + p↓ + p2 = 1. The inductance in
Eq. (12) then becomes

1

LJ

= 1

L
(0)
J

(p0 − p2) . (22)
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The Y1 term acquires a factor depending on the occupation
factors f (ε) of the continuum states,

ReY (0)
1 (ω)

G
= θ (ω − 2�)

ω

∫ ω−�

�

dερ(ε)ρ(ω − ε)|zε,ω|2

× [1 − f (ε) − f (ω − ε)] . (23)

This expression is different from Eq. (17) by a factor equal
to the difference of probabilities for having the initial and the
final states occupied in the transition from the ground state to
the band, see Fig. 1. Similarly, the ReY2 term is given by

ReY2(ω) = ReY 0
2 (ω)

[
p0 + p↑ + p↓

2
− f (ω − EA)

]
, (24)

and Y3 term by

Y3(ω) = Y 0
3 (ω)(p0 − p2) . (25)

The part of the admittance coming from transitions
to the Andreev level, Eqs. (21) and (25), can be inferred
from the results of Ref. 30 for the frequency noise spectrum,
since the noise spectrum and the real part of the admittance
are related by the fluctuation-dissipation theorem.

At nonzero occupancies, there are two additional contribu-
tions to absorption, Y4(ω) and Y5(ω). The former one comes
from the band-to-band transitions, represented by the arrow 4
in Fig. 1. Its real part is given by

ReY4(ω)

G
= 2

ω

∫ ∞

�

dερ(ε)ρ(ω + ε)|z−ε,ω|2[f (ε) − f (ω + ε)].

(26)

The other term, Y5(ω), is generated by the Andreev level-to-
band transitions.22 These transitions are represented by the
arrow 3 in Fig. 1. We can write it in the form resembling that
of Y2(ω):

ReY5(ω) = ReY (0)
5 (ω)[p↑ + p↓ + 2p2 − 2f (ω + EA)], (27)

where the real part of Y
(0)
5 (ω) is given by

ReY (0)
5 (ω)

G
=πθ (ω + EA − �)

√
�2 − E2

A

2ω
ρ(ω + EA)|z−EA,ω|2,

(28)

The occupation factors p and f in all of the above expressions
may, but need not to be the equilibrium ones. The density of
states ρ(ε) and matrix element zε,ω in Eqs. (23) and (26)–(28)
are defined in Eqs. (18) and (19). The final expression for
ReY (ω) at arbitrary frequency can be related to the results of
Refs. 30 and 32 for the noise spectrum of a weak link using
the fluctuation-dissipation theorem.

Note that the transitions involving the Andreev level vanish
at EA → �. This is achieved if either G = 0 or φ = 0.
Expanding to the lowest order in G for G � e2/π , the
contributions Y1,4 are linear in G and they reduce to the
familiar perturbative result for the admittance of a Josephson
junction.33 The other contributions are higher order in G, with
Y2,5 ∝ G3/2, and ReY3 ∝ G2.

In the limit φ → 0, the terms involving transitions to An-
dreev level vanish as ReY2,5 ∝ |φ|, and ReY3 ∝ φ2. Therefore,
at φ = 0, only terms contributing to Y are again Y1 and Y4. In
that case, the expression for Y coincides with the one found

perturbatively33 in the limit of weak tunneling G � e2/π .
Thus, at small phase bias φ, we do not expect much difference
from the simple Josephson junction.

Now, we analyze the behavior of admittance in the limits
of low frequencies and low temperatures, as these are the
conditions often encountered in the application of the super-
conducting junctions. At frequencies below the threshold for
the Andreev level ionization, ω < � − EA, and away from the
bound pair creation resonance, ω �= 2EA, the only contribution
to the dissipative part of admittance comes from Eq. (26).
We assume the quasiparticle occupation factors are distributed
according to Boltzmann distribution f (ε) = Ae−ε/T . At low
temperatures T � � − EA, where � − EA is characteristic
scale for the energy dependence of the density of states above
the gap, the dominant contribution to ReY4(ω) comes from the
transitions between the states near the bottom of the band. In
that limit, we get for the asymptotic form of ReY4(ω):

ReY4(ω)

G
≈

√
2

π
xqp

1 + cos φ + πG
e2 sin2 φ

2(
πG
e2

)2
sin4 φ

2

× (1 − e−ω/T )

√
T

�
eω/4T K1

( ω

4T

)
, (29)

where xqp is the density of quasiparticles nqp in the bulk
normalized to the “Cooper pair density” xqp = nqp/ν0�, and
K1(x) is the modified Bessel function of the second kind. Note
that at small frequencies, ω � T , it follows from Eq. (29) that
ReY4(ω) is frequency independent and proportional to

√
T/�.

In the limit G � e2/π , the Andreev level is shallow, � −
EA � �. If now T � � − EA, the main contribution to Y4

comes from transitions involving states far above the gap where
the density of states is described by the usual BCS result. In this
limit, Eq. (26) is reduced to the known result12 for a Josephson
junction,

ReY (ω)

G
≈ 1

2
√

2

nqp

ν0�
(1 + cos φ)

(
�

T

)3/2

ln
4T

ω
. (30)

This limit is the opposite to the one of Eq. (29). The two
asymptotes match each other at T ∼ � − EA up to the
logarithmic factor.

It is interesting to compare the dissipation in a large-area
Josephson junction of G � e2/π with the dissipation in a
single-channel weak link of the same G. The weak-link
quasiparticle density of states in the continuum, see Eq. (18),
is suppressed compared to the singular tunneling density of
states in a Josephson junction. As a result, at frequencies and
temperatures ω,T � � − EA a weak link is less dissipative
than a Josephson junction with small transparency but large-
area tunnel barrier of the same G. Using Eqs. (29) and (30) we
find, e.g., that the dissipation is smaller by a factor T 2/�2 in
the case of a weak link.

VI. DISORDERED WEAK LINK

For a multichannel junction, one needs to sum the contri-
butions to the admittance from each channel. We consider the
case of a disordered weak link for which we can assume the
transmission coefficients are continuously distributed accord-
ing to the Dorokhov distribution34 ρ(τ ) = πG/2e2τ

√
1 − τ .
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The admittance is then given by

Ȳ (ω) =
∫ 1

0
dτρ(τ )Y (ω,τ ) . (31)

We can write Ȳ (ω) as a sum of five terms, in the same way we
did it for the single-channel junction in Eq (12). Transitions
between the Andreev levels are ignored, which is justified in
the limit of short junction with �/ET → 0, where ET is the
Thouless energy.35

The Josephson current of the disordered weak link can be
found using the same averaging procedure as in Eq. (31). In
the absence of quasiparticles, it is given by36

Ī
(0)
J = πG�

e
cos

φ

2
artanh sin

φ

2
. (32)

Similarly, averaging 1/L
(0)
J from Eq. (16) we get

1

L̄
(0)
J

= πG�

(
1 − sin

φ

2
artanh sin

φ

2

)
. (33)

Evaluating the integral in Eq. (31) results in expressions for Ȳi .
If there are no quasiparticles present, the only nonvanishing
terms are Ȳ1,2,3. Their real parts exhibit threshold behavior
at frequencies 2�, � + �| cos φ

2 |, and 2�| cos φ

2 |. The latter
two thresholds correspond to the fully transmitting channel,
which has the lowest possible Andreev level energy at a given
phase φ. The term corresponding to the creation of a pair of
quasiparticles in the continuum is given by

ReȲ (0)
1 (ω)

G
= θ (ω−2�)P.V.

∫ ω−�

�

dω1
ω1ω − �2(1 + cos φ)

�2ω2
∣∣ sin φ

2

∣∣(ω − 2ω1)

×
√

ω2
1−�2

√
(ω−ω1)2−�2√

ω2
1/�

2 − cos2 φ

2

× ln

√
ω2

1/�
2 − cos2 φ

2 + ∣∣ sin φ

2

∣∣√
ω2

1/�
2 − cos2 φ

2 − ∣∣ sin φ

2

∣∣ , (34)

where P.V. stands for the principal value of the integral. It
has the threshold frequency 2�, just like the single-channel
admittance (17). At frequencies higher than this threshold,
ReȲ1(ω) starts to grow linearly, ReȲ1(ω) ∝ ω − 2�. The
ReȲ2(ω) term, corresponding to the creation of one quasi-
particle in the Andreev level and one in the continuum, is
given by

ReȲ (0)
2 (ω)

G

= π

∫ �

�| cos φ

2 |
dω1θ (ω − ω1 − �)

ωω1 − �2(1 + cos φ)

ω2�
∣∣ sin φ

2

∣∣(ω − 2ω1)

×
√

(ω − ω1)2 − �2
√

�2 − ω2
1√

ω2
1 − �2 cos2 φ

2

. (35)

The threshold frequency of this term is � + �| cos φ

2 |, the
same as the threshold frequency of the fully transmitting
channel for this process. The behavior near the threshold
is given by ReȲ2(ω) ∝ ω − � − �| cos φ

2 |. Finally, there is

a term coming from the processes in which a pair of
quasiparticles is created in the Andreev level. It has the
threshold frequency of ωth(φ), and is given by

ReȲ (0)
3 (ω)

G
= θ [ω − ωth(φ)]θ (2� − ω)

π2∣∣ sin φ

2

∣∣ �

ω

×
(

1 − ω2

4�2

) √
1 − ω2

th(φ)

ω2
,

ωth(φ) = 2�

∣∣∣∣ cos
φ

2

∣∣∣∣. (36)

In the presence of quasiparticles, the above expressions
for the admittance acquire additional factors reflecting the
quasiparticles distribution function, similar to the single-
channel junction. In addition, there are two other terms, Ȳ4 and
Ȳ5, coming from band-to-band transitions and ionization of the
Andreev level, respectively. These are obtained by averaging
Eqs. (26) and (27) over transmission coefficients. The complete
expression for the dissipative part of the admittance in the
presence of quasiparticles is given in Appendix B.

We expect the greatest change in admittance from the
simple Josephson junction at φ ≈ π , when Andreev level
energies of the channels contributing to the admittance fill
the whole range of energies between 0 and �. In that case,
for ωth < ω < � and no quasiparticles present, the only
contribution to dissipative part of the admittance comes from
Ȳ3(ω) and is given by Eq. (36) with ωth = �|φ − π |. At
this threshold, ReȲ3(ω) grows as (ω − ωth)1/2 and reaches
maximum for ω = √

2ωth. The height of the maximum scales
as �/ωth. The frequency dependence of ReȲ3 for φ close to π

is shown on Fig. 2.
When φ = π exactly, there is no low-frequency cutoff. For

low frequencies, ReȲ3(ω) diverges as 1/ω. At frequencies
� < ω < 2�, in addition to ReȲ3, there is the contribution
ReȲ2 given by Eq. (35). Its behavior near the threshold
for φ = π is different than for any other φ and is given
as ReȲ2 ∝ (ω − �)3/2. At frequencies higher than 2�, the

FIG. 2. (Color online) Real part of admittance of a weak link.
Solid lines correspond to φ = π case. The explicit formulas are given
by Eqs. (34)–(36). ReȲ2 and ReȲ1 exhibit threshold behavior at ω =
� and ω = 2� where they start to grow as ∝(ω − �)3/2 and ∝ω −
2�, respectively. ReȲ3(ω) is diverging for ω → 0. Dashed line shows
ReȲ3(ω) at phase different than π , with threshold frequency ωth,
see Eq. (36). As φ → π , its maximum grows and shifts towards
the ω = 0.
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ReȲ3 contribution vanishes and ReȲ = ReȲ1 + ReȲ2. The
frequency dependence of ReȲ (ω) for φ = π is also shown
on Fig. 2.

If φ �= π , the dissipative part of the admittance is zero
for ω < ωth and vanishing occupation factors. Assuming
Boltzmann distribution f (E) = Ae−E/T for quasiparticles and
considering frequencies ω < ωth, the only contribution to
ReȲ (ω) comes from Ȳ4 and Ȳ5 terms, see Eqs. (B6) and (B7).
The former comes from transitions within the continuum band.
In the limit ω,T � �(1 − | cos φ

2 |), the most important are
transitions from the bottom of the band, and we get

ReȲ4(ω)

G
≈ xqp√

2π
cot2

φ

2
(1 − e−ω/T )

√
�

T
U

(
ω

T

)
, (37)

where U (x) = ∫ ∞
0 dte−xt

√
t(1 + t) ln(1 + 1/t). The ReȲ5(ω)

term is due to the transitions from the Andreev levels to
the continuum. In the same limit of small frequency and
temperature, it is given by

ReȲ5(ω)

G
≈ π2xqp√

2π
cot2

φ

2

√
�T

ω
sinh

ω

2T
I1

(
ω

2T

)
, (38)

where I1(x) is the modified Bessel function of the first
kind. The dissipative part of admittance is given by the
sum of the two terms: ReȲ (ω) = ReȲ4(ω) + ReȲ5(ω).
For ω � T , the leading term comes from Eq. (37) and is
frequency independent, ReȲ4 ∝ √

�/T . Comparing the
considered case of a weak link to a tunnel junction of the
same conductance G, ReȲ4(ω) has an additional, small factor
of T/[� sin2 φ

2 ln(T/ω)], suggesting that ReȲ4(ω) is reduced
in the case of a weak link at low frequencies. In the opposite
limit, ω � T , the leading term comes from Eq. (38) due
to higher population of low-energy Andreev levels. In that
case, ReȲ5(ω) ∝ xqpe

ω/T
√

�T ω−3/2. Because of the large
exponential factor, the dissipation in the weak link is greater
than in the tunnel junction of the same conductance at high
frequencies.

VII. FLUCTUATIONS OF ADMITTANCE

Superconducting junctions are crucial elements of super-
conducting qubits. The admittance of a junction affects the
properties of such qubits (i.e., their frequency and relaxation
rates).12 As shown above, the admittance depends on the
number of quasiparticles in the junction. Fluctuations of
the occupation numbers cause fluctuation of the admittance.
Consequently, the resonant frequency of a qubit containing the
junction will fluctuate.

The inductive 1/LJ term (which determines the frequency
of the qubit) depends only on the occupation numbers of the
Andreev level. Therefore its variance depends only on the
variance of the occupation numbers of the Andreev level

[
L

(0)
J

]2
Var

1

LJ

= [p0 + p2 − (p0 − p2)2] . (39)

The relative fluctuations of IJ and 1/LJ are significant unless
p0, p2, or p↑ + p↓ are close to 1. Assuming equilibrium
between quasiparticles in the band and in the Andreev level, as
well as low quasiparticle occupation numbers of the Andreev

level, Eq. (39) reduces to

[L(0)
J ]2Var

1

LJ

= xqp√
2π

(�/T )1/2e(�−EA)/T , (40)

The Yi terms in the expression (12) depend on the occu-
pation numbers of the continuum states as well. However, the
fluctuations of admittance caused by the fluctuations of these
occupation numbers are inversely proportional to the volume
of the system and therefore are negligible in the macroscopic
limit. The expression for the variance of Y (ω) is then similar
to the one for Var1/LJ . At frequencies ω < � + EA and
ω �= 2EA to avoid the resonance, we get

Var ReY (ω) ≈ [p0 + p2 − (p0 − p2)2]
[
ReY (0)

5 (ω)
]2

, (41)

where ReY (0)
5 (ω) is given by Eq. (28). Note that at low fre-

quencies, ReY5(ω) = 0 as it has a phase-dependent threshold.
To calculate the fluctuations in disordered weak links, one

must integrate the above expressions for variances over the
distribution of the transmission coefficients. Assuming again
equilibrium between the band states and Andreev levels, the
fluctuations of the Josephson current are given by

VarIJ = π

2
G�2xqp

∣∣ cos φ

2

∣∣1/2(
1 − ∣∣ cos φ

2

∣∣)∣∣ sin φ

2

∣∣ e(1−| cos φ

2 |)�/T .

(42)

Here, we also assumed T � �(1 − | cos φ

2 |), so that the
main contribution comes from the channels with lowest EA

(fully transmissive channels), and T � �| cos φ

2 |, see also
Eq. (33). Under the same assumptions, the variance of the
mean inductance 1/L̄J is

S
[
L̄

(0)
J

]2
Var

1

L̄J

= e2

2πG
xqpe

(1−| cos φ

2 |)�/T g(φ) , (43)

g(φ) =
∣∣ cos φ

2

∣∣5/2

∣∣ sin φ

2

∣∣ (1 − sin φ

2 artanh sin φ

2

)2 . (44)

The factor e2/2πG can be interpreted as 1/Ne, where
Ne is the effective number of channels in the weak link.
Comparing to the case of a weak tunneling junction with
the same number of channels, the relative fluctuations of
1/L̄J have a factor exp[(1 − | cos φ

2 |)�/T ]. This large
exponential factor suggests that the fluctuations are greater
in the weak link. Such shot-to-shot fluctuations contribute to
inhomogeneous broadening and limit the usefulness of weak
links in superconducting qubits.

VIII. NONLINEAR ABSORPTION RATE
AT RESONANT FREQUENCY

For frequencies ω ≈ 2EA, we found that the admittance
of a single-channel junction has a resonant δ-function peak
corresponding to creation of quasiparticles at the Andreev
level. Using Eq. (21), we may recast the absorption rate
Eq. (14) in the form

W = π

2
�2

Rδ(ω − 2EA) . (45)
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Here

�R = |φ1|
(
�2 − E2

A

)√
E2

A − �2 cos2 φ

2

�EA

∣∣ sin φ

2

∣∣ (46)

has the meaning23 of the Rabi frequency for the transitions in
an effective two-level system driven by ac perturbation φ1.
The two levels correspond, respectively, to the empty and
doubly occupied Andreev states. In the linear response, we
neglect the effect of the Rabi oscillations on the dynamics
of the two-level system. This is possible as long as �R

is smaller than some “natural,” independent of φ1 width
η0 of the levels. Such natural width coming, e.g., from
inelastic scattering of quasiparticles30 leads to a replacement
δ(ω − 2EA) → η0/π [(ω − 2EA)2 + η2

0].
The effect of a stronger ac perturbation is two fold. First,

it may result in �R > η0 affecting the dynamics of the
two-level system. Second, it may make the levels lifetimes
dependent on φ1 by introducing new processes in the kinetics
of quasiparticles. Indeed, the ac field may “ionize” the
Andreev state, transferring a quasiparticle from that state into
the continuum. One needs ω > � − EA for that. Using the
resonance condition, ω ≈ 2EA, we find that the kinetics of the
Andreev states is sensitive to the ac perturbation at EA > �/3.

To address these two effects, we truncate the time-
dependent part of the original Hamiltonian (6) retaining only
terms responsible for the Rabi oscillations between the empty
and doubly occupied Andreev states and terms causing the
ionization of that state,

H =
∑

σ

EAα†
σασ +

∑
kσ

Ekα
†
kσ αkσ + �R cos ωt(α↑α↓

+α
†
↓α

†
↑) + cos ωt

∑
kσ

(λkα
†
kσ ασ + λ∗

kα
†
σαkσ ) . (47)

Here, ασ and αkσ are annihilation operators of quasiparticles
in the Andreev level and the band, respectively. The last
sum in the Hamiltonian (47) is responsible for the transitions
between the Andreev state and continuum. The corresponding
ionization rate is

η = π

2

∑
k

|λk|2δ(ω − Ek + EA) . (48)

The very same term leads to the ReY5 part of admittance in the
linear response theory, allowing us to relate η to ReY5,

η = φ2
1

e2
EAReY (0)

5 (2EA) . (49)

The Hamiltonian (47) is quadratic, so the equations of
motion for operators α reduce to a linear system of differential
equations. Assuming frequencies close to the resonance,
ω − 2EA � � − EA, we can find the behavior of the solutions
to the equations of motion after a long period of time, t � 1/η.
The system then reaches the stationary state in which the
energy absorption rate P is given by

P = 〈Ḣ 〉 = 3

2
nAωη , (50)

with nA being the average number of quasiparticles in the
Andreev level in the process of the Rabi oscillations,

nA = �2
R

(ω − 2EA)2 + �2
R + η2

. (51)

Hereinafter, we neglected a shift of the resonant frequency,
|2ẼA − 2EA| ∝ φ2

1 , which is parametrically smaller than the
broadening due to the �2

R + η2 term in the denominator of
Eq. (51). The expression for the absorption power Eq. (50) has
a simple interpretation: η is the transition rate from the level
to the band, so nAη is the rate at which the Andreev level loses
quasiparticles. To keep the number of quasiparticles in the
level stationary, for each particle that left, a new one must be
created in the level. This amounts to energy of ω + EA = 3ω/2
for each transition, explaining the factor of 3/2 in Eq. (50).
The condition EA > �/3 needed for η �= 0 and the resonant
condition ω ≈ 2EA imply ω > 2�/3 for the absorption power
Eq. (50) to be finite.

Using Eqs. (51), (49), (28), (18), (19), and (46) for nA, η,
and �R , we can write P in terms of the Rabi frequency,

P = 3ηEA�2
R

(ω − 2EA)2 + �2
R + η2

,

(52)

η =
�2

R

√
9E2

A − �2
(
E2

A + �2 cos2 φ

2

)
16EA

√
�2 − E2

A

(
E2

A − �2 cos2 φ

2

) .

At generic values of static phase bias φ and transmission
coefficient τ , one has �R � η as long as the perturbation is
reasonably weak, φ1 � 2π . In that case, nA exhibits saturation
at resonance, while P grows linearly with the perturbation
intensity ∝φ2

1 . At a small static phase, bias η takes form

η = �2
R

�

√
8√

τ (1 − τ )|φ|3 . (53)

It indicates that an increase of the excitation amplitude may
result in a nonmonotonic nA versus �R dependence, and
in saturation of P at fairly low excitation strength, �R ∼
|φ|3�√

τ (1 − τ ).
The population of the Andreev states by quasiparticles

drastically alters the critical current of the junction and its
low-frequency properties due to the changes in the inductance.
Using Eqs. (22) and (51), we find

1

LJ

= 1

L
(0)
J

(ω − 2EA)2 + η2

(ω − 2EA)2 + �2
R + η2

. (54)

Therefore �R may be inferred experimentally from a measure-
ment of the critical current24 or from a two-tone experiment of
the type.37

In the case of a disordered weak link, an ac voltage at
frequencies 2�| cos φ

2 | < ω < 2� also populates the Andreev
levels with quasiparticles. If the applied voltage is low and the
ionization processes are negligible, levels with energies within
an interval |EA − ω/2| � �R are substantially populated, cf.
Eq. (51). The resulting absorption power,

P = θ

(
ω − 2

3
�

)
3π2G

40e2
|φ1|3 (4�2 − ω2)3/2

√
9ω2 − 4�2

ω2�2 sin2 φ

2

×
(

1

2
ω2 + �2 cos φ + �2

)
, (55)

scales as |φ1|3 reflecting the growing with |φ1| number of
states involved in the absorption. As before, it is required
that ω > 2�/3 to allow the ac-field-induced ionization of the
excited Andreev levels.
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IX. CONCLUSION

The motivation for this study was twofold. First, it came
from the prospects18 of using nanowires instead of tunnel
junctions in qubits and other microwave devices.3 Additional
impetus for the study came from experiments24 with nanoscale
junctions, pointing to their extreme sensitivity to the presence
of quasiparticles in the Andreev level. The effect of the
Andreev states on electromagnetic properties has also been ob-
served in recent experiment38 with a Normal/Superconducting
(NS) ring. However, these junctions do not fall into the short
weak link limit considered in this work.

We obtained an analytical expression for a frequency-
dependent admittance of a point contact of arbitrary transmis-
sion coefficient and arbitrary quasiparticle occupation factors.
The results are valid even for nonequilibrium distribution of
quasiparticles (see Sec. V). The generalization to a short weak
link (shorter than coherence length) is presented in Sec. VI. We
found that at low frequencies and temperatures, which are of
interest in qubit devices, the dissipation of a point contact and
a disordered weak link may indeed be lower than in a tunnel
junction of a similar conductance. The lower dissipation is the
result of the suppressed density of states, see Eqs. (29), (37),
and (38) and the discussion following these equations.

On the other hand, we have shown that at low temperatures,
the fluctuations of the admittance caused by the fluctuations of
the Andreev level occupation can become large (see Sec. VII).
At fixed number of conducting channels Ne, they are larger
than the admittance fluctuations of a tunnel junction by a
factor exp[(� − EA)/T ], where EA is the energy of the lowest
Andreev level, see Eqs. (40) and (43). In addition to that factor,
already enhancing fluctuations, their amplitude scales as
N

−1/2
e . Josephson junctions in the existing qubit devices have

conductance G ∼ e2/π . An all-metallic link replacing such
junction would have Ne ∼ 1 leading to gigantic fluctuations.
Situation is better for resonant devices designed for different
applications3 where Ne ∼ 100, and at the same time the
demand on the resonance-frequency stability may be milder.

The admittance of a single-channel junction exhibits a
resonant behavior at frequencies ω ≈ 2EA corresponding to
the creation of pair of quasiparticles in the Andreev level.
We studied in more detail the effect of the ac perturbation of
such frequencies on a quasiparticle dynamics, see Sec. VIII.
If EA < �/3, the system goes through the Rabi oscillations
between the empty and doubly occupied Andreev level without
dissipation. For EA > �/3, the ac perturbation also causes
excitations of quasiparticles from the level to the band. The
dissipation power is then nonzero and has resonant behavior,
with the resonance width depending on the amplitude of the
ac perturbation (52). We found that the junction inductance
follows the same behavior, therefore the Rabi frequency can be
measured in a two-tone experiment. In the case of a disordered
weak link, there is no dissipation at the ac perturbation
frequencies lower than 2�/3. At higher frequencies, the
dissipation power depends nonlinearly on the ac perturbation
intensity, see Eq. (55). Finally, it is worth noting that the
population of the Andreev level may depend nonmonotonically
on the intensity of perturbation, see Eqs. (51) and (53). The
population of separate Andreev levels may be studied in
experiments24 with break junctions.
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APPENDIX A: THE COMPLETE EXPRESSION FOR ImY (ω)

From Eq. (10), we can get the complete expression for
the admittance, including the imaginary part. Since Y (ω) is
analytical in the upper half-plane, ImY (ω) can also be obtained
from the expressions for ReY (ω) by the Kramers-Kronig
relations. At zero temperature, the contributions to the ImY (ω)
corresponding to the real parts from Eqs. (17)–(21) are given by

ImY1(ω)

G
= 1

πω
P.V.

∫ ∞

�

dε1

∫ ∞

�

dε2ρ(ε1)ρ(ε2)
∣∣zε1,ε1+ε2

∣∣2

× [1 − f (ε1) − f (ε2)]

×
(

1

ω − ε1 − ε2
− 1

ω + ε1 + ε2
+ 2

ε1 + ε2

)
,

(A1)

ImY2(ω)

G
=

√
�2 − E2

A

ω
P.V.

∫ ∞

�

dερ(ε)
∣∣zε,ε+EA

∣∣2

× [p0 + p↑ + p↓
2

− f (ε)]

×
(

1

ω − ε − EA

− 1

ω + ε + EA

+ 2

ε + EA

)
,

(A2)

ImY3(ω)

G
= π

(
�2 − E2

A

)(
E2

A − �2 cos2 φ

2

)
ωE2

A

× (p0 − p2)

(
1

ω − 2EA

− 1

ω + 2EA

+ 1

EA

)
.

(A3)

These expressions are valid for any distribution of quasipar-
ticles. The case of no quasiparticles present corresponds to
p0 = 1, p↑,↓,2 = 0, and f (ε) = 0. The imaginary parts of the
last two contributions, Y4(ω) and Y5(ω) are given by

ImY4(ω)

G
= 1

πω
P.V.

∫ ∞

�

dε1

∫ ∞

�

dε2ρ(ε1)ρ(ε2)
∣∣zε1,ε1−ε2

∣∣2

×[f (ε2) − f (ε1)]

×
(

1

ω −ε1 + ε2
− 1

ω + ε1 − ε2
+ 2

ε1 − ε2

)
,

(A4)

ImY5(ω) =
√

�2 − E2
A

ω
P.V.

∫ ∞

�

dερ(ε)
∣∣zε,ε−EA

∣∣2

×
[
p↑ + p↓

2
+ p2 − f (ε)

]

×
(

1

ω − ε + EA

− 1

ω + ε − EA

+ 2

ε − EA

)
.

(A5)

174521-8



FREQUENCY-DEPENDENT ADMITTANCE OF A SHORT . . . PHYSICAL REVIEW B 87, 174521 (2013)

APPENDIX B: ADMITTANCE OF A WEAK LINK

Let p0(ε), p↑,↓(ε), and p2(ε) be the probabilities to have
zero, one or two quasiparticles in the Andreev level with energy
ε. The occupation factor of the continuum state with energy ε

is denoted by f (ε). The admittance of a disordered weak link
for general occupation numbers is given by

Ȳ (ω) =
5∑

i=1

Ȳi(ω) + i

ωL̄J

, (B1)

where the inductance term is

1

L̄J

= πG�∣∣ sin φ

2

∣∣
∫ �

�| cos φ

2 |
dε

�2 cos2 φ

2 − ε2 sin2 φ

2

ε2
√

ε2 − �2 cos2 φ

2

× [p0(ε) −p2(ε)]. (B2)

The real parts of the Ȳi terms are given by

ReȲ1(ω)

G
= θ (ω − 2�)P.V.

∫ ω−�

�

dε
εω − �2(1 + cos φ)

�2ω2
∣∣ sin φ

2

∣∣(ω − 2ε)

√
ε2 − �2

√
(ω − ε)2 − �2√

ε2/�2 − cos2 φ

2

ln

√
ε2/�2 − cos2 φ

2 + ∣∣ sin φ

2

∣∣√
ε2/�2 − cos2 φ

2 − ∣∣ sin φ

2

∣∣
× [1 − f (ε) − f (ω − ε)] , (B3)

ReȲ2(ω)

G
= π

∫ �

�| cos φ

2 |
dεθ (ω − ε − �)

ωε − �2(1 + cos φ)

ω2�
∣∣ sin φ

2

∣∣(ω − 2ε)

√
(ω − ε)2 − �2

√
�2 − ε2√

ε2 − �2 cos2 φ

2

[
p0(ε) + p↑(ε) + p↓(ε)

2
− f (ω − ε)

]
,

(B4)

ReȲ3(ω)

G
= θ

(
ω − 2�

∣∣∣∣ cos
φ

2

∣∣∣∣
)

θ (2� − ω)
π2∣∣ sin φ

2

∣∣
(

�2

ω2
− 1

4

)√
ω2

�2
− 4 cos2

φ

2
[p0(ω/2) − p2(ω/2)] , (B5)

ReȲ4(ω)

G
=

∫ ∞

�

dεθ (ε + ω − �)[f (ε) − f (ε + ω)]

√
ε2 − �2

√
(ε + ω)2 − �2

ω2�2
∣∣ sin φ

2

∣∣(2ε + ω)

×
⎡
⎣ω(ε + ω) − �2(1 + cos φ)√

(ε + ω)2/�2 − cos2 φ

2

ln

√
(ε + ω)2/�2 − cos2 φ

2 + ∣∣ sin φ

2

∣∣√
(ε + ω)2/�2 − cos2 φ

2 − ∣∣ sin φ

2

∣∣
+ ωε + �2(1 + cos φ)√

ε2/�2 − cos2 φ

2

ln

√
ε2/�2 − cos2 φ

2 + ∣∣ sin φ

2

∣∣√
ε2/�2 − cos2 φ

2 − ∣∣ sin φ

2

∣∣
⎤
⎦ , (B6)

ReȲ5(ω)

G
= π

∫ �

�| cos φ

2 |
dεθ (ε + ω − �)

ωε + �2(1 + cos φ)

ω2�
∣∣ sin φ

2

∣∣(2ε + ω)

√
(ω + ε)2 − �2

√
�2 − ε2√

ε2 − �2 cos2 φ

2

[
p↑(ε) + p↓(ε)

2
+ p2(ε) − f (ω + ε)

]
.

(B7)

From these, we can also find imaginary parts using the
Kramers-Kronig relations.

Assuming Boltzmann distribution f (ε) = Ae−ε/T both be-
low and above the gap, for frequencies less than 2�| cos(φ/2)|,
the only contribution to ReY (ω) comes from Eqs. (B6) and
(B7). In the limit ω,T � �, we get

ReȲ4(ω) ≈ G√
2π

xqp cot2
φ

2

√
�

T
(1 − e−ω/T )U

(
ω

T

)
,

ReȲ5(ω) ≈ π2G√
2π

xqp cot2
φ

2

√
T �

ω
sinh

ω

2T
I1

(
ω

2T

)
,

where U (x) = ∫ ∞
0 dte−xt

√
x(1 + x) ln(1 + 1/x) and I1(x) is

the modified Bessel function of the first kind. Now consider

two opposite limits, ω � T :

ReȲ4(ω) ≈ G√
2π

xqp cot2
φ

2

√
�/T , (B8)

ReȲ5(ω) ≈ π2G

8
√

2π
xqp cot2

φ

2

ω√
T �

, (B9)

and ω � T :

ReȲ4(ω) ≈ G

2
√

2
xqp cot2

φ

2

T
√

�

ω3/2
ln

ω

T
, (B10)

ReȲ5(ω) ≈ πG

2
√

2
xqp cot2

φ

2

√
T �

ω3/2
eω/T . (B11)
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