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Field-angle-resolved anisotropy in superconducting CeCoIn5 using realistic Fermi surfaces
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We compute the field-angle-resolved specific heat and thermal conductivity using realistic model band
structures for the heavy-fermion superconductor CeCoIn5 to identify the gap structure and location of nodes. We
use a two-band tight-binding parametrization of the band dispersion as input for the self-consistent calculations in
the quasiclassical formulation of the superconductivity. Systematic analysis shows that modest in-plane anisotropy
in the density of states and Fermi velocity in tetragonal crystals significantly affects the fourfold oscillations in
thermal quantities, when the magnetic field is rotated in the basal plane. The Fermi-surface anisotropy substantially
shifts the location of the lines in the H -T plane, where the oscillations change sign compared to quasicylindrical
model calculations. In particular, at high fields, the anisotropy and sign reversal are found even for isotropic gaps.
Our findings imply that a simultaneous analysis of the specific heat and thermal conductivity, with an emphasis on
the low-energy sector, is needed to restrict potential pairing scenarios in multiband superconductors. We discuss
the impact of our results on recent measurements of the Ce-115 family, namely, CeT In5 with T = Co, Rh, Ir.
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I. INTRODUCTION

Many heavy-fermion and other novel superconductors are
thought to possess nodes in the gap function on the Fermi
surface. Since the gap shape is directly related to the symmetry
of the pairing interaction, knowing the position of nodes
can shed light on possible pairing mechanisms. Magnetic
field-angle-resolved specific heat and thermal conductivity
experiments are able to provide detailed information about
the anisotropy of quasiparticle excitations near the Fermi
surface, and hence help identify the nodal directions in the
bulk.1–4 To implement this procedure, it is necessary to
have high-precision probes that detect small variations under
changes of the direction of the applied field. A series of
remarkable experiments proved already the viability of this
approach.4–7 However, it has proved nontrivial to interpret
these experiments in general. The oscillations in physical
quantities, as a function of the field direction, change sign
depending on the magnitude of the applied magnetic field
and the temperature.3,8,9 The location of these inversion lines
depends sensitively on the topology of the Fermi surface and
the material-specific details of the (multi)band structure.10,11

Obviously, this calls for the development of theoretical
tools that take material-specific properties into account. Fur-
thermore, it suggests that a quantitative and unambiguous
identification of the structure of the superconducting (SC)
gap requires the incorporation of realistic Fermi-surface (FS)
properties.

The unconventional heavy-fermion superconductor
CeCoIn5 is an ideal candidate for testing field-angle-resolved
probes due to the existence of large high-quality crystals
and accessible temperature and field ranges. Early
field-angle-resolved thermal conductivity and specific-heat
measurements were controversial on whether CeCoIn5 has a
superconducting gap with dx2−y2 or dxy symmetry.12,13 Recent
specific-heat measurements observed the predicted inversion
of the oscillations at low temperature.6 This seemed to have
settled the dispute in favor of dx2−y2 pairing symmetry.

In this paper, we incorporate first-principles electronic-
structure calculations to obtain the realistic tight-binding
parametrization for Ce-115 (CeT In5 with T = Co, Rh, Ir)
materials that reproduce the Fermi-surface topology and yield
the Fermi velocities, and the density of states (DOS) at
the Fermi level. We use this FS parametrization as input
for self-consistent calculations of thermal properties in the
extended Brandt-Pesch-Tewordt (BPT) approximation of the
quasiclassical Eilenberger equation.8,9 Use of the tight-binding
parametrization allows for a numerically efficient computa-
tion, while keeping the essential character of the low-energy
band structure that reflects on the hybridization between Ce 4f

and In 5p states. Within this framework, we consider candidate
s- and d-wave order parameters, and perform a systematic
study of the angle-resolved specific-heat coefficient γ = C/T

and thermal conductivity κ in a magnetic field rotating in the
Ce-In basal plane. Finally, we construct a field-temperature
phase diagram of the fourfold oscillations.

The main results of our calculations, which are applicable
to a wide range of systems with tetragonal point group
symmetry, are as follows: (1) For isotropic gap (s wave) we
find that moderate FS anisotropies are sufficient to introduce
field-angle-dependent oscillations in the specific heat and
thermal conductivity in the superconducting state over a
significant range of temperatures and at intermediate to high
magnetic fields. In addition, the inversion of the oscillation
pattern as a function of temperature shows that oscillations
are not simply a direct consequence of the anisotropy of
the upper critical field. Therefore, not all such oscillations at
intermediate fields can be taken as proof of strong anisotropy
in the superconducting gap. This result agrees with our recent
numerical study of the iron-based superconductor T Fe2Se2.11

(2) The complex field-angle dependence of the specific heat
and thermal conductivity for systems with anisotropic Fermi
surfaces suggests that comparison of both quantities with
material-specific theories is required to identify the pairing
symmetry and gap structure. This is already important for
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materials where the Fermi-surface anisotropy is moderate, as
is the case for the Ce-115 family.

The rest of the paper is arranged as follows. In Sec. II,
we present our tight-binding representation of the two FSs for
CeCoIn5. Detailed analytical and computational formalism of
the field-angle-resolved specific-heat and thermal conductivity
calculations is given in Sec. III. The results of the temperature
and magnetic field dependence of these quantities, and their
relative sign reversal in the field-angle oscillation for s-and
two d-wave pairing symmetries, are given in Sec. IV. Some
comparison with the available data for CeCoIn5, CeRhIn5, and
CeIrIn5 is also included. Finally, we conclude in Sec. V.

II. ELECTRONIC STRUCTURE

First-principles calculations of CeCoIn5 demonstrate that
the bands crossing the Fermi level are dominated by strongly
hybridized 4f electrons of the Ce atom with weak overlap
coming from the 5p orbitals of the In atom.14,15 In this work,
our basic aim is to parametrize the true shape of the FSs
only, while the overall dispersion feature at higher energy
is irrelevant for thermodynamic and transport properties.
Therefore, we use an effective tight-binding model of the
lowest energy of three 4f orbitals in a tetragonal lattice.
As we are only interested in the eigenvalues and not the
eigenvectors of each band, we absorb the orbital symmetry
of contributing orbitals into the tight-binding hopping param-
eters, which makes all bands decoupled from each other. With
this motivation, we write the tight-binding dispersion including
up to third-nearest-neighbor hopping in the x-y plane and only
nearest-neighbor hopping along the c axis to obtain

ξk = −2
∑

i

(tici + t2ic2i) − 4txycxcy − EF . (1)

Here, cαi = cos (αki) with i = x,y,z. EF is the Fermi
energy. We obtain the values of the tight-binding pa-
rameters after fitting to first-principles dispersions by
Ref. 14 shown in Fig. 1(a): (tx = ty , tz, t2x = t2y , txy ,
EF ) = (−0.12,−0.05,0,0.09,−0.55) and (−0.17,0.06,0,

0.15,−0.47) in eV for the α and β bands, respectively.
Note that t2z = 0. The other two bands crossing the Fermi
level have small areas and are not further considered in our
two-band-model description of CeCoIn5.

The α and β bands give two concentric electron pockets at
the zone corner (M point) [see Fig. 1(b)]. The kz dispersion
of each band is more interesting and needs special attention.
Along the kz direction, both α and β FSs are more like
corrugated cylinders: the α FS has a narrow waist at kz = 0,
while the β FS has a belly. Note that only nearest-neighbor
hopping along the c axis is sufficient to obtain the qualitative
kz dispersion of all bands in agreement with the ab initio band
structure16 and de Haas–van Alphen (dHvA) experiments17

[see Fig. 1(c)]. The opposite sign of the tz parameter is
responsible for the opposite shape of the α and β FSs (narrow
waist versus belly).

III. THEORY AND COMPUTATIONAL METHOD

For magnetic field H applied at angle α with respect
to the (100) direction, we compute the field-angle-induced
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FIG. 1. (Color online) Electronic structure of CeCoIn5: (a) tight-
binding fits of the two most relevant bands α (red) and β (green) to
the electronic dispersions of CeCoIn5 calculated in the local density
approximation by Maehira et al. (Ref. 14); (b) α and β FSs at three
representative kz values, colored by corresponding Fermi velocity
from low (green) to high (yellow); (c) three-dimensional rendering of
the computed FSs for α and β bands (bottom panel) compared with
the dHvA experiments (Ref. 17) (top panel). The α FS has a narrow
waist, while the β FS has a belly. The color map of the calculated FSs
gives the anisotropy of the magnitude of the Fermi velocities ranging
from low (blue) to high (red).

superconducting DOS per spin Nn(ω; H) (band index n =
1,2) by solving the Eilenberger equation3,8,9,18 within the
extended BPT quasiclassical approximation.19–21 The BPT
approximation implies a uniform field H over the unit cell
of the Abrikosov vortex lattice (unit-cell averaged Green’s
function). This produces quantitatively correct results near
the upper critical field, and continues to yield semiquan-
titatively correct description over the range 0.5Hc2(T ) �
H � Hc2(T ) for the isotropic gap,19,22,23 and to much lower
fields for nodal and strongly anisotropic gaps in single-band
models.3,24,25

Here, we summarize the key steps of the calculation, and
highlight the main technical differences between the single-
band and multiband systems following Refs. 8, 9, and 18. The
main object of interest, the quasiclassical Green’s function,
is assumed to be diagonal in the band space (n = 1,2) since
bands are well separated in the Brillouin zone, and have the
4 × 4 Gor’kov-Nambu matrix structure corresponding to
singlet pairing in each band:

Ĝ =
(

ĝ1 0

0 ĝ2

)
, ĝn =

(
gn iσ2fn

iσ2f
n

−gn

)
. (2)

The Green’s function in each band satisfies the Eilenberger
equation for given Matsubara frequency iων = iπT (2ν + 1),
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FIG. 2. (Color online) Fermi surfaces (FSs) and Fermi velocities
at kz = 0 (left panel) and kz = π/c (right panel). The relative
magnitude of the Fermi velocities (in arbitrary units) is given by
the length of the (red and green) arrows in the top panels. The
bottom panels show the Fermi velocities along the Fermi lines of
the corresponding kz slice.

which has a simple commutator form26[(
iων + e

c
vn(kf ) · A(R)

)
τ̂3 − �̂n(R,kf )

− σ̂ imp
n (iων), ĝn(R,kf ; iων)

]
+ ivn(kf ) · ∇R ĝn(R,kf ; iων) = 0, (3)

where the Fermi velocity in band n is denoted by vn(kf ),
with the wave vector kf on the respective FS. Since this is
a homogeneous equation, it has to be complemented by the
normalization condition of the Green’s functions:

ĝn(R,kf ; iων)2 = −π2. (4)

Furthermore, the off-diagonal Green’s functions and self-
energies are related by symmetry26: f

n
(R,kf ; iων) =

fn(R, − kf ; iων)∗ = fn(R,kf ; −iων)∗; �imp
n (R,kf ; iων) =

�
imp
n (R, − kf ; iων)∗ = �

imp
n (R,kf ; −iων)∗.

The equations for the Green’s functions in two bands
are coupled indirectly through the self-energies entering the
Eilenberger equation. The scattering of quasiparticles off
impurities with concentration nimp is taken into account via
the self-energy in each band σ̂

imp
n , which is evaluated in the

T -matrix approximation for the two-band system27,28

σ̂ imp
n ≡

(
D + 

imp
n iσ2�

imp
n

iσ2�
imp
n D − 

imp
n

)
= nimp t̂nn,

(5)
T̂ = Û + Û〈Nf (kf )Ĝ(kf )〉FST̂ .

The T̂ matrix and the impurity scattering potential have the
following structure in band space:

T̂ =
(

t̂11 t̂12

t̂21 t̂22

)
, Û =

(
u11 u12

u21 u22

)
. (6)

The angular brackets denote the integral over one or the other
Fermi surface, as appropriate, e.g.,

〈Nf (kf ) Ĝ(kf )〉FS = diagn=1,2

[ ∫
FSn

d2kf Nf,n(kf ) ĝn(kf )

]
,

(7)

and the corresponding normal-state DOS at the Fermi level is
Nf,n(kf ) ∼ 1/|vn(kf )|. Sometimes we will omit the subscript
FS for brevity.

For each T and H , the order parameters are calculated self-
consistently from the coupled gap equations of the two-band
model

�n(R,kf ) = T
∑
ων

∑
m

〈Vnm(kf ,kf
′) Nf,m(kf

′)

× fm(R,kf
′; iων)〉FS. (8)

We use a factorized pairing potential at the Fermi surface as
Vnm(kf ,kf

′) = Vnm Yn(φ)Ym(φ′), with Yn(φ) the basis func-
tion that depends only on the azimuthal angle (see Figs. 2 and
3). This means that the order parameters are also factorized,
�1,2(kf ) = �1,2Y1,2(φ). We couple the bands, for simplicity,
by purely interband pairing V12 = V21 = −V , and assume
the same symmetries and angular variations on both bands
Y1(φ) = Y2(φ). While the detailed microscopic analysis of the
pairing interaction in CeCoIn5 is beyond the scope of our paper,
this is the simplest choice that ensures that superconductivity
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FIG. 3. (Color online) Fermi-surface anisotropy of the normal-
state DOS and SC gaps contrasted with the field-angle anisotropy of
the Sommerfeld coefficient and the SC DOS. (a) The calculated FS
anisotropy of the normal-state DOS juxtaposed with gap functions of
three pairing symmetries. All the SC gaps are computed at the FS and
all curves are shifted by their corresponding minimum value, except
for the s-wave gap. (b) Specific-heat coefficient γ (α) = C(α)/T ,
normalized to its value at Tc, calculated at T/Tc0 = 0.1 and H/Hc2 =
0.1 for d-wave gaps and H/Hc2 = 0.5 for the s-wave gap. (c)–(e)
Field-induced total SC DOS at T = 0 vs energy at two representative
field angles α = 0◦ and 45◦ for all three pairing symmetries. Here, we
used H/Hc2 = 0.5 for s wave and 0.1 for both d waves. Note the low-
and high-energy crossings in the SC DOS (arrows) are related to the
low- and high-T sign reversals in the oscillations of γ and κ in Fig. 4.
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in the same angular momentum channel arises simultaneously
in both bands, and that the temperature and field dependencies
of both gaps are similar, as required for consistency with
experiment. While there are indications that in CeCoIn5 there
is a small excitation gap that closes at very low fields, of order
0.1% of the upper critical field,29 it seems likely that this gap
is proximity induced on the parts of the Fermi surface with
low-f -electron content that we do not consider here. Since
all the experiments measuring the field-angle anisotropy are
carried out at fields, which are at sufficiently high H/Hc2, we
consider only Fermi-surface sheets with strong pairing and
large gaps. It is worth mentioning that the interband pairing
captures both nodeless s±- and nodal d-wave pairing scenarios.

Generally, for arbitrary interaction matrix Vnm, the coupled
gap equations support two solutions for the amplitudes
(�1,�2). The physical solution corresponds to the highest
transition temperature Tc0, that is, the greatest eigenvalue Vmax

of the interaction matrix(
V1l

〈
Nf,1Y2

1

〉
V12

〈
Nf,2Y2

2

〉
V21

〈
Nf,1Y2

1

〉
V22〈Nf,2Y2

2 〉

) (
e1

e2

)
= Vmax

(
e1

e2

)
. (9)

The effective interaction strength Vmax and the cutoff �c can
be eliminated using standard techniques in favor of the bare
transition temperature Tc0 = 1.13�c exp(−1/Vmax),26 and the
gap amplitudes in different bands are given by the eigenvector
of the interaction matrix(

�1

�2

)
=

(
e1

e2

)
�. (10)

Upon projecting out this vector from Eq. (8), the system of the
self-consistency equations is reduced to a single equation for
the order parameter � of the dominant instability.

Since the only coupling between bands is via the self-
consistency equations of the order parameter and the self-
energies, the solutions for the propagators in each band can be
formally obtained from the transport equation (3) with given
�n and σn in the same way as for single-band systems.8,9 We
express the gradient term via the raising and lowering operators
(a†,a) for the vortex solutions corresponding to the super-
position of different harmonic-oscillator functions:21 vn(kf ) ·
[∇R − i 2e

c
A(R)] = 1√

2�
[vn,−(kf )a† − vn,+(kf )a]. The (x,y)

projections of the Fermi velocity on the plane perpendicular to
the direction of the field ẑ have to be rescaled by the anisotropy
factor Sf :

vn,± = vn,x(kf )/
√

Sf ± ivn,y(kf )
√

Sf . (11)

The relevant parameter that determines the excitations
in the SC state at a particular point on the Fermi surface is
the component of the (rescaled) Fermi velocity normal to the
applied field

v⊥
n (kf ) =

√
vn,x(kf )2/Sf + vn,y(kf )2 Sf . (12)

The corresponding energy scale is

v̄f,n(φ,H) ≡ v⊥
n (kf )

2�
, (13)

where � = (h̄c/2|e|H )1/2 is the magnetic length, which is of
the order of the intervortex distance, and φ is the FS angle with

respect to the kx axis. The anisotropy parameter Sf is chosen
to give the correct form of the vortex lattice in the linearized
Ginzburg-Landau (GL) equations for �. This allows us to
consider only the lowest Landau level8

�(R) = �
∑
ky

C
(n)
ky

eiky

√
Sf y

4
√

Sf �2
�0

(
x − �2

√
Sf ky

�
√

Sf

)
. (14)

For tetragonal symmetry, this parameter depends on the
angle that the applied field makes with the symmetry axis c

(in this paper, θH = π/2):

Sf =
√

cos2 θH + K‖
K⊥

sin2 θH . (15)

Here, K‖ (along the c axis) and K⊥ (in plane) are the
coefficients of the gradient terms in the GL expansion for
the gradients along the c axis and in the ab plane, respectively.
For our two-band system, they depend on the degree of mixing
of the bands in a particular superconducting state �. For
the state (�1,�2) = (e1�,e2�), they are determined by the
right �e = (e1,e2)T and left �e′ = (e′

1,e
′
2) eigenvectors of the

interaction matrix in Eq. (9), corresponding to eigenvalue Vmax

with �e′ · �e = 1:

K‖ = (e′
1 , e′

2)

Vmax

(
V11 V12

V21 V22

) (
e1

〈
v2

1c Nf 1Y2
1

〉
e2

〈
v2

2c Nf 2Y2
2

〉 ) , (16)

K⊥ = (e′
1 , e′

2)

Vmax

(
V11 V12

V21 V22

) (
e1

〈
v2

1a Nf 1Y2
1

〉
e2

〈
v2

2a Nf 2Y2
2

〉 ) . (17)

With these remarks in mind, we can directly use the single-
band results for the unit-cell-averaged Green’s functions in the
single Landau-level approximation [we follow the notation of
Eqs. (46)–(48) in Ref. 8]

gn(iων,kf ; H) = −iπ√
1 − i

√
π 1

v̄2
f,n

W ′( iω̃ν,n

v̄f,n

)
�̃n�̃n

, (18)

fn(iων,kf ; H) = ign

√
π

v̄f,n

W

(
iω̃ν,n

v̄f,n

)
�̃n. (19)

Here, iω̃ν,n = iων − 
imp
n (iων,kf ; H) and �̃n = �n(kf ) +

�
imp
n (iων,kf ; H) are the Matsubara frequency and the order

parameter renormalized by the impurity self-energies in each
band n, σ̂

imp
n . W ′(z) is the first derivative of the complex-

valued function W (z) = exp (−z2)erfc(−iz). One can further
cast this in a form similar to that of a uniform supercon-
ductor by introducing the new self-energy n according to
i
√

π/v̄2
f,n W ′

n(iω̃ν/v̄f,n) ≡ (iων − n)−2. The effective self-
energy n now contains effects from both the impurity
scattering and the effects of orbital magnetic field.

In contrast to the Doppler shift approximation, both the
real and the imaginary parts of n contribute to the SC
DOS, and their interplay as a function of energy H and T

determine the sign reversal in the fourfold oscillation of the
SC DOS. These effects have been extensively studied earlier
using a single quasicylindrical FS and nodal gap, and a minimal
two-dimensional (2D) model for two-band systems (see, for
example, Refs. 3, 8, 9, and 18).
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The transport and thermodynamic coefficients are calcu-
lated by using the retarded Green’s functions through analytic
continuation iων → ω + i0 in the propagators found above.
We begin with the total electronic specific heat from both
bands C = C1 + C2, which is given by the derivative of the
net entropy C = T (∂S/∂T ). Because the low-temperature
approximation given by8

Cn(α) ≈ 2
∫ ∞

−∞
dω

ω2〈Nn(ω,kf ; H)〉FS

4T 2cosh(ω/2T )2
(20)

remains valid almost up to the normal-state transition region,
it can be employed to describe the behavior of the heat
capacity over most of the phase diagram. Detailed numerical
calculations show that the high-temperature sign-reversal line
is robust, but will be shifted to slightly higher temperatures by
approximately 0.1Tc0 for the FS parametrization considered
here compared to the calculations using the low-temperature
approximation in Eq. (20).

In the semiclassical theory of electron transport in which the
interband transitions are neglected, the thermal conductivity is
the sum of the contributions from both bands κ = κ1 + κ2,
with9,24

κxx
n (α) = 2

∫ ∞

−∞
dω

ω2

2T 2cosh(ω/2T )2

× 〈
vx

n (kf )2Nn(ω,kf ; H)τn(ω,kf ; H)
〉
FS. (21)

Here, the field-induced SC DOS per spin in each band
Nn(ω,kf )/Nf,n(kf ) = −Im gR(ω,kf ; H)n/π , the factor 2
accounts for the spin degeneracy, and the transport lifetime
is due to both impurity and vortex scattering9,18,24

1

2τn(ω,kf ; H)

= −Im imp
n (ω,kf ; H) + √

π
1

|v̄f,n(kf ; H)|

× Im
{
gR

n (ω,kf ; H) W [ω̃/|v̄f,n(kf ; H)|]}
Im gR

n (ω,kf ; H)
|�̃n(kf ; H)|2.

(22)

When T → 0, we recover the standard expressions for the
Sommerfeld coefficient γn ≡ Cn/T → 2

3π2〈Nn(0,kf ; H)〉FS,
and for the linear coefficient of the thermal conductivity
κxx

n /T → 1
3π2〈vx

n (kf )2Nn(0,kf ; H)τn(0,kf ; H)〉FS. Since
the Green’s function, given by Eq. (18), takes the standard
BCS form at H = 0, we also recover the universal thermal
conductivity for gaps with nodes on the FS.30–34 At low
fields, the approximation breaks down, but for nodal
superconductors it provides a good interpolation from low
to high fields and, in the regime 1 � 1/τimp�n � H/Hc2,
reproduces the well-known

√
H field dependence of the

density of states in d-wave superconductors35,36 up to
logarithmic corrections.8,9,24

Since the function x2/cosh(x/2)2 peaks at x ∼ 2.5T ,
the anisotropy of the heat capacity at low temperatures is
qualitatively determined by the anisotropy in the total SC
DOS N (ω = 2.5T ,kf ; H). Using the expansion of the error
function, we obtain two limiting values for W ′(z): W ′(0) =
2i/

√
π and W ′(z � 1) ≈ −i/

√
πz2. Thus, the SC DOS for

each band n becomes

Nn(ω; H)

= 〈Nn(ω,kf ; H)〉FS

≈
⎧⎨⎩

〈
Nf,n(kf )

[
1 + 2

( �̃n(kf ;H)
|v̄f,n(kf ;H)|

)2]−1/2〉
FS, ω � v̄f,n〈

Nf,n(kf )
[
1 − ( �̃n(kf ;H)

ω̃

)2]−1/2〉
FS, ω � v̄f,n.

(23)

The first line in Eq. (23) only makes physical sense when the
BPT approximation is valid at low energies, i.e., for nodal and
strongly anisotropic gaps. In that case, at low T (low energy)
and low fields, where �n(kf ; H) only weakly depends on the
direction of the field, the SC DOS depends predominantly
on the orientation of v̄f,n(kf ; H) relative to the minima of
�n(kf ; H). At ω = 0, the inversion of the SC DOS as a
function of the field for nodal gaps can be obtained in analogy
with Refs. 8 and 37.

At higher energies, the second line of Eq. (23) has the
BCS form apart from the replacement of the bare energies and
gaps by their impurity renormalized counterparts. Therefore,
the field-angle variation enters via the anisotropy of these
self-energies as well as via the field dependence of the gaps
�n(kf ; H) for determining the anisotropy of the upper critical
field. The latter effect is only relevant in the vicinity of the
transition to the normal state, where the result is valid for both
nodal and nodeless gaps, including the fully isotropic situation.
Crucially, for anisotropic Fermi surfaces, the anisotropy in
the self-energies and the order parameter is weighted by the
normal-state angle-dependent DOS Nf,n(kf ), leading to a
complex behavior including the switching of the minima and
maxima found in this work. However, in this regime the energy
width of the Fermi weighting factor in the integral exceeds the
gap amplitude and a full numerical evaluation is required. Our
results are consistent with the general observations based on
such an expansion.

For each pairing symmetry, the coupled order parameters
are computed self-consistently at each temperature T and for
a given value of the magnetic field H applied at the angle α to
the (100) direction. We calculate the field-angle oscillations in
the H -T phase diagram for a mesh of 35 field points between
zero and Hc2, 100 temperature points from zero to Tc0, and 31
field-angle points α from zero to 90◦ to extract the anisotropic
terms in the heat capacity and thermal conductivity. For all the
calculations, we consider purely intraband impurity scattering
u12 = u21 = 0, u11 = u22 = u0 in the clean limit 2�1 =
1/τimp,1 = 2nimp/πNf 1 = 0.01 × 2πTc0, where Tc0 is the bare
transition temperature, Nf 1 is the density of states on the first
band (α band), and the scattering phase shift is chosen to be
δ = arctan(πNf 1u0) = π/2 (unitarity limit). Note that for the
pairing considered in this work, with the same gap symmetry
on both Fermi-surface sheets, inclusion of weak interband
impurity scattering would not change the results qualitatively.

IV. RESULTS

A. Field-induced superconducting DOS anisotropy
and the role of Fermi-surface topology

As discussed above, an important aspect influencing our
results is that, for the realistic band structure, the contributions
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from different segments of the Fermi surfaces to the net
density of states are weighted differently according to both
the factor Nf,n in Eq. (23) and the segment length of the Fermi
surface with a given direction of the Fermi velocity. Figure 2
shows the profiles of the Fermi velocity and the corresponding
weighting factors. The key point is that, in a tetragonal system,
vf,n can have a fourfold anisotropy in the plane that either
enhances or competes with the gap anisotropy in determining
the contribution to the net DOS in the superconducting state
[see Fig. 3(a)]. The detailed interplay of the two depends not
only on the value of the angle-resolved DOS, but also on the
direction of the Fermi velocity.

Indeed, naively one might expect that the relatively large
contribution to Nf,n from the near-45◦ direction, combined
with the node of the dx2−y2 at the same angle in Fig. 3(a),
should enhance the field-angle anisotropy for that symmetry
of the superconducting state relative to the dxy case when
the direction of the greatest Nf,n is fully gapped. In fact, the
opposite is true [see Fig. 3(b)]: the oscillations are enhanced
for dxy symmetry.

This is an indication that the flat parts of the Fermi surface
with large values of the Fermi velocity (see Fig. 2) contribute
more to the total DOS, when the field is at 45◦ and all four
flat parts are “active.” When the field is along 0◦ or 90◦, only
two flat parts contribute. In contrast, the four active corners
with smaller velocities, and hence slightly larger Nf,n(kf ),
give a smaller contribution simply because their arc length
is a smaller fraction of the total Fermi-surface length in the
respective kz slice. It follows that dxy pairing, which has nodes
in the flat parts of the FS, exhibits enhanced C(α = 45◦). In
contrast, the dx2−y2 profile gaps those regions of the Fermi
surface and thus anisotropy of C is suppressed. Hence, the
exact role of the Fermi-surface shape and curvature in the
field-angle oscillations is highly nontrivial.

At higher temperatures, the simple low-T expression
in Eq. (7) is only qualitatively correct, and both detailed
calculations3,8,37,38 and experiments6,39–41 demonstrated that
the anisotropy in the heat capacity is reversed relative to the
low-T result. The lower panel in Fig. 3 shows the field-induced
SC DOS as a function of quasiparticle energy below the
SC gap for α = 0◦ and 45◦ for all three pairing symmetries
considered here. We immediately see that the SC DOS at
these angles switch and reverse magnitude, which reflects
in the sign reversal of the oscillations in specific heat as a
function of temperature. Note that, due to the presence of
Fermi velocities in κ in Eq. (7), a one-to-one correspondence
between SC DOS and κ is not straightforward for FSs that lack
continuous rotational symmetry in the plane.

We show in the following that for realistic and material-
specific anisotropic FS, we still find the sign reversal of the
heat-capacity oscillations for d-wave pairing, which was pre-
viously reported for the rotationally symmetric cases. Hence,
this sign change is a generic feature of nodal gaps. However, the
key finding in this work is that for moderately anisotropic FSs,
measurably large field-angle dependence in the heat capacity
and thermal conductivity is obtained at high fields already for
isotropic gaps, which can lead to misinterpretations if analyzed
solely in this field range and in terms of simple harmonics of
the SC pairing symmetries. We stress that multiband effects
add additional complexity to any analysis, due to competing

FS anisotropies. For example, we have previously shown that if
the FS anisotropy in different bands is opposite (out-of-phase)
to each other, then it can lead to additional sign reversals in
the field-angle dependence of the thermodynamic quantities
for s-wave gap, very similar to what was earlier obtained for
nodal gaps only.11 Furthermore, bands with different DOS lead
to different amplitudes and shapes of the self-consistent value
of the SC gaps (i.e., generally �1 �= �2). In this case, the
obtained numerical results become less intuitive to interpret
and a simple one-to-one mapping between oscillations and
nodes is lost. However, at low temperature and low field, the
generic understanding of the anisotropy as a consequence of
the nodal structure alone remains valid. We give a detailed
comparison of the different regimes below.

B. Temperature evolution of field-angle-resolved oscillations

We present the full angle-dependent profiles of γ (α) =
C(α)/T and κ(α)/T for several temperatures at a represen-
tative low field (H/Hc2 = 0.1) for the two nodal gaps and,
for comparison, for an isotropic s-wave gap at a moderate
field (H/Hc2 = 0.5) in Fig. 4. In accordance with our
earlier calculation for KyFe2−xSe2 in Ref. 11, we find that
a substantial oscillation in γ and κ is present for isotropic
s-wave pairing. The amplitude of the oscillation increases
with stronger kz dispersion. As in simple models,8 close to
the inversion line the oscillations are not a simple sum of the
twofold and fourfold harmonics, but have a more complex
profile.

For nodal dxy and dx2−y2 pairings, the behavior of os-
cillations of γ (α) and κ(α) is similar to results obtained
for quasicylindrical FSs,18 however, the amplitude of os-
cillations and, crucially, the location of sign reversals in
the H -T phase diagram are modified. Earlier such sign-
reversal features were discussed only for highly anisotropic or
nodal gap structures.3,6,8,18,39,41 Our material-specific results
caution against straightforward interpretation of oscillations
at intermediate fields as evidence of nodes, emphasizing the
need to probe low-energy excitations.

We extract the amplitudes of the fourfold oscillations by
defining

C4α(T ) ≡ �C
0 − �C

45, (24)

where �C
α = [C(α,T )/T ]/[CN/Tc] and

κ4α(T ) ≡ [
�κ

0 + �κ
90

]/
2 − �κ

45, (25)

where �κ
α = [κxx(α,T )/T ]/[κxx

N /Tc], and CN and κN are
the corresponding normal-state values at Tc. This definition
removes any twofold, sixfold, etc., contribution from κ(α)
originating from the field parallel or perpendicular to the
vortex lines.42 In fact, it is straightforward to show that
for any function f (α) = ∑M

n=0 a2n cos(2nα), the definition in
Eq. (25) projects out any other harmonic contribution up to
M = 5, resulting in κ4α = 2a4. We verified numerically that
the amplitudes of twelvefold and higher-order harmonics are
negligible. On the other hand, the definition in Eq. (24) is less
robust, but very convenient. It gives C4α = 2a4, when a2 =
a6 = a10 = 0, which is sufficient when sample misalignment
is negligible and when used away from the sign-reversal line.
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FIG. 4. (Color online) Calculated oscillations of the heat capacity
and thermal conductivity as a function of the field direction relative
to the x axis. (a1) Sommerfeld coefficient γ = C/T normalized
to its normal-state value CN/Tc0 at fixed field H/Hc2 = 0.5 for s

wave, plotted from low to high T in units of T/Tc0 (bottom to top
curves). Each curve is colored by the sign of the fourfold oscillation; a
uniform color map is used for values below −0.025 and above 0.025.
(b1) Same as in (a1) but for the normalized thermal conductivity
coefficient κ/T . (c1) The fourfold amplitudes of γ (dashed line) and
κ/T (solid line) are plotted as a function of T . For direct comparison,
the results for nodal dxy (H/Hc2 = 0.1) and dx2−y2 (H/Hc2 = 0.33)
symmetries are plotted in panels (a2) and (a3), (b2) and (b3), and
(c2) and (c3), respectively. Note that the nonvanishing of κ4α as
temperature approaches the phase transition line in panels (c1) and
(c3) is a consequence of the in-plane anisotropy of Hc2.

C. H-T phase diagram

In Fig. 5, we compile our results of the thermal quantities
into a contour map of the amplitude of the fourfold oscillations
in the H -T phase diagram for γ = C/T (top row) and κ/T

(bottom row) for one nodeless and two nodal gaps. Recall
that for quasicylindrical (rotationally invariant in the basal
plane) FSs the specific-heat oscillations simply change sign
between the dxy and dx2−y2 symmetries.8 While the overall
characteristics of the phase diagram remain qualitatively
the same for material-specific cases, substantial quantitative
changes result from the inclusion of realistic Fermi surfaces
and the directional- and band-dependent contributions to the
DOS. Important for the comparison with experiment, we find
that the location of the sign-reversal lines for nodal gaps
shown in Figs. 5(a2) and 5(a3) shifted compared to the earlier
simple models, due to the interplay of the SC order parameter
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FIG. 5. (Color online) Contour maps of fourfold amplitude
oscillations of normalized specific heat C4α (row a) and normalized
thermal conductivity κ4α (row b) in the H -T phase diagram. Each
column denotes a different gap symmetry studied (isotropic nodeless
s, nodal dxy , and dx2−y2 gaps). All plots use the same color map
scale from minimum (red) to maximum (blue). Note that the
fourfold amplitude is given with respect to field H ‖ (100), i.e., a
negative value corresponds to a minimum at α = 0◦. Here, Tc(H)
is defined by the vanishing of both gaps for given symmetry, which
determines the line of the (minimum) upper critical field. Since the
BPT approximation for isotropic s-wave pairing is not valid at low
H , we shaded the corresponding area where our approach is not
applicable.

with the FS anisotropies. As a consequence, the sign of the
fourfold oscillations C4α and κ4α may be different over a
wider range of temperatures and fields. This is to be contrasted
with the results for rotationally symmetric Fermi surfaces,
where the two were found to switch sign almost at the same
temperatures and fields. We also verified that for s-wave
pairing, the high-T sign reversal is robust and remains at
nearly the same location for a single-band superconductor with
identical FS.

Note also that at intermediate to high temperatures and
fields, there is very little in the heat-capacity oscillation profile
that distinguishes the isotropic gap from that of the dx2−y2

symmetry [see Figs. 5(a1) versus 5(a3)]. However, there is
a much more significant difference in transport [Figs. 5(b1)
versus 5(b3)], which implies that a simultaneous study of both
C(α) and κ(α) is highly desirable to gain confidence about
the underlying pairing symmetry in any multiband system
where the low-temperature, low-field regime is experimentally
unreachable. Of course, once the low-energy sector at low
T and low H is accessed, the differences between different
symmetries, and especially between the nodal and isotropic
gaps, becomes obvious. Therefore, in general a rather detailed
comparison between measurements and calculations of the
C4α and κ4α phase diagrams should be employed to draw
conclusions about the pairing symmetries.
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D. Comparison with experiments

The superconducting Ce-115 compounds are well suited for
the study of field-angle oscillations. Accordingly, there have
been a number of experiments investigating the anisotropy of
the thermal conductivity and the heat capacity under the rotated
field. Here, we compare the experimental results with our
findings, previously shown in Fig. 5. Since the upper critical
field is Pauli limited, and our calculation does not account for
the Zeeman splitting, we can not expect our results to map
directly onto the measurements near Hc2. Nevertheless, we
believe that a qualitative comparison can be made, especially
for systems with strong paramagnetism in the low-field part
of the phase diagram, which, when rescaled to the appropriate
values of the upper critical field, is essentially identical to that
computed in the absence of the Zeeman term.46

CeCoIn5. The unconventional nature of superconductivity
was recognized early on through the discovery of power-law
dependence in the temperature behavior of the specific heat
and thermal conductivity,47,48 magnetic penetration depth,49–52

and spin-lattice and muon-spin relaxation rates53,54 consistent
with predictions for nodal lines in the gap. On symmetry
grounds, the anisotropy of the upper critical field vanishes
near Tc0, Hc2(0◦) = Hc2(45◦). In our calculations, we find
that noticeable anisotropy emerges for T/Tc0 � 0.7. In this
range, Hc2(0◦) > Hc2(45◦) for both s and dx2−y2 pairing
symmetries, while the anisotropy is opposite for dxy pairing,
i.e., the nodal directions have a lower Hc2 value. The
anisotropy for s and dx2−y2 gap is in qualitative agreement
with the Hc2 measurements of CeCoIn5 by Settai et al.,55

who reported Hc2(0◦) > Hc2(45◦) at low temperatures. The
measured anisotropy is only a few percent, which would be
consistent with the assumption that the band electron g factor,
and hence the Pauli limiting field is isotropic in the plane,
and the weak anisotropy is due to a residual orbital effect.
Remarkably, the opposite relationship Hc2(0◦) = 11.8 T <

Hc2(45◦) = 11.9 T was found in Ref. 56. So far, the experimen-
tal discrepancy of the in-plane Hc2 anisotropy remains an open
puzzle.

The original interpretations of the field-angle-resolved
thermal conductivity12 and specific-heat13 measurements con-
tradicted each other regarding the location of the d-wave nodal
lines in CeCoIn5. The controversy was finally settled by the
observation of the inversion in the specific-heat oscillations by
An et al.6 In Figs. 6(a1) and 6(b1), we plot both the C4α and κ4α

experimental data points (symbols). The agreement between
theory and experiment is quite convincing for dx2−y2 -wave
symmetry and rules out pairing scenarios of either s or dxy

gap.
CeRhIn5. The high-pressure, angle-resolved specific-heat

measurements of CeRhIn5 by Park et al.43 showed a clearly
delineated fourfold oscillation with C(0◦) < C(45◦), which
was interpreted in favor of d-wave symmetry. The mea-
surements were performed down to temperatures as low as
0.3 K (0.3T/Tc) and in fields between 0.2 and 0.9 T. At
the pressure of 1.47 GPa, the superconductivity coexists
with antiferromagnetism with superconducting transition Tc =
1.04 K and in-plane Hc2 = 1.2 T at 0.3 K. The measured
in-plane Hc2 anisotropy was negligible. As we noted before,
in this region of the H -T phase diagram, both s-wave and
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FIG. 6. (Color online) Theoretical contour maps of fourfold
amplitude oscillations for dx2−y2 gap for specific heat (upper panel)
and thermal conductivity (lower panel) of CeCoIn5, reproduced
from Figs. 5(a3)–5(b3). The same theoretical data are repeated
in three columns, but compared with three different experimental
data for isostructural superconductors within the Ce-115 family.
(a1) Specific-heat data of CeCoIn5 by An et al. (Ref. 6) (circles)
and Aoki et al. (Ref. 13) (squares). (b1) Thermal conductivity data
of CeCoIn5 by Izawa et al. (Ref. 12). (a2) Specific-heat data for
CeRhIn5 by Park et al. (Refs. 43 and 44). (a3) Specific-heat data for
CeIrIn5 by Lu et al. (Ref. 41) (circles) and Kittaka et al. (Ref. 7)
(squares). (b3) Thermal conductivity data of CeIrIn5 by Kashara
et al. (Ref. 45). The symbol size gives the corresponding reported
amplitude of the oscillation, whereas the filled color depicts its sign.
We find reasonable agreement between theory and experiment in both
sign and amplitude of oscillations.

dx2−y2 -wave gaps are nearly indistinguishable giving rise to
fourfold oscillations with the minimum of C(α) occurring
at H ‖ (100). Supporting the d-wave interpretation, T - and
H -dependent measurements down to 0.3 K and 0.05 T
exhibited power-law behavior consistent with unconventional
superconductivity with nodes, i.e., C/T ∼ T and C/T ∼√

H , respectively. Additional experiments at higher pressure
(2.3 GPa), i.e., in the purely superconducting phase, and at
T/Tc = 0.14 and H/Hc2 = 0.09 showed evidence of fourfold
oscillations with a negative amplitude C4α of order 4%.44

However, to unequivocally rule out the possibility of s-wave
pairing, based on field-angle-resolved measurements alone,
experiments would have to be performed at temperatures
significantly below Tc/3, where the exponential T dependence
of the fully gapped excitation spectrum becomes visible. Power
laws were also seen in other pressure measurements of the
specific heat, spin-lattice, and muon-spin relaxation rates down
to T/Tc ≈ 0.15.54,57,58 In chemically doped CeRh1−xIrxIn5,
a T 3 dependence was seen in 1/T1 just below Tc, which
tends toward linear in T at lower temperatures as is typical of
dirty d-wave superconductors.59 In Fig. 6(a2), we plot the C4α

experimental data points (symbols) on top of the phase diagram
for the dx2−y2 gap. The field-angle-dependent experiments
taken by themselves are inconclusive, although combined with
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the reported T and H dependences are strongly suggestive of
dx2−y2 -wave superconductivity in CeRhIn5.

CeIrIn5. There is an ongoing controversy about the pairing
symmetry in this compound because of its two different
superconducting domes, namely, one as a function of Rh
doping and the other as a function of pressure. In addition,
there is disagreement over the interpretation of the ther-
mal conductivity data. On one side, the field-angle-resolved
measurements45 and power-law dependence in temperature
were argued as evidence for d-wave gap with vertical line
nodes, similar to the sister compound CeCoIn5,48,60 while
on the other side, thermal conductivity measurements, in
particular the temperature and magnetic field dependence
of the residual value of κ/T along different axes, were
interpreted in favor of a three-dimensional hybrid gap with
a horizontal line node.61–63 The hybrid gap proposal was
inspired by similar gap functions studied some time ago
for the heavy-fermion superconductor UPt3.32,34,64 To further
complicate the interpretation, the results by Shakeripour et al.
were also argued to be consistent with vertical line nodes.65 In
addition, power laws were reported for magnetic penetration
depth and spin-lattice relaxation rate.53,59,66 The temperature
behavior of the anisotropic penetration depth was interpreted
to be consistent with vertical line nodes, but not with point
nodes and a horizontal line node of the hybrid gap.66 However,
the conclusive evidence for the in-plane gap variation comes
from very recent angle-resolved specific-heat measurements
at ambient and finite pressure. Lu et al.41 (circles) reported
fourfold oscillations inside the pressure dome of CeIrIn5

with sign reversal of the oscillations at high temperatures
between 0.4 and 0.6Tc. These data taken together with a
low-T anisotropy of Hc2(0◦) > Hc2(45◦) and the fact that
this compound belongs to the same family of Ce-115s were
strongly suggestive of two-dimensional dx2−y2 -wave pairing
with vertical line nodes. Unfortunately, the temperature in
Ref. 41 was too high to formally exclude isotropic s-wave
pairing [see the phase diagram in Figs. 5(a1) versus 5(a3)].
The specific-heat data of Ref. 7, on the other hand, were taken
down to 80 mK, that is, 0.2Tc. Therefore, the specific-heat
oscillations are supportive of the dx2−y2 gap scenario. Data
from both experiments are included in the comparison in
Fig. 6(a3). In addition, field-angle-resolved thermal conductiv-
ity data were reported by Kasahara et al.,45 which are shown
in Fig. 6(b3). Combined with the specific-heat oscillations,
they provide strong support for this pairing symmetry. Hence,
at present the overwhelming majority of experiments supports
the dx2−y2 -wave superconductivity with vertical line nodes in
CeIrIn5.

V. DISCUSSION AND CONCLUSIONS

We performed realistic model calculations of the field-
angle-resolved specific heat and thermal conductivity using a
tight-binding parametrization of the electronic structure within
a two-band model of superconductivity, which is relevant
for the Ce-115 heavy fermions. Our systematic analysis of
field-angle dependence showed that modest anisotropies in
the density of states and the in-plane Fermi velocities of
a tetragonal crystal contribute significantly to the fourfold
oscillations in the vortex state, when the magnetic field is

rotated in the basal plane. As evidence, we showed that such
oscillations exist at intermediate to high fields even for an
isotropic s-wave gap. Remarkably, the sign reversal of fourfold
oscillations occurs not only for nodal d-wave gaps, but also
for an isotropic s-wave gap as the temperature is decreased.
This is one of the main findings of this work and implies that
away from the low-temperature and low-field region, it may
be difficult to distinguish different pairing symmetries based
on the field anisotropy of a single probe alone.

Finally, we compared the results of the field-angle-resolved
calculations within our model with recent experimental data
on different members of the Ce-115 family. The behavior
of the self-consistently determined thermal quantities for
nodal dx2−y2 -wave gap is consistent with experimental reports
for CeCoIn5. The same phase diagram is also consistent
with specific-heat data for CeRhIn5 and CeIrIn5. Since both
CeRhIn5 and CeIrIn5 have similar electronic structure as
CeCoIn5 near the Fermi energy, we believe that our Fermi-
surface parametrization is valid for all three compounds.
Consequently, very similar phase diagrams should result for all
three materials for which material-specific calculations drasti-
cally improved the agreement between theory and experiment.
The comparison with experimental data is restricted to low
fields since the superconductivity in this material is Pauli
limited,67,68 and there are indications of a quantum critical
point in the vicinity of the upper critical field at zero tempera-
ture Hc2(0).69,70 Thus, the regime near the upper critical field at
low temperatures is beyond the scope of the current treatment.
We find that within our realistic model of the Fermi-surface
parameters, the fourfold anisotropy map is in better agreement
with experiments on CeCoIn5, if we assume a weak dispersion
along the kz axis. Note that the relatively small anisotropy of
the upper critical field in this material does not have direct
connection with the anisotropy of the electron dispersion, as
it likely stems from the Pauli limiting of superconductivity.
Since the electronic band structure is very similar among the
Ce-115s near the Fermi energy, we expect that our findings
for CeCoIn5 are also relevant for CeRhIn5 and CeIrIn5 under
pressure. Considering that questions remain about the exact
superconducting gap structure and potential spin-fluctuation
nesting in the Ce-115s,71 a definitive theoretical account of
field-angle-resolved measurements is warranted.

We conclude with a note of caution for interpreting field-
angle-resolved oscillations. Our self-consistent two-band-
model calculations demonstrated that simple observations of
oscillations and sign reversals in either C(α) or κ(α) are not
direct evidence for the presence of nodes or minima in the
gap structure. Such conclusions can be drawn either from
low-energy measurements or at higher temperatures and fields
from a comprehensive simultaneous analysis within the same
framework of both C(α) and κ(α) measurements. Only a
systematic analysis of the fourfold oscillations in the H -T
phase diagram can constrain the symmetry space of possible
pairing scenarios for a given material.
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P. Miranović, and K. Machida, J. Phys.: Condens. Matter 16, L13
(2004).

14T. Maehira, T. Hotta, K. Ueda, and A. Hasegawa, Phys. Rev. Lett.
90, 207007 (2003).

15T. Maehira, T. Hotta, K. Ueda, and A. Hasegawa, J. Phys. Soc. Jpn.
72, 854 (2003).

16H. Shishido et al., J. Phys. Soc. Jpn. 71, 162 (2002).
17H. Shishido, T. Ueda, S. Hashimoto, T. Kubo, R. Settai, H. Harima,

and Y. Onuki, J. Phys.: Condens. Matter 15, L499 (2003).
18A. B. Vorontsov and I. Vekhter, Phys. Rev. Lett. 105, 187004 (2010).
19U. Brandt, W. Pesch, and L. Tewordt, Z. Phys. 201, 209 (1967).
20W. Pesch, Z. Phys. B 21, 263 (1975).
21A. Houghton and I. Vekhter, Phys. Rev. B 57, 10831 (1998).
22E. H. Brandt, J. Low Temp. Phys. 24, 409 (1976).
23J. M. Delrieu, J. Low Temp. Phys. 6, 197 (1972).
24I. Vekhter and A. Houghton, Phys. Rev. Lett. 83, 4626 (1999).
25T. Dahm, S. Graser, C. Iniotakis, and N. Schopohl, Phys. Rev. B

66, 144515 (2002).
26J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).
27Y. Ohashi, Phys. C (Amsterdam) 412–414, 41 (2004).
28V. Mishra, A. Vorontsov, P. J. Hirschfeld, and I. Vekhter, Phys. Rev.

B 80, 224525 (2009).
29G. Seyfarth, J. P. Brison, G. Knebel, D. Aoki, G. Lapertot, and

J. Flouquet, Phys. Rev. Lett. 101, 046401 (2008).
30Y. Sun and K. Maki, Europhys. Lett. 32, 355 (1995).
31M. J. Graf, S.-K. Yip, J. A. Sauls, and D. Rainer, Phys. Rev. B 53,

15147 (1996).
32M. J. Graf, S.-K. Yip, and J. A. Sauls, J. Low Temp. Phys. 102, 367

(1996); 106, 727(E) (1997).

33M. R. Norman and P. J. Hirschfeld, Phys. Rev. B 53, 5706 (1996).
34M. J. Graf, S.-K. Yip, and J. A. Sauls, J. Low Temp. Phys. 114, 257

(1999).
35G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 58, 457 (1993) [JETP
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